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In the maintenance of cable structures, such as cable-stayed bridges, cable safety is
assessed based on the cable tension. In Japan, the cable tension is generally estimated
from the cable’s natural frequencies using the higher-order vibration method. In recent
years, dampers have been installed onto cables to suppress aerodynamic vibrations.
Because the damper changes the cable’s natural frequencies, the damper is removed to
measure the natural frequencies and estimate the cable tension without a damper, and the
damper is then reinstalled. To avoid damper removal and reinstallation, the authors
previously proposed Method 2F for estimating the tension of a cable with a damper
from the natural frequencies without removing the damper. Because the tension estimation
error of the higher-order vibration method for a cable without a damper has been reported
as 5%, the authors set the target tension estimation error within 5%. However, the tension
estimation error of Method 2F exceeded 5% in the experimental verification. Furthermore,
although Method 2F estimates the tension and bending stiffness of the cable and the
damper parameters simultaneously from the natural frequencies, the accuracy of the
bending stiffness and damper parameters is unsatisfactory. In this paper, the new Method
2FM is proposed to estimate the tension and bending stiffness of the cable and damper
parameters using the natural frequencies and two-point mode shapes. With the addition of
mode shapes, Method 2FM attempts to improve the accuracy of estimating the tension
and other parameters. The validity of Method 2FMwas confirmed by numerical simulations
and experiments. The numerical verification confirmed that Method 2FM is superior to
Method 2F in estimating the cable tension and damper parameters. The experimental
verification confirmed that the tension estimation accuracy of Method 2FM is higher than
that of Method 2F, and the estimation error is lower than 5%. However, the damper
parameters estimated by Method 2FM are different to the design values. The reason for
this is the modeling error of the damper, as found by conducting an element test on the
damper.
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1 INTRODUCTION

In Japan, the maintenance policy of cable structures, such as
cable-stayed bridges and extra-dosed bridges, prescribes that the
tension acting on the cables must be checked every 5 years. The
cable tension is mainly estimated from the cable’s natural
frequencies based on the vibration method (Shinke et al.,
1980; Zui et al., 1996) or higher-order vibration method
(Yamagiwa et al., 2000).

The vibration method is based on string theory. However, the
actual bridge cable is not a pure string, and the effect of the
bending stiffness is not negligible. Therefore, the effect of the
bending stiffness is considered using a correlation factor, and the
bending stiffness must be determined in advance. However, it is
difficult to determine the exact bending stiffness because bridge
cables are typically stranded wire.

The higher-order vibration method is based on the tensioned
Bernoulli–Euler beam theory. The natural frequency of a cable is
expressed as a function of the tension and bending stiffness.
Therefore, the higher-order vibration method can estimate the
tension and bending stiffness simultaneously from the natural
frequencies, and the pre-evaluation of bending stiffness is not
required. Therefore, this method is frequently used in current
practice.

Various studies have investigated cable tension estimation
methods, which include methods dealing with complicated
boundary conditions (Chen et al., 2016, 2018; Yan et al.,
2019), a method dealing with the uncertain boundary
condition of a short cable by introducing an additional mass
block (Li et al., 2021), methods dealing with inclined cables (Kim
and Park, 2007; Ma, 2017), a method dealing with a cable with
flexible supports (Foti et al., 2020), a method dealing with
environmental temperature variation (Ma et al., 2021),
methods for two cables connected by an intersection clamp
(Furukawa et al., 2022a), a method using the power spectrum
and cepstrum (Feng et al., 2010), a method using a finite element
analysis (Gan et al., 2019), a method using a genetic algorithm
and particle swarm optimization (Zarbaf et al., 2017), and a
method using neural networks (Zarbaf et al., 2018).

Recently, the aerodynamic vibration of cables has become an
issue of interest. Dampers are installed onto cables to suppress
cable vibration. Because the damper changes the cable’s natural
frequencies, the damper is removed from the cable, the cable’s
tension without a damper is estimated using the vibration and
higher-order vibration methods, and then the damper is
reinstalled. Because the removal and reinstallation of the
damper are time-consuming and labor-intensive, a tension
estimation method for a cable with a damper is required.

Previous studies on cables with dampers have mostly focused
on the optimal design of dampers for suppressing the cable
amplitude (Pacheco et al., 1993; Krenk 2000; Tabatabai and
Mehrabi, 2000; Izzi et al., 2016; Lazar et al., 2016; Shi and
Zhu, 2018; Javanbakht et al., 2019), but have not investigated
a tension estimation method.

Studies on a tension estimation method for a cable with a
damper are still scarce. Yan et al. (2020) proposed a tension
estimation method for cables with two intermediate supports

(dampers), and modeled the damper as a spring. The damping
force which decays the vibration is ignored, and the damper’s
spring constant is assumed to be known. However, because the
damper’s performance gradually degrades by aging, it is difficult
to obtain the spring constant in advance.

Shan et al. (2019) estimated the tension of a cable with a
supplemental damper, and assumed a viscous shear damper with
a spring constant and damping coefficient. Their method assumes
that the cable’s bending stiffness and damper’s damping
coefficient are known a priori. However, as stated above, it is
not always possible to accurately obtain the cable’s bending
stiffness and damper’s damping coefficient in advance.

Hou et al. (2020) proposed a cable tension estimation method
by adding virtual supports using the substructure isolation
method. Their method extracts the cable section without a
damper by using virtual supports. However, the installation
and removal of virtual supports is time-consuming and labor-
intensive.

The authors previously proposed three tension estimation
methods (Methods 0, 1, and 2F) for a cable with a damper
(Furukawa et al., 2021a; Furukawa et al., 2022b). By using the
higher-order vibration method, theoretical equations for
estimating the tension and bending stiffness of the cable and
damper parameters from the natural frequencies of a cable with a
damper were derived. The cable’s bending stiffness and the
damper parameters do not need to be determined in advance
and can be instead estimated simultaneously with the cable
tension.

Methods 0F and 1F require the modal order of natural
frequencies to be specified, while Method 2F does not. The
validity of these three methods was experimentally
investigated, and it was observed that some natural frequencies
could not be excited because of damping. Therefore, the modal
order could not be correctly assigned for the measured natural
frequencies, the accuracy of Methods 0F and 1F deteriorated, and
Method 2F was found to be the best.

