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Bayesian uncertainty quantification has a pivotal role in structural identification, yet the
posterior distribution estimation of unknown parameters and system responses is still a
challenging task. This study explores a novel method, named manifold-constrained
Gaussian processes (GPs), for the probabilistic identification of multi-DOF structural
dynamical systems, taking shear-type frames subjected to ground motion as a
demonstrative paradigm. The key idea of the method is to restrict the GPs (priorly
defined over system responses) on a manifold that satisfies the equation of motion of
the structural system. In contrast to widely used Bayesian probabilistic model updating
methods, the manifold-constrained GPs avoid the numerical integration when formulating
the joint probability density function of unknown parameters and system responses, hence
achieving an accurate and computationally efficient inference for the posterior
distributions. An eight-storey shear-type frame is analyzed as a case study to
demonstrate the effectiveness of the manifold-constrained GPs. The results indicate
the posterior distributions of system responses, and unknown parameters can be
successfully identified, and reliable probabilistic model updating can be achieved.

Keywords: multi-DOF structures, earthquake ground motion, time-domain system identification, manifold-
constrained Gaussian processes, vibration-based structural health monitoring

1 INTRODUCTION

The identification of structural systems, formulated as an inverse problem, refers to any systematic
way of updating the model of a structure through the use of experimental data. The main purpose of
structural identification is to correlate the model and the real system for the purpose of, for example,
reliable estimates of performance and vulnerability of the structural system in service (Catbas et al.,
2013). In the past decades, numerous structural identification techniques leveraging vibration
measurements have been proposed and successfully applied to real-world civil engineering
structures. These methods utilize either time-domain or frequency-domain observations (and
input-output or output-only data) to inversely map the monitored data onto the corresponding
structural parameters, and the parameters can be further used to predict structural response to future
dynamic loads or assess the structural conditions (Sun and Betti, 2013). In time-domain
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identification methods, the difference in vibration responses (e.g.,
acceleration, velocity, displacement, and strain) between the
parameterized model and the real system is directly evaluated.
Some innovative methods using (incomplete) output-only time-
domain data to identify structural parameters and input force
have been developed by Chen and Li (2004), Lu and Law (2007),
Sandesh and Shanker (2009), and Sun and Betti (2013). By
contrast, the input-output–related methods executed in the
time domain could be more intuitive and robust to apply,
although more sensor cost would be demanded in the
monitoring system. Several researchers have explored input-
output–related time-domain methods, such as Behmanesh and
Moaveni (2014) and Lei et al. (2019). In frequency-domain
identification methods, modal properties such as natural
frequencies (Hassiotis and Jeong, 1995), mode shapes (Morassi
and Tonon, 2008), frequency response function (Ni et al., 2006;
Zhou and Tang, 2021a), and modal strain energy (Shi et al., 2002)
are extracted from measured dynamic response data of a
structure of interest, and the discrepancies between the
identified and model-derived modal properties are utilized for
model updating and structural condition assessment. In this
study, the structural responses and unknown parameters will
be estimated using time-domain data.

As is often the case during the monitoring of structures,
uncertainties from various sources exist in the monitored data,
making the identification results unreliable or even leading to
false results (Beck and Yuen, 2004). Hence, a probabilistic way of
structural identification is desirable for many problems. It is well
known that the Bayesian methods enable addressal of the
uncertainties in structural identification, which account for
various sources of uncertainties observed in the real world.
Numerous research works have been conducted in pursuit of
Bayes’ theorem to compute the posterior distributions of either
structural responses or unknown parameters. The traditional
methods, such as Bayesian Kalman filters, particle filters, and
Markov chain Monte Carlo, are widely applied for the sampling-
based inference of posterior distributions (Behmanesh and
Moaveni, 2014; Capellari et al., 2015; Li et al., 2016).
Ramancha et al. (2020) presented a sequential Monte Carlo
method to update a nonlinear finite element model of a full-
scale reinforced-concrete bridge subjected to seismic excitations.
Parallel model evaluation is a remarkable advantage of the
sequential Monte Carlo, which is ideal for updating
computationally expensive models. Behmanesh et al. (2015)
proposed a hierarchical Bayesian modeling technique for
probabilistic finite element model updating, which predicts
uncertainty in parameter estimation and captures the inherent
time-variability of structural parameters as well. Sun and Betti
(2015) proposed a hybrid optimization methodology to
implement Bayesian inference in model updating, which could
be effectively applied to determine the unknown system
parameters and uncertainties over the parameters using a
weighted sum of Gaussian distributions. Erazo and
Nagarajaiah (2018) applied unscented Kalman filtering to
estimate the parameters that define the nonlinear models of
structures equipped with negative stiffness systems. Huang
et al. (2017) proposed a hierarchical sparse Bayesian learning

and Gibbs sampling algorithm to estimate the high-dimensional
uncertain parameters which arise from sparse stiffness
identification problems. Rocchetta et al. (2018) developed an
efficient and robust procedure within the Bayesian model
updating framework to detect crack location and size in
mechanical components, where an emulator was generated as
a substitution for the finite element model to reduce the
computational cost and enable on-line Bayesian model
updating. Kamariotis et al. (2022) developed a Bayesian model
updating–based method to sequentially learn structural
deterioration and estimate structural damage evolution over
time. Adeagbo et al. (2021) pursued railway ballast damage
identification by exploring a time-domain Markov chain
Monte Carlo–based Bayesian model updating method, in
which a novel stopping criterion was proposed to correctly
identify the scaling factors of the system properties.

The GP-based Bayesian modeling is another attractive topic in
the Bayesian community, which generally simplifies the priors to
be Gaussian and thus effectively alleviates the high-
computational cost faced by other Bayesian methods. A multi-
task GP method was developed by Wan and Ni (2019) to
reconstruct missing structural health monitoring data;
specifically, the method enables the modeling of a series of
tasks simultaneously. Wan and Ni (2018) presented a moving-
window strategy to achieve a reduced-order GP model, which has
been effectively used to forecast structural stress responses. Zhou
and Tang (2018) proposed a framework based on the
combination of a two-level GP emulator and Bayesian
inference. The framework employed multi-fidelity data from a
full-scale finite element model and a component mode synthesis
reduced-order model, which has been successfully applied to
update the key parameters of a structural system. Xue et al. (2020)
explored the system identification of a ship dynamic model in
terms of an improved GP regression algorithm. A mode shape
uncertainty quantification approach was proposed by Zhou and
Tang (2021b) by using a multi-response GP meta-modeling
strategy, which demonstrated computation efficiency for
uncertainty quantification of mode shapes at multiple
locations. The aforementioned studies have demonstrated the
strong capability of GPs in the framework of Bayesian inference
and meanwhile, provided new thoughts on probabilistic
structural identification.

This study pursues a novel manifold-constrained GP approach
(Yang et al., 2021) to estimate the joint posterior distribution of
unknown structural parameters and dynamical responses. The
equation of motion of a shear-type frame structure subjected to
ground motion is addressed in the state space. The GP prior is
pre-imposed over each system state, explicitly conditioned on a
manifold constraint that the derivative of the GPs must satisfy the
equation of motion of the structure. The idea behind it is that the
probability density function of any multivariate Gaussian
distribution has a closed-form expression (Rasmussen and
Williams, 2006); whereas, for other types of joint distribution,
high-dimensional integration would be inevitable in the
formulation. By leveraging the manifold-constrained GPs, the
joint posterior distribution of the system state and unknown
parameters are decomposed as the multiplication of several
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multivariate Gaussian distributions and the prior of the unknown
parameters, so that the Hamiltonian Monte Carlo method (Neal,
2010) can be effectively implemented to generate samples from
the system state which finally makes the samples’ distribution
converge to the target posterior distribution. In comparison with
other Bayesian methods to conduct probabilistic identification,
the advantage of the manifold-constrained GPs is completely
avoiding the high-dimensional integration when formulating the
posterior distribution function, thus enhancing the inference
accuracy and computational efficiency.