However, Method 2F still has shortcomings. Because the tension
estimation error of the higher-order vibration method for a cable
without a damper has been reported as 5% (ShinkoWire Company,
2020), the authors set the target tension estimation error within 5%.
However, the tension estimation error of Method 2F exceeded 5% in
the experimental verification, and the accuracy of parameters other
than tension, such as the bending stiffness of the cable and damper
parameters, is unsatisfactory.

In the measurement of the natural frequencies of cables with
accelerometers, the accelerometers are typically installed onto the
cable at more than one points to prevent omissions of natural
frequency measurement. Therefore, two-point mode shapes can
at least be extracted from the acceleration measurements. This
study developed a new estimation method (Method 2FM) for a
cable with a damper by using the natural frequencies and two-
point mode shapes. Whether the tension estimation accuracy can
be improved, whether the bending stiffness and damper
parameters can be estimated with reasonable accuracy, and
whether a tension estimation error within 5% can be achieved
in the experiment, were all questions that this study attempted to
answer.
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Previous studies have used the mode shapes in addition to the
natural frequencies (Chen et al., 2016, 2018; Yan et al., 2019), and
introduced mode shapes to deal with the arbitrary boundary
conditions of the cable. This approach requires the measurement
of mode shapes at multiple locations over the entire length of the
cable to avoid the modeling of complicated boundary conditions.
However, because it is difficult to install sensors far from the main
girder, the proposed method only requires simultaneous
measurement at two points near the damper.

The rest of this paper is structured as follows. Section 2 describes
the previously proposed Method 2F using the natural frequencies.
Section 3 presents the new Method 2FM using the natural
frequencies and two-point mode shapes. In Section 4, the
numerical verification of 90 numerical models is presented. The
natural frequencies and mode shapes of a cable with a damper were
calculated for 90 models and input into the new and previously
proposed methods. The estimated results were compared to the
assumed true values and their accuracy and validity are discussed.
Section 5 presents the experimental verification of the proposed
method, and the validity of the proposed method is discussed.

2 PREVIOUSLY PROPOSED METHOD FOR
ESTIMATING TENSION OF CABLE WITH
DAMPER USING NATURAL FREQUENCIES
(METHOD 2F)

2.1 Natural Frequencies of Cable With
Damper
In the authors’ previous study, a theoretical formula for
estimating the complex natural frequencies of a cable with a
damper was derived (Furukawa et al., 2021a). This section
explains the derivation of the theoretical formula. Figure 1
shows the analytical model of a cable with a damper and
simple supports at the two ends. The cable length is L, and
the distance from the damper position to the left and right ends is
L1 and L2(� L − L1), respectively.

The cable is considered as a tensioned Bernoulli–Euler beam.
The vibration equation for a tensioned Bernoulli–Euler beam can
be written as the following partial differential equation:

ρA
z2yd(x, t)

zt2
+ EI

z4yd(x, t)
zx4

− T
z2yd(x, t)

zx2
� 0 d � 1, 2 (1)

where yd(x, t) is the deflection of the cable on the left side (d �
1) and right side (d � 2) with regard to the damper position,
which is a function of position x and time t; ρ is the density; A is
the cross-sectional area; EI is the bending stiffness; T is the
tension.

The deflection of the cable is denoted as y1(x, t) �
Y1(x)exp(jωt) and y2(x, t) � Y2(x)exp(jωt), respectively,
using the variable separation method; Y1(x) and Y2(x) are
the modal functions of position x; j is an imaginary unit; ω is
the circular frequency. The general solutions of Y1(x) and Y2(x)
are expressed as follows:

Y1(x) � D1cosαx +D2sinαx +D3coshβx

+D4sinhβx (0≤x≤ L1) (2)
Y2(x) � D5cosα(x − L1) +D6sinα(x − L1) +D7coshβ(x − L1)

+D8sinhβ(x − L1)(L1 ≤ x≤ L)
(3)

where D1, D2, D3, D4, D5, D6, D7, and D8 are the integration
constants, and α and β are expressed by Eqs 4, 5, respectively.

α �

���������������������������������( T

2EI
)2

+ ρAω2

EI

√
− T

2EI

√√
(4)

β �

���������������������������������( T

2EI
)2

+ ρAω2

EI

√
+ T

2EI

√√
(5)

Because there are eight integration constants, eight
boundary conditions are required. Four boundary
conditions are established at the two ends with the simple
supports (Y1(0) � 0, d2Y1(0)/dx2 � 0, Y2(L) � 0,
d2Y2(L)/dx2 � 0). Since one continuous cable receives force
from the damper only in the direction perpendicular to the
cable axis, it is considered that the deflection, deflection angle,
and curvature (bending moment) are continuous at the
damper position. Therefore, three boundary conditions
(continuity equations) are established at the damper
position (Y1(L1) � Y2(L1), dY1(L1)/dx � dY2(L1)/dx,
d2Y1(L1)/dx2 � d2Y2(L1)/dx2). Moreover, the force exerted
on the cable by the damper is equal to the shear force
change of the cable at the damper position
(EId3Y1(L1)/dx3 − EId3Y2(L1)/dx3 � kpY1(L1)); kp is the
complex stiffness of the damper. The unified notation kp is
used to model various dampers, as will be explained later.

By substituting Eqs 2, 3 into the eight boundary conditions,
the following equation is obtained:

sinαL{α2 + β2 + kp

EI
(sinαL1cosαL1

α
− sinhβL1sinhβL2

βsinhβL
)}

−cosαL(kp

EI

sin2αL1

α
) � sin(αL − θ) � 0 (6)

where

FIGURE 1 | Model of cable with damper.
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tanθ �
kp

EI
sin2αL1

α

α2 + β2 + kp

EI(sinαL1cosαL1
α − sinhβL1sinhβL2

βsinhβL ) (7)

Equation 6 has infinite solutions for α. These solutions are
expressed with a positive integer i.