This study is organized as follows. Section 2 elucidates the
general methodology of the manifold-constrained GPs in
application to multi-DOF structures subjected to ground
motion. Section 3 provides a case study on an eight-storey
shear-type building to explore the efficacy of the proposed
method, from which the results show that the posterior
distribution of the unknown structural parameters and system
state can be successfully identified under different levels of noise.
Conclusions are drawn in Section 4.

2 BASIC FORMULATIONS

2.1 Gaussian Process
Let X be a variable set and f: X → R be a random function. The
f is defined as a GP, that is, f ~ GP(μ, k), where for any n and
any finite set of points x ∈ Xn, the random vector f � f(x)
follows a multivariate Gaussian distribution with the mean
vector μ � μ(x) ∈ Rn and covariance matrix Kxx � k(x, x)
(Rasmussen and Williams, 2006).

We assumed that a set of label pairs (xi, yi) of i � 1, 2, ..., n
are observed from the unknown mapping f: X → R. For the
sake of brevity, we denoted x̂ � (x1, x2, . . . , xn)T ∈ Xn×1 and
ŷ � (y1, y2, . . . , yn)T ∈ Rn×1. Given that f ~ GP(μ, k), the
joint distribution of the response variable f(x) associated with
the observations ŷ would follow multivariate Gaussian
distribution. According to Bayes’ theorem, the conditional
probability density of f(x)|ŷ is also a Gaussian distribution
N(ε(x), σ(x)). Its mean and variance are given by

ε(x) � K(x, x̂)K(x̂, x̂)−1
ŷ, (1)

σ(x) � K(x, x) − K(x, x̂)T

K(x̂, x̂)−1
K(x, x̂), (2)

where K(x, x) � k(x, x) ∈ R, K(x, x̂) � k(x, x̂) ∈ Rn×1, and
K(x̂, x̂) � k(x̂, x̂) ∈ Rn×n. It is worth mentioning that without
loss of generality, the formulations of Eqs 1, 2 are based on the
presetting of the mean function μ in the GP prior on f to being
zero. The positive definite kernel function k: X × X → R is
properly determined (reflecting the prior knowledge on the
properties of the unknown mapping to be approximated, for
example, regularity, monotonicity, and periodicity) and
parametrized by a vector θ. The determination of the “best-
fitted” parameters θ is made by maximizing the marginal density
function, which is given by a high-dimensional intimidating
integral ∫

x̂
p(y ⊕ ŷ)dx̂. Here, the notation ⊕ denotes the

concatenation of y and ŷ. While one could conceivably
perform the high-dimensional integration directly, there exists
a closed-form formulation of the integral if y ⊕ ŷ conforms to a
multivariate Gaussian distribution, that is, the probability density
function of the marginal distribution p(ŷ) is given by

p(ŷ) � exp{ − 1
2
[nlog(2π) + log

∣∣∣∣∣∣∣K(x̂, x̂)
∣∣∣∣∣∣∣ + ŷTK(x̂, x̂)−1

ŷ]}
(3)

In the implementation of GP regression, gradients of the
marginal likelihood in Eq. 3 with respect to all unknown
parameters θ are initially derived. By using a gradient-based
optimizer with randomized initial guesses, the best-fitted
parameters θ can be estimated. Here, we must emphasize that
the reason why GP-based methods are widely adopted in science
and engineering is because of the mathematical trick that completely
avoids using numerical integration for the calculation of marginal
likelihood, but instead gives a concise closed-form mathematical
formulation. In the manifold-constrained GPs, this property will be
further elaborated for the inference and characterization of
uncertainties in parameters that govern the dynamical systems.

2.2Manifold-Constrained GPs for Structural
Dynamical Systems
Consider a discrete N-DOF linear system subjected to ground
motion, the equation of motion in the state space form is given by

_z(t) � Acz(t) + Bcag(t), (4)
in which the state vector _z(t) amounts to [x(t), _x(t)]T and

Ac � [ 0 I
−M−1K −M−1C] andBc � [ 0

J
], (5)

where Ac is a matrix of the order 2N × 2N;M,C,K are the
mass, damping, and stiffness matrices, respectively, each
being of order N × N; I is the identity matrix; Bc is a
vector of order 2N × 1; J is an N × 1 all-ones vector; and
ag(t) is the ground acceleration induced by earthquake. In this
study, the Rayleigh damping assumption is employed to
describe the energy dissipation mechanism of the system,
which is expressed as a linear combination of the mass and
stiffness matrices in Eq. 6

C � aM + bK , (6)
where a and b are two constant coefficients that can be derived
from

ξ i � a

2ωi
+ bωi

2
, (7)

where ξi and ωi are, respectively, the modal damping ratio and
natural frequency of the ith vibration mode.

The goal of performing the manifold-constrained GPs for
structural dynamical systems is to probabilistically identify
damping and stiffness parameters {a, b, k1, k2, . . . , kn} and the
system state, given the information of mass matrix, noise-
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corrupted observations of displacement, and velocity responses at
each DOF and ground acceleration. To this aim, GP prior over
z(t) is initially imposed. A salient feature of GPs is that the
derivative of a GP is still a GP with its mean and covariance
function completely specified (Raissi et al., 2017). Meanwhile,
given Eq. 4, the derivative of z(t) can also be obtained via the
binary operation parametrized by the system parameters. Here,
we denote the binary operation as f(z(t),ϕ, ag(t), t), in which ϕ
= [a, b, k1, k2, . . . , kN]T is the vector containing damping and
stiffness parameters. The key idea is to find a coherent way to deal
with the incompatibility of _z(t) generated from two distinct
sources, that is, data aspect and physical aspect. On the data
aspect, _z(t) is a set of GPs generated as the derivative of z(t); on
the physical aspect, _z(t) is the solution of ordinary differential
equations which govern the system dynamics. Hence, a random
variableW that quantifies the difference between the two aspects
is defined as

W � max
t∈L,d∈{1,2,...,N}

∣∣∣∣∣ _zd(t) − fd(z(t),ϕ, ag(t), t)∣∣∣∣∣ , (8)

where L � {t1, t2, . . . , tn} denotes a uniform time grid. If the set
of GPs on the manifold satisfies the ordinary differential
equations, one would obtain W � 0. Then, the inference

over the posterior of the parameters and system state
provided the observations of displacement response is of
the form

p(ϕ, z(L) | W � 0, x̂(τ)), (9)

where for simplicity, we denote z(L) as the system state
containing displacement and velocity responses with respect to
the time points in L; x̂(τ) as the noisy observations of
displacement responses at time points in τ ⊆ L. Applying
Bayes’ theorem, we have

p(ϕ, z(L) | W � 0, x̂(τ))∝p(W � 0, x̂(τ), z(L),ϕ). (10)

The term on the right-hand side can be decomposed as

p(W � 0, x̂ (τ), z(L),ϕ) �p(ϕ) × p(z(L) | ϕ) × p(x̂(τ)
| z(L),ϕ)× p(W � 0 |, x̂(τ), z(L),ϕ).

(11)
Here, the first term p(ϕ) is specifically determined as a

general prior distribution of system parameters. The second
term can be simplified as p(z(L)) due to the prior independent
correlations between the system state z(L) and system
parameters ϕ. As we have initially imposed the GP prior
over each channel of the system state, p(z(L)) can be
obtained via the multiplication of the marginal distribution
of each multivariate Gaussian distribution in z(L). The third
term, equal to p(x̂(τ) | z(L)), corresponds to the noisy
observations. The fourth term can be simplified as
p( _z(L) � f(z(L),ϕ, ag(L), L) | z(L)), which is the conditional

FIGURE 1 | Flowchart of the manifold-constrained GPs with embedded
Hamiltonian Monte Carlo.