αiL − θi � iπ i � 1, 2, . . . . (8)
By substituting Eq. 4 into Eq. 8, the natural circular frequency

ωi of the i
th mode can be obtained as follows:

ω2
i �

π4EI

ρAL4
(i + θi

π
)4

+ π2T

ρAL2
(i + θi

π
)2

i � 1, 2, . . . (9)

Finally, the theoretical equation for estimating the natural
frequencies ft

i of the ith mode, and the relevant equations, are
expressed as follows:

ft
i �

����������������������������
π2EI

4ρAL4
(i + θi

π
)4

+ T

4ρAL2
(i + θi

π
)2

√√
i � 1, 2, . . . (10)

θi � tan−1
kpi
EI

sin2αiL1
αi

α2
i + β2i + kpi

EI(sinαiL1cosαiL1
αi

− sinhβiL1sinhβiL2
βisinhβiL

) (11)

αi �

�����������������������������������������( T

2EI
)2

+ ρA(2πft
i)2

EI

√
− T

2EI

√√
(12)

βi �

�����������������������������������������( T

2EI
)2

+ ρA(2πft
i)2

EI

√
+ T

2EI

√√
(13)

kpi � { ku + jkv (high − damping rubber damper)
k + j(2πft

i)c (viscous shear damper) (14)

In the case of the high-damping rubber damper, the complex
stiffness kp is expressed with ku and kv, which are the real and
imaginary parts of the complex stiffness, respectively. In the case
of the viscous shear damper, the complex stiffness kp is expressed
with a spring constant k and damping coefficient c.

From the cable parameters, namely, ρ, A, L, EI, and T, and the
damper parameters ku and kv or k and c, the ith mode natural
frequencies ft

i can be calculated using Eqs 10–13, Eq. 14. Because
the natural frequency ft

i of the i
th mode is included on the right-

hand side of Eqs 12, 13, Eq. 14b. Eqs 10–13, Eq. 14 must be
satisfied simultaneously. Notably, ft

i in Eq. 10 is a complex value
if kp is complex. Therefore, this study refers to ft

i as the complex
natural frequency.

The real part of the complex natural frequency Re(ft
i )

represents the natural frequency of a cable with a damper and
can be obtained by measurement.

The imaginary part of the frequency Im(ft
i ) is related to the

damping factor or logarithmic decrement. Because the damping
factor is difficult to measure with high accuracy, this study
considered that only the real parts of the complex natural
frequencies of several modes can be measured and used in the
estimation.

2.2 Method 2F
The ith mode complex natural frequency ft

i can be written using
Hi, as follows:

ft
i � Re(ft

i)(1 + j
Im(ft

i)
Re(ft

i)) � Re(ft
i)(1 + jHi) (15)

whereHi is defined as the ratio of the imaginary part to the real part
of the complex natural frequency and is related to the damping
factor hi of the i

th mode (Hi � hi/
�����
1 − h2i

√
). Because it is difficult to

obtain Hi by measurement, Hi is considered to be unknown.
In Methods 0F and 1F, the constraint equation was used,

whereby Re(ft
i ) in Eq. 10 is equal to the measured natural

frequencies fm
i (Furukawa et al., 2022b). However, Eq. 10

includes the modal order i in the right-hand side, which
means that the modal order i has to be correctly specified for
each measured natural frequency fm

i . However, specifying the
modal order of each natural frequency is occasionally difficult in
practical applications. Generally, the modal order is assigned to
the measured natural frequencies in ascending order. However, if
some natural frequencies are not detected, the correspondence
between the natural frequencies and the modal order may be
erroneously read. If the wrong modal order is input, the
estimation accuracy will deteriorate.

Therefore, the previous paper proposed Method 2F, which
does not require the modal order to be specified (Furukawa et al.,
2022b). Method 2F uses Eq. 16 instead of Eq. 8 as the constraint
equation for each measured natural frequency fm

i .

gi ≡ sinαiL{α2
i + β2i +

kpi
EI

(sinαiL1cosαiL1

αi
− sinhβiL1sinhβiL2

βisinhβiL
)}

−cosαiL(kpi
EI

sin2αiL1

αi
) � 0 (16)

Because Eq. 16 does not explicitly include the modal order i,
Method 2F does not require the modal order to be input.

In Method 2F, it is assumed that n sets of natural frequencies
fm
i have been measured. The measured natural frequency fm

i is
substituted into Re(ft

i ) in Eq. 15. The function gi in terms of
4 + n parameters (T, EI, ku, kv, and Hi, or T, EI, k, c, and Hi) is
calculated using Eqs 12, 13, Eq. 14, Eq. 15, and Eq. 16. Then, the
optimization problem in Eq. 17 can be solved to simultaneously
estimate 4 + n parameters; G2F is an objective function for
Method 2F. The two constraint equations for the real and
imaginary parts of gi are used.

minimize G2F(T, EI, ku, kv,Hi) � ∑n
i�1
{(Re(gi))2 + (Im(gi))2}(high − damping rubber damper)

(17a)
minimize G2F(T, EI, k, c,Hi) � ∑n

i�1
{(Re(gi))2 + (Im(gi))2}(viscous shear damper)

(17b)
Because there are 4 + n unknowns, namely, T, EI, ku, kv, and

Hi, or T, EI, k, c, and Hi, and there are 2n constraint equations,
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therefore, n must at least be equal to four, and four natural
frequencies are required.

3 PROPOSED METHOD FOR ESTIMATING
TENSION OF CABLEWITH DAMPER USING
NATURAL FREQUENCIES AND
TWO-POINT MODE SHAPES
(METHOD 2FM)

3.1 Overview
Because previous studies have reported that the tension
estimation error of the higher-order vibration method is 5%
for a cable without a damper (Shinko Wire Company, 2021),
the authors set the target tension estimation error for a cable with
a damper within 5%. However, the experimental verification in a
previous study found that the maximum tension estimation error
of Method 2F is 6.9% (Furukawa et al., 2022b). Furthermore, in
the same previous study, the estimation errors of the cable’s
bending stiffness and damper parameters were low. If the damper
parameters can be estimated with high accuracy, the proposed
method can also be applied to damper maintenance.

Hence, a new method (Method 2FM) using the natural
frequencies and two-point mode shapes is proposed. The two-
point mode shapes can be measured by simultaneously
measuring the cable’s free vibration at two points. This study
investigated whether the tension estimation accuracy can be
improved, whether the estimation accuracy other than the
tension accuracy can be improved, and whether a tension
estimation error within 5% can be achieved in the
experimental verification.

3.2 Mode Shapes of Cable With Damper
Here, Y1(x) and Y2(x) are the modal functions on the left side
(0≤x≤ L1) and right side (L1 ≤x≤ L) of the cable with regard to
the damper. The general solutions of Y1(x) and Y2(x) are
expressed by Eqs 2, 3. There are eight integration constants
(D1, D2, D3, D4, D5, D6, D7, and D8).