FIGURE 2 | An 8-DOF shear-type frame structure with sensors
deployed.
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probability of _z(L) given z(L) evaluated at f(z(L),ϕ, ag(L), L).
Recall that _z i(L), i � 1, 2, . . . , N follows a multivariate
Gaussian distribution as the derivative of a GP is still
Gaussian. Likewise, p( _z(L) � f(z(L),ϕ, ag(L), L) | z(L)) can
be formulated as the multiplication of the marginal
distribution of each multivariate Gaussian distribution as
well (Yang et al., 2021). As illustrated in Eq. 3, the
marginal distribution of a multivariate Gaussian
distribution eschews the calculation of high-dimensional
integral with respect to each random variable in the
distribution and instead provides a concise closed-form
mathematical formulation. In Eq. 11, the last three terms
are Gaussian, thus the following practically computable
posterior distribution can be elicited:

p(ϕ, z(L) | W � 0, x̂(τ))
∝p(ϕ) × exp{ − 1

2
∑N
i�1
⎡⎣nlog(2π) + log|Ci| + z i(L)TCiz i(L)

+n log(2π) + log|Gi| + (x̂i(τ) − z i(τ))TGi(x̂(τ) − z i(τ))
+n log(2π) + log|H i| + qTi H iqi]}, (12)

in which the components Ci,Gi,H i and qi are, respectively,

Ci � ci(L, L)
Gi � σ i(L, L)
H i � ci″(L, L) − ′ci(L, L)ci(L, L)−1ci′(L, L)
qi � ′ci(L, L)ci(L, L)−1z i(L) − f i(z(L),ϕ, ag(L), L),

(13)

where ′ci � zci
zt (t, t′), ci′ � zci

zt′ (t, t′), and ci″ � z2ci
ztzt′ (t, t′). In this

study, the kernel function c is determined as Matern kernel
K(t, t′) � κ1 2

1−]
Γ(])(

��
2]

√
l
κ2
)]B](

��
2]

√
l
κ2
), where κ1 and κ2 are

two hyper-parameters; l � |t − t′|; Γ is the Gamma function; Bv

is the modified Bessel function of the second kind; and ] is set to
be 2.01 to enable the kernel to be second-order differentiable
(Rasmussen and Williams, 2006). With Eq. 12, the Hamiltonian
Monte Carlo method (Neal, 2010) can be applied to generate the
samples of the system state z(L) and parameters ϕ, and the
samples would quickly converge to being distributed as the target

TABLE 1 | Structural parameters of the 8-DOF shear-type frame structure.

Mass (× 103 kg) Stiffness (× 106 N/m) Rayleigh constants

m1 30.00 k1 6.00 k5 4.60 a 0.20
m2 ~ m7 25.00 k2 5.80 k6 4.60 b 0.01
m8 20.00 k3 5.40 k7 4.00

k4 5.40 k8 4.00

FIGURE 3 | Identified displacement and velocity fragments of the third floor under three levels of noise corruption. (A) 0% noise corruption. (B) 5% noise corruption.
(C) 10% noise corruption. The red dotted line denotes the true trajectory. The green area represents the identified 95% confidence interval.
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posterior distribution p(ϕ, z(L) | W � 0, x̂(τ)). As a summary of
the methodology, the flowchart of the manifold-constrained GPs
with embedded Hamiltonian Monte Carlo is shown in Figure 1.

3 RESULTS

An eight-storey building simplified as a shear-type frame
structure with masses lumped at each floor is shown in

Figure 2. The simplified model has eight DOFs in the
horizontal direction. First, it is assumed that there are nine
accelerometers instrumented, eight being mounted on the
structure and one on the ground. The total displacement and
velocity at each DOF and at the ground are obtained by
integrating the collected acceleration data series, and the
relative displacement and velocity of each floor with respect
to the ground could be computed according to the relationship
xt � xr + xg, where xt, xr, and xg are the total displacement,

FIGURE 4 |Histograms of estimated normalized stiffness and damping parameters over 100 simulated parameter sets under three levels of noise corruption. Red:
0% noise corruption. Green: 5% noise corruption. Blue: 10% noise corruption. The vertical black line is the true parameter value.
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relative displacement, and ground displacement, respectively.
Parameters of the system are given in Table 1. The first four
natural frequencies are 2.77, 7.75, 12.49, and 16.70 Hz. The two
Rayleigh constants a and b are, respectively, specified to be 0.20
and 0.01, providing the first two modes of vibration with an
approximately 5% damping ratio. The ground motion as
external excitation is input into the structural dynamical
system in the form of seismic acceleration time history (1995
Kobe Japan earthquake with its peak ground acceleration being
scaled to 0.06 g). The dynamic response of each DOF is
computed via the fourth-order Runge–Kutta method using a
constant time step of 0.01 s. The results are proven to be stable
and accurate under the variation of the time step. The generated
“measurement” responses with different levels of noise
corruption are used to identify the structural dynamical
systems in a probabilistic manner. An advantage of the
manifold-constrained GPs is that this method can handle
uncertainties associated with observations and the model

itself. The results not only inform the estimated system state
or unknown parameters but also help to understand the
credibility of results in practical structural health monitoring
(SHM) applications. Before applying the manifold-constrained
GPs to the 8-DOF shear-type structure, the input responses and
ground acceleration are divided into batches of data, each batch
of data containing 50 signal points. It is worth mentioning that
the number of discretization points can be greater than 50 as
illustrated in Eq. 10, where τ ⊂ L; in this example, the extent of
discretization is determined by gradually increasing the
denseness of points until the estimated results “converge.”
Then, probabilistic identification is performed fragment by
fragment, with the posterior distributions of the system state
and stiffness and damping parameters computed by the
Hamiltonian Monte Carlo method.

Figure 3 shows a fragment of the identified displacement and
velocity of the third floor under different levels of noise
corruption, namely, 0, 5, and 10% root mean square white

FIGURE 5 | Identified displacement and velocity fragments under partial observations. (A) Displacement and velocity responses on the fifth floor. (B) Displacement
and velocity responses on the sixth floor. The red dotted line denotes the true trajectory. The green area represents the identified 95% confidence interval.

FIGURE 6 | Boxplot of variances of stiffness parameter k3 and Rayleigh coefficient a.
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noise added to the original observations. The identified results fit
well with the correct displacement and velocity responses. With
the noise level getting higher, the identified confidence intervals
generally become wider. Figure 4 elucidates the histograms of the
estimated stiffness and damping parameters using the manifold-
constrained GPs. Each histogram is generated over 100 parameter
sets in the simulation process of the Hamiltonian Monte Carlo,
where 0, 5, and 10% root mean square white noise is, respectively,
added to the original observations. For computational efficiency,
the stiffness and damping parameters are normalized by default.
It is seen that the results rigorously reflect the uncertainty over the
parameters, for instance, the uncertainty indicated by the blue
histogram is greater than that in the green and red histograms
which are obtained from observations with lower noise levels. It is
noted that the uncertainties on the damping constants a and b are
higher than those on the stiffness parameters under the same
noise corruption level. This is possibly because the damping
constants are more sensitive than the stiffness parameters to
noise. The input responses computed by the fourth-order
Runge–Kutta method may initially pose noise to the
estimation process, especially in the case of ground motion
with relatively high frequencies.