Seven boundary conditions are input into Eqs 2, 3. These are
the four boundary conditions at the two ends with simple
supports (Y1(0) � 0, d2Y1(0)/dx2 � 0, Y2(L) � 0,
d2Y2(L)/dx2 � 0), and the three boundary conditions
(continuity equations) at the damper position
(Y1(L1) � Y2(L1), dY1(L1)/dx � dY2(L1)/dx,
d2Y1(L1)/dx2 � d2Y2(L1)/dx2). Then, D1, D3, D4, D5, D6,
D7, and D8 can be expressed using D2 , as follows:

D1 � 0 (18a)
D3 � 0 (18b)

D4 � −D2
α sin αL sinh βL2

β sin αL2 sinh βL
(18c)

D5 � D2 sin αL1 (18d)
D6 � −D2

sin αL1

sin αL2
cos αL2 (18e)

D7 � −D2
α sin αL sinh βL1

β sin αL2 sinh βL
sinh βL2 (18f )

D8 � D2
α sin αL sinh βL1

β sin αL2 sinh βL
cosh βL2 (18g)

By incorporating Eq. 18 into Eqs 2, 3, the modal functions
Y1(x) and Y2(x) can be expressed using D2 , as follows:

Y1(x) � D2{sin αx − α sin αL sinh βL2

β sin αL2 sinh βL
sinh βx} (19a)

Y2(x) � D2
sin αL1

sin αL2
{sin α(L − x)

− α sin αL sinh βL1

β sin αL1 sinh βL
sinh β(L − x)} (19b)

Figure 2 shows an image of the cable and damper on the girder
side. Because the cable with a shorter span is typically inside a
fixing steel pipe, it is practical to install accelerometers only on the
longer span. Therefore, it is assumed that two accelerometers are
placed on the right side (L1 ≤ x≤ L) of the cable at x � p1 and
x � p2. Then, the theoretical Fourier amplitude ratio at these two
points for the ith mode becomes as follows using Eq. 19 and
replacing α and β with αi and βi:∣∣∣∣Yi

2(p1)∣∣∣∣∣∣∣∣Yi
2(p2)∣∣∣∣ �

∣∣∣∣∣sin αi(L − p1) − αi sin αiL sinh βiL1
βi sin αiL1 sinh βiL

sinh βi(L − p1)∣∣∣∣∣∣∣∣∣∣sin αi(L − p2) − αi sin αiL sinh βiL1
βi sin αiL1 sinh βiL

sinh βi(L − p2)∣∣∣∣∣ (20)

where Yi
2(x) indicates the theoretical Fourier amplitude on the

right side (L1 ≤x≤ L) for the ith mode. Therefore, the theoretical
mode shapes at the two points (ϕti(p1) and ϕti(p2)) for the ith
mode are defined as follows:∣∣∣∣ϕt

i(p1)∣∣∣∣ � ∣∣∣∣Yi
2(p1)∣∣∣∣/∣∣∣∣Yi

2(p2)∣∣∣∣
max(∣∣∣∣Yi

2(p1)∣∣∣∣/∣∣∣∣Yi
2(p2)∣∣∣∣, 1) (21a)∣∣∣∣ϕt

i(p2)∣∣∣∣ � 1

max(∣∣∣∣Yi
2(p1)∣∣∣∣/∣∣∣∣Yi

2(p2)∣∣∣∣, 1) (21b)

The absolute values of the mode shapes are taken; therefore,
the sign of the mode shapes can be ignored. The mode shapes are
normalized such that the larger value becomes equal to one.

FIGURE 2 | Image of cable with damper.
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Let the absolute value of the measured Fourier amplitudes
for the ith mode at two points (x � p1 and x � p2) be |Vm

i (p1)|
and |Vm

i (p2)| as shown in Figure 3. The measured mode
shapes at the two points (ϕmi (p1) and ϕmi (p2)) are defined
as follows. ∣∣∣∣ϕm

i (p1)∣∣∣∣ � ∣∣∣∣Vm
i (p1)∣∣∣∣/∣∣∣∣Vm

i (p2)∣∣∣∣
max(∣∣∣∣Vm

i (p1)∣∣∣∣/∣∣∣∣Vm
i (p2)∣∣∣∣, 1) (22a)∣∣∣∣ϕm

i (p2)∣∣∣∣ � 1

max(∣∣∣∣Vm
i (p1)∣∣∣∣/∣∣∣∣Vm

i (p2)∣∣∣∣, 1) (22b)

From Eqs 21, 22, the constraint equation, whereby the
theoretical mode shapes match the measured mode shapes,
becomes as follows.

ϕt
i(p1)ϕm

i (p2) − ϕt
i(p2)ϕm

i (p1) � 0 (i � 1, 2, . . . ) (23)

3.3 Method 2FM
Method 2FM is an extended version ofMethod 2F, and uses mode
shapes in addition to natural frequencies. It is assumed that n sets
of natural frequencies fm

i , and n sets of mode shapes (ϕmi (p1),
ϕmi (p2)) have been measured. The optimization problem in Eq.
24 is solved to simultaneously estimate 4 + n parameters (T, EI,
ku, kv, and Hi, or T, EI, k, c, and Hi); G2FM is the objective
function of Method 2FM.

minimize G2FM(T, EI, ku, kv,Hi) � ∑n
i�1
{(Re(gi))2 + (Im(gi))2 + (ϕt

i(p1)ϕm
i (p2) − ϕt

i(p2)ϕm
i (p1))2}(high − damping rubber damper)

(24a)

minimize G2FM(T, EI, k, c,Hi) � ∑n
i�1
{(Re(gi))2 + (Im(gi))2(ϕt

i(p1)ϕm
i (p2) − ϕt

i(p2)ϕm
i (p1))2}(viscous shear damper)

(24b)

Because there are 4 + n unknowns and 3n constraint
equations, n must at least be equal to two.

4 NUMERICAL VERIFICATION

4.1 Overview
The validity of the proposed method was verified by numerical
simulation. First, the values of the cable parameters (ρ, A,
L, L1, T, and EI) and damper parameters (ku and kv, or k

and c) were assumed. Next, the natural frequencies of the cable
with a damper (Re(ft

i )) and mode shapes (ϕmi (p1) and ϕmi (p2))
were calculated. Then, the calculated natural frequencies and
mode shapes were input into the methods to estimate T, EI, ku,
kv, and Hi, or T, EI, k, c, and Hi. The estimation accuracy was
investigated by comparing the estimated values to the assumed
values.

4.2 Analytical Conditions
4.2.1 Numerical Models
The cable parameters are listed in Table 1, and the damper
parameters are listed in Table 2. These values were set to cover
a wide range of cables and dampers. In practical situations, the
damper is installed near the girder. Therefore, the damper location,
L1, was set to a small value compared with the cable length, L.

For the high-damping rubber damper, the values of the real part
ku and imaginary part kv of the complex stiffness kpi are listed in
Table 2. For the viscous shear damper, the spring constant k was
set to the same value as |kpi | of the high-damping rubber damper.
The damping coefficient c was determined such that the imaginary
part of the first mode complex stiffness Im(kp1) becomes similar for
the two damper models. Specifically, the damping coefficient c was
determined by � kv/2πf1 , where f1 is the first mode natural
frequency of the cable with a high-damping rubber damper in the
same damper case. The k and c values are listed in Table 2.

By combining ten cable models and nine damper models, 90
numerical models were established. The model number is defined
as the sum of the cable number and damper number. For
example, model No. 15 consists of cable No. 10 and damper No. 5.

4.2.2 Number of Natural Frequencies and Mode
Shapes
Based on the authors’ previous experience on measuring the
natural frequencies of a cable with a damper, it is known that
there are cases wherein the natural frequencies can be measured
only up to the seventh mode (Furukawa et al., 2021b). The natural
frequencies of the higher modes are occasionally difficult to
measure because the damper dissipates the higher-mode
vibration. Therefore, the natural frequencies and mode shapes
of the first seven modes were used.

It is assumed that two accelerometers are placed at p1 � L1 +
0.5 m and p2 � L1+ 1.5 m (Figure 3), and the mode shapes at

FIGURE 3 |Measurement of Fourier amplitudes (Vm
i (p1), Vm

i (p2) ) at ith
mode at two points.

TABLE 1 | Cable parameters in numerical verification.

No. Mass per Unit Length Length Tension Bending Stiffness

ρA (kg/m) L (m) T (kN) EI (kN·m2)

10 30.1 25 1,650 106.4
20 30.1 25 3,300 106.4
30 30.1 50 3,300 106.4
40 30.1 100 3,300 106.4
50 30.1 200 1,650 106.4
60 30.1 200 3,300 106.4
70 94.7 200 5,340 1,111
80 94.7 200 10,680 1,111
90 160.1 500 9,030 3,175
100 160.1 500 18,060 3,175
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these points are used in Method 2FM. The accelerometers are
placed near the girder considering the efficiency of the
inspection work.

4.2.3 Solving Nonlinear Optimization Problem
Because both Methods 2F and 2FM solve the nonlinear least-squares
problem, the solution depends on the initial points (initial parameters
for unknowns), and there are multiple local minimum solutions.
Therefore, this study used the MultiStart algorithm (MathWorks,
2020), wherein the solver attempts to find multiple local minima
solutions to a problem by starting from various initial points. The final
solution has the smallest objective function value amongst the local
minimum solutions. Although there is no guarantee that this
algorithm will always find the global minimum solution, it can still
find a better solution than the general nonlinear least-squares method
while using only one starting point.

The estimation accuracy depends on the number of initial
points and the lower and upper bounds of each unknown. This
study randomly generated 200 sets of initial points for unknowns.
Table 3 indicates the lower and upper bounds of the unknowns in
the search for solutions.

4.3 Estimation Results When Measurement
Noise Is Ignored
First, the estimation results without measurement noise were
investigated. The estimated results are shown in Figure 4. The
horizontal axis is the model number. The vertical axis is the ratio

of the estimated value to the true (assumed) value. Notably, a
model whose vertical axis value is closer to 1.0 has higher
estimation accuracy.

The root mean squares error ratio (RMSER) expressed by Eq.
25 was also calculated for each method.

RMSER �

�����������������������
1
90

∑90
I�1

(Xestimated
I /Xtrue

I − 1)2√√
(25)

Here, I is the model number, Xestimated
I is the estimated value

of model number I, and Xtrue
I is the assumed true value of model

number I. The RMSER was estimated with regard to T, EI, ku,
and kv for the high-damping rubber damper, and T, EI, k, and c
for the viscous shear damper.

4.3.1 Results of Tension Estimation
The tension estimation result for a cable with a high-damping
rubber damper is shown in Figure 4Aa. The vertical axis range is
0.96502–1.00645 in Method 2F and 0.99721–1.00160 in Method
2FM. The tension estimation result for a cable with a viscous
shear damper is shown in Figure 4Ba. The vertical axis range is
0.95887–1.00000 in Method 2F and 0.99992–1.00008 in Method
2FM. Method 2FM has a smaller estimation error than Method
2F for both damper types.

Table 4 compares the RMSER values. For both damper types,
Method 2FM has a smaller RMSER than Method 2F.

The above comparison confirms that the estimation accuracy
improved with the addition of two-point mode shapes.

TABLE 2 | Damper parameters in numerical verification.

No. Damper
Position

High-Damping Rubber
Damper

Viscos Shear Damper

Real
Part
of

Complex
Stiffness

Imaginary
Part

of Complex
Stiffness

Spring
Constant

Damping Coefficient c (kN·s/m)

Cable no.

L1

(m)
ku

(kN/m)
kv

(kN/m)
k

(kN/m)
10 20 30 40 50 60 70 80 90 100

1 7 280.0 0.0 280 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 7 236.9 149.3 237 4.37 3.28 6.82 13.99 39.80 28.33 39.66 28.15 99.79 70.64
3 2 473.8 298.5 474 9.82 7.04 14.21 28.56 80.84 57.25 79.90 56.54 199.96 141.42
4 4.5 473.8 298.5 474 9.04 6.65 13.80 28.14 80.03 56.84 79.46 56.36 199.67 141.31
5 7 473.8 298.5 474 8.17 6.18 13.27 27.60 79.10 56.29 78.85 56.08 199.22 141.13
6 7 947.6 597.0 948 15.49 11.57 25.81 54.49 157.48 111.88 156.62 111.51 397.45 281.75
7 7 560.0 0.0 560 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 7 531.8 175.5 532 4.81 3.63 7.80 16.23 46.52 33.10 46.34 32.96 117.11 82.96
9 7 341.4 443.9 341 12.08 9.25 19.73 41.03 117.52 83.69 117.30 83.48 296.36 209.93

TABLE 3 | Solution range when solving optimization problem in numerical verification.