According to the basic formulation of the proposed
method, the joint posterior distributions of structural
parameters and responses under the condition of x̂(τ) and
W � 0 are elicited. In principle, x̂(τ) does not need to be all
observations of the structural responses. But intuitively, with
fewer observations involved to build the posterior in Eq. 12,
more uncertainties would arise in the output. Hence, to
further verify the performance of manifold-constrain GPs
when the structural responses are partially observed, we
then assume fewer accelerometers instrumented on the
structure. The instrumentation scheme is shown in
Figure 2, where the black rectangles denote the locations of
accelerometers deployed on the structure. There are five
accelerometers in total, four of which are mounted on the
first, third, fifth, and seventh floors of the structure and the
other one on the ground. Additionally, 5% noise corruption is
added to the structural responses under evaluation. Figure 5
shows the uncertainty quantification results of the fifth and
sixth floors’ displacement and velocity responses. Note that
observation is made on the fifth floor, whereas there is no
observation on the sixth floor. The uncertainty of the
estimated structural response on the sixth floor is
consistently higher than that on the fifth floor. Moreover,
the uncertainty of velocity on the sixth floor is greater than
displacement, while on the fifth floor, such difference is not
significant. The reason for having the difference in the
uncertainties between displacement and velocity can be
explained by the experience in damping-related and
stiffness-related identifications. In a multi-DOF system,
velocity responses along with the Rayleigh coefficients are
associated with the damping. In contrast, displacement
responses along with the stiffness parameters are related to
elasticity. The damping term is more sensitive to noise and

thus the uncertainty of its related quantities, that is, the
Rayleigh damping coefficients and velocity responses bear
relatively high uncertainties, in comparison with the
stiffness parameters and displacement responses.

In the above implementation of the manifold-constrained
GPs, all batches were set to contain 50 signal points in order to
avoid the impact of batch size on the uncertainty
quantification results. Our simulation studies using the
manifold-constrained GPs show that the uncertainty can be
further lowered when the batch size gets bigger, that is, when
more signal points are contained in each batch. However, the
enlargement of batch size could lead to computational
inefficiency because more variables (the new signal points)
are involved and their uncertainties need to be evaluated in
each single Hamiltonian Monte Carlo sampling process.
Therefore, for practical engineering applications using the
manifold-constrained GPs, there is a trade-off between the
reduction of uncertainties and the enhancement of
computational efficiency. To gain an insight into how
exactly the batch size affects the uncertainties of the
estimated structural parameters and responses, we compare
six different batch sizes containing 20, 30, 40, 50, 60, and 70
signal points, respectively. For each batch size, 20 fragments
(with 5% noise corruption) are generated and evaluated by the
manifold-constrained GPs. The variances of the stiffness
parameter k3 and Rayleigh coefficients a are recorded.
Figure 6 shows the boxplots of the recorded data, which
indicates that increasing the batch size makes a reduction in
the evaluated uncertainties, but overall, the effect is flattening.
Moreover, the Rayleigh coefficient is more sensitive to the
increment of batch size than the stiffness parameter.

4 CONCLUSION

In this study, a manifold-constrained GP approach is explored to
estimate the joint posterior probability distributions of the
unknown parameters and system state of multi-DOF
structures subjected to ground motion. The formulation of the
manifold-constrained GPs is intrinsically based on compelling
the derivatives of GPs to satisfy the equation of motion of the
structural dynamical system. In this approach, the posterior
distribution of the unknown parameters and system state is
decomposed to be the function of several multivariate
Gaussian distributions and the prior distribution of the
parameters, in such a way that the high-dimensional integral
is avoided in computing joint posterior distributions of the
unknown parameters and system state. Thus, the manifold-
constrained GPs could provide accurate and computationally
efficient inference for multi-DOF systems as addressed in this
study. In the case study, the posterior distributions of the system
state and unknown parameters are successfully identified in both
full observation and partial observation scenarios, from which
model updating and damage identification could be further
pursued.
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