Parameters T EI ku or k kv or c Hi

Lower/Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Ratio to true value 0 10 0 10 0 10 0 10 0 2
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Next, a sensitivity analysis was conducted to understand
why Method 2FM has higher accuracy compared with
Method 2F. Figures 5Aa,Bb show the sensitivity analysis
results. Model No. 33 is considered as an example. These

figures show how the objective function value in Eq. 17 for
Method 2F and Eq. 24 for Method 2FM change when only the
tension is variable. The horizontal axis gives the ratio of the
value of the tension input into the objective function to the

FIGURE 4 | Estimation results without measurement noise: (A) high-damping rubber damper; (B) viscous shear damper.
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true (assumed) tension. The horizontal axis is set in the
range of 0–2.

In Figures 5Aa,Ba, the vertical axis value takes the minimum
value when the horizontal axis value is equal to one. The vertical
axis value rapidly increases as the horizontal axis value departs
from one. This indicates that the tension has strong sensitivity to
the objective function. The vertical axis value of Method 2FM is
larger than that of Method 2F around the horizontal axis value of
one. Therefore, the sensitivity of tension is already high in
Method 2F, and becomes even higher in Method 2FM.

4.3.2 Results of Bending Stiffness Estimation
The bending stiffness estimation result for the two damper
models is shown in Figures 4Ab,Bb. The vertical axis range is
0.00432–1.75065 inMethod 2F and 0.70587 to 1.70066 inMethod
2FM for cables with a high-damping rubber damper. The vertical
axis range is 0.00030–6.30652 inMethod 2F and 0.82123–1.35231
in Method 2FM for cables with a viscous shear damper.

Tables 4, 5 compare the RMSER values. For both damper
types, Method 2FM has the smaller RMSER.

The bending stiffness estimation accuracy of Method 2F is
very low, but the accuracy improved by adding two-point mode
shapes. However, some aspects of accuracy, such as the tension
accuracy, could not be obtained even with Method 2FM.

The bending stiffness estimation accuracy obtained byMethod
2F can be explained as follows. As expressed by Eq. 10, the
sensitivity of the bending stiffness EI over the complex natural
frequencies ft

i is low because the EI coefficient is much smaller
than the T coefficient in the lower mode (smaller i). Therefore, to
estimate the bending stiffness with high accuracy, it is necessary
to use the natural frequencies of the higher mode (larger i).
However, because the damper dissipates the higher-mode
vibration, the measurement of higher-mode natural
frequencies is difficult in practical situations. Therefore, in
actual situations, it is difficult to estimate the bending stiffness
with high accuracy using Method 2F.

Figures 5Ab,Bb show the sensitivity analysis results for model
No. 33 with regard to the bending stiffness. The vertical axis value
is minimum when the horizontal axis value is equal to one, but
the slope is not sharp as that of tension. The difference between
Methods 2F and 2FM is small, which means that the bending
stiffness is less sensitive to the objective functions of both

methods compared with tension, and adding two-point mode
shapes only slightly increases the sensitivity of the bending
stiffness.

4.3.3 Results of Damper Parameter Estimation
The damper parameter estimation result for ku, kv, k, and c, is
shown in Figures 4Ac,Ad,Bc,Bd. The vertical axis range of ku is
0.03726–8.08801 for Method 2F and 0.90686–1.05420 for
Method 2FM. The vertical axis range of kv is 0.55892–7.12971
for Method 2F and 0.56344–2.08867 for Method 2FM. The range
of the vertical axis of k is 0.99991–9.81214 for Method 2F and
0.98322–1.10842 for Method 2FM. The range of the vertical axis
of c is 0.73836–4.82487 for Method 2F and 0.80157–1.00750 for
Method 2FM.

Table 4 compares the RMSER values. For both damper types,
Method 2FM has the smaller RMSER.

The accuracy of Method 2F is inferior, but that of Method
2FM dramatically improves with the addition of two-point
mode shapes. Hence, the superiority of Method 2FM over
Method 2F is clear.

Figures 5Ac,Ad,Bc,Bd show the sensitivity analysis results for
model No. 33 with regard to ku, kv, k, and c. The vertical value and
slope of Method 2F are much smaller than those of Method 2FM,
which indicates that the sensitivity of Method 2F is somewhat small,
and it is impossible to obtain acceptable damper parameter
estimation results with Method 2F. The addition of two-point
mode shapes has a considerably more pronounced effect on the
damper parameters compared with the tension and bending
stiffness.

4.4 Effect of Measurement Noise on
Estimation Accuracy
4.4.1 Analysis Condition
When measuring the acceleration of an actual bridge cable, the
natural frequencies and mode shapes always contain
measurement noise. Therefore, this section discusses the effect
of measurement noise on the estimation accuracy. The natural
frequencies with measurement noise can be calculated using the
approach proposed by Thyagarajan et al. (1998). Artificial
measurement noise is added to the theoretical natural
frequencies and mode shapes.

TABLE 4 | RMSER of estimation results for high-damping rubber damper in numerical verification.

Method Tension T Bending Stiffness EI Real Part of
Complex Stiffness ku

Imaginary Part of
Complex Stiffness kv

Method 2F 9.936 × 10–3 0.429 2.967 1.793
Method 2FM 5.442 × 10–4 0.095 0.020 0.348

TABLE 5 | RMSER of estimation results for viscous shear damper in numerical verification.

Method Tension T Bending Stiffness EI Spring Constant k Dampinc Coefficient c

Method 2F 9.564 × 10–3 1.638 2.742 0.756
Method 2FM 1.465 × 10–5 0.048 0.012 0.021
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FIGURE 5 | Sensitivity analysis results for model No. 33 without measurement noise: (A) high-damping rubber damper; (B) viscous shear damper.
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fnoise
i � (1 + η rand)Re(ft

i) i � 1, 2, . . . (26)
ϕm noise
i (p1) � (1 + η rand)ϕt

i(p1) i � 1, 2, . . . (27a)
ϕm noise
i (p2) � (1 + η rand)ϕt

i(p2) i � 1, 2, . . . (27b)

where fnoise
i , ϕm noise

i (p1), and ϕm noise
i (p2) denote the natural

frequencies and mode shapes of the ith mode with artificial
measurement noise, η is the measurement noise ratio, and
rand is a uniform random number between -1 and 1. The
measurement noise ratio η of 0.01, 0.02, and 0.03 was
considered, and different random numbers were generated for
the natural frequencies and two-point mode shapes of each mode.

The tension, bending stiffness, and damper parameters were
estimated using Methods 2F and 2FM by inputting the natural
frequencies and mode shapes with measurement noise.

4.4.2 Estimation Results
Because the estimation accuracy depends on the random
numbers generated for each natural frequency and mode
shape, the average value of ten sets with measurement noise
was used for estimation by iteratively calculating Eq. 26, Eq. 27
for 10 times.

The RMSER of the estimated tension, bending stiffness, and
two damper parameters for a cable with a high-damping rubber
damper and viscous shear damper are shown in Figure 6. The
results for η � 0 represent the case without measurement noise.

With regard to tension, Method 2FM has a much smaller
RMSER compared with Method 2F for both damper types
(Figures 6Aa,Ba). By adding two-point mode shapes, the
tension estimation accuracy improved even with
measurement noise.

With regard to the bending stiffness, the RMSER of Method
2FM is similar to that of Method 2F (Figures 6Ab,Bb), and the
RMSER is very large in both methods compared with tension.
Hence, the estimated bending stiffness with measurement noise is
not reliable.

With regard to the damper parameters, the RMSER of Method
2FM is much smaller than that of Method 2F (Figures
6Ac,Ad,Bc,Bd), and decreased with the addition of two-point
mode shapes.

4.5 Sensitivity analysis
Sensitivity analysis was conducted to understand why the
accuracy of the tension and damper parameters improved
while the bending stiffness accuracy did not improve by
adding mode shapes. Figure 7 shows the sensitivity analysis
results with measurement noise. Model No. 33 is considered as
an example. The natural frequencies and mode shapes with
measurement noise were input into the calculation of the
objective functions. The ratio of the measurement noise in
the natural frequencies and mode shapes was set to 0.01
(1%) for all modes. The theoretical natural frequency was
multiplied by 1.01 (1.01Re(ft

i )) and input to Eq. 17, Eq, 24.
For the mode shapes, the theoretical values of ϕti(p1) and ϕti(p2)
were multiplied by 1.0, 1.01 (ϕti(p1), and 1.01ϕti(p2)) and input
into Eq. 24.

The sensitivity analysis results for tension are shown in
Figures 7Aa,Ba. The horizontal axis value where the vertical
axis value is minimum shifted from one owing to the
measurement noise. For example, in Eq. 9a, the vertical axis
value is minimum when the horizontal axis value is 1.0206 in

FIGURE 6 | RMSER of estimation results for various measurement noise
ratios: (A) high-damping rubber damper; (B) viscous shear damper.
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Method 2F. This means that the tension must be 1.0206 times
larger such that the natural frequencies increase by 1%. In both
damper types, the horizontal axis value with the minimum
vertical value is closer to one in Method 2FM compared with

Method 2F. This means that the solution of the tension
estimation in Method 2FM is less likely to be affected by
measurement noise, and Method 2FM is more robust than
Method 2F.

FIGURE 7 | Sensitivity analysis results for model No. 33 with measurement error of 1%: (A) high-damping rubber damper; (B) viscous shear damper.
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The sensitivity analysis results for the bending stiffness are
shown in Figures 7Ab,Bb. In both methods, the horizontal axis
value with the minimum vertical value is approximately equal to
five for both damper types. This means that the bending stiffness
must be approximately five times larger such that the natural
frequencies increase by 1%. As expressed by Eq. 10, the sensitivity
of the bending stiffness EI over the complex natural frequencies

ft
i is low because the EI coefficient is much smaller than the T

coefficient in the lower mode (smaller i). Because the sensitivity of
the bending stiffness against the natural frequency is very low, the
solution of the bending stiffness estimation is largely affected by
the measurement noise in Method 2F. Adding mode shapes did
not improve the bending stiffness accuracy under the condition
with measurement noise.

The sensitivity analysis results for the damper parameters (ku,
kv, k, and c) are shown in Figures 7Ac,Ad,Bc,Bd. The vertical
axis is displayed in the logarithmic scale. The difference between
Methods 2F and 2FM is very clear. Method 2FM has a clear
minimum value at the horizontal axis value closer to one for ku, k,
and c. For example, the minimum vertical value of the horizontal
axis is 1.14 in Method 2FM and approximately 2.9 in Method 2F,
as shown in Figure 7Ac. The reason for this is that the sensitivity
of these damper parameters to the natural frequency is low, while
the sensitivity to the mode shapes is high. The solution of the
damper parameters in Method 2F is strongly affected by the
measurement noise, and a reliable solution is difficult to obtain.
In contrast, Method 2FM is less likely to be affected by
measurement noise, and is therefore much more robust for ku,
k, and c compared with Method 2F. As shown in Figure 7Ad,
even with Method 2FM, kv is more likely to be affected by
measurement noise compared with ku, k, and c.

4.6 Summary
The validity of the newly proposed Method 2FM was numerically
verified by comparing the estimation results to those obtained by
the previously proposed Method 2F.

First, the estimation results were compared under the
condition without measurement noise.

The tension estimation accuracy is already high in Method 2F
but further improves in Method 2FM by the addition of two-
point mode shapes. With regard to the bending stiffness and
damper parameters, Method 2FM has higher estimation
accuracy, but estimation accuracy as high as the tension
estimation accuracy cannot be obtained. The sensitivity
analysis confirms that the sensitivity of damper parameters to
the objective function dramatically increases with the addition of
modal shapes.

The effect of measurement noise on the estimation accuracy
was investigated. The newly proposed Method 2FM has a
smaller RMSER for the tension and damper parameters
compared with Method 2F. The sensitivity analysis confirms
that Method 2FM is less likely to be affected by measurement
noise and more robust for tension and damper parameter

FIGURE 8 | Experimental setting: (A) schematic diagram of experimental
setting; (B) photo of experimental setting; (C) photo of damping device.

TABLE 6 | Cable parameters in experimental verification.

Cable Material Prestressed Steel Strand

Outer diameter (m) 0.0286
Mass per unit length ρA (kg/m) 4.26
Bending stiffness EI (kN·m2) 3.219
Cable length L (m) 61.8

TABLE 7 | Damper parameters in experimental verification.

Damper Name Real Part of
Complex Stiffness ku

(kN/m)

Imaginary Part of
Complex Stiffness kv

(kN/m)

Damper A 29.3 17.9
Damper B 57.1 31.4
Damper C 84.7 52.5
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estimation compared with Method 2F. The RMSER of the
bending stiffness is large for both methods, and reliably
estimating the bending stiffness was found to be difficult
under the condition with measurement noise.

Based on the above findings, this study concluded thatMethod
2FM is more versatile than Method 2F.

5 EXPERIMENTAL VERIFICATION

5.1 Experimental Conditions
This section describes the experimental validation of the proposed
method. The experimental setting is shown in Figures 8A,B. The
experiment was conducted using a horizontal cable with a length of
61.8 m. The distance between the two ends was considered as the

cable length. A load cell was installed at the right end, and the tension
value of the load cell was considered as the true tension value. The
cable was hit with a hammer between the damper position and the
right end. The acceleration histories were measured by piezoelectric
accelerometers magnetically attached to the cable. The natural
frequencies were measured by reading the peak frequencies of the
acceleration Fourier spectra. The mode shapes were calculated from
the acceleration Fourier amplitude at the natural frequencies.

The damper was placed at a distance L1 from one end.
Figure 8C shows a photo of the damper device. A rectangular
steel plate with a circular hole for the cable to pass through was
fixed to the floor. The cable was not in contact with the steel plate.
A disk-shaped steel plate with a circular hole for the cable to pass
through was fixed to the cable. The damper was installed between
the rectangular steel plate and the disk-shaped steel plate. The

TABLE 8 | Test cases in experimental verification.

Case
no.

Cable Damper Accelerometer

L
(m)

Tension
(Load
Cell)
T

(kN)

Name Position
L1

(m)

L1/L Real
Part
of

Complex
Stiffness

ku

(kN/m)

Imaginary
Part
of

Complex
Stiffness

kv

(kN/m)

Position
p1

(m)

Position
p2

(m)

1 61.8 177.36 No damper — — — — 4.49 3.99
2 61.8 180.19 Damper A 2.472 0.04 29.3 17.9 4.49 3.99
3 61.8 180.86 Damper A 4.326 0.07 29.3 17.9 6.34 5.84
4 61.8 181.03 Damper A 6.18 0.1 29.3 17.9 8.19 7.69
5 61.8 181.2 Damper A 9.27 0.15 29.3 17.9 11.28 10.78
6 61.8 176.02 Damper B 2.472 0.04 57.1 31.4 4.49 3.99
7 61.8 178.86 Damper B 4.326 0.07 57.1 31.4 6.34 5.84
8 61.8 179.02 Damper B 6.18 0.1 57.1 31.4 8.19 7.69
9 61.8 179.36 Damper B 9.27 0.15 57.1 31.4 11.28 10.78
10 61.8 176.02 Damper C 2.472 0.04 84.7 52.5 4.49 3.99
11 61.8 175.02 Damper C 4.326 0.07 84.7 52.5 6.34 5.84
12 61.8 172.85 Damper C 6.18 0.1 84.7 52.5 8.19 7.69
13 61.8 171.68 Damper C 9.27 0.15 84.7 52.5 11.28 10.78
14 61.8 381.43 No damper — — — — 4.49 3.99
15 61.8 374.75 Damper A 2.472 0.04 29.3 17.9 4.49 3.99
16 61.8 376.42 Damper A 4.326 0.07 29.3 17.9 6.34 5.84
17 61.8 378.59 Damper A 6.18 0.1 29.3 17.9 8.19 7.69
18 61.8 377.92 Damper A 9.27 0.15 29.3 17.9 11.28 10.78
19 61.8 377.09 Damper B 2.472 0.04 57.1 31.4 4.49 3.99
20 61.8 376.92 Damper B 4.326 0.07 57.1 31.4 6.34 5.84
21 61.8 376.59 Damper B 6.18 0.1 57.1 31.4 8.19 7.69
22 61.8 376.75 Damper B 9.27 0.15 57.1 31.4 11.28 10.78
23 61.8 377.09 Damper C 2.472 0.04 84.7 52.5 4.49 3.99
24 61.8 377.25 Damper C 4.326 0.07 84.7 52.5 6.34 5.84
25 61.8 377.59 Damper C 6.18 0.1 84.7 52.5 8.19 7.69
26 61.8 377.75 Damper C 9.27 0.15 84.7 52.5 11.28 10.78

TABLE 9 | Solution range when solving optimization problem in experimental verification (T0, tension measured by load cell in Table 5(c); EI0, design value in catalog listed in
Table 5(a)).

Parameters T EI ku kv Hi

Lower/Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Value 0 10 T0 0 10 EI0 0 ∞ 0 ∞ 0 0.019
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rectangular steel plate and disk-shaped steel plate were installed
in parallel.

The cable parameters are listed in Table 6. A prestressed steel
strand was used as the cable because it is used in actual bridge cables.

The damper parameters are listed in Table 7. Three high-
damping rubber dampers were used.

The test cases are listed in Table 8. Cases No. 1–13 are cases
with a tension of approximately 180 kN. Cases No. 14–26 are
cases with a tension of approximately 380 kN. Cases No. 1 and
14 are cases without a damper. Four cases were considered for
each tension and damper combination with regard to the
damper position.

In the solution of the optimization problem using the
MultiStart algorithm, this study randomly generated 200 sets
of initial points for the unknowns to avoid a local minimum
solution. Table 9 presents the lower and upper bounds of the
unknowns in the search for solutions. The lower bounds were
set to zero for all parameters. The upper bound of tension
was set to ten times the true value. The upper bound of the
bending stiffness was set to ten times the design value. The
upper bounds of the damper parameters were not limited
because the damper stiffness was found to have amplitude-
dependency and frequency-dependency, and the values are
different to the design values in Table 7, as will be explained
later. Regarding the ratio of the imaginary part to the real part of
the complex natural frequencies, the upper value was set to 0.019.
The damping factor of each mode was evaluated using the half-
power method, and 0.019 was set as the upper bound.

Table 10 lists the first to seventh measured natural
frequencies, for which the order was assigned in ascending
order based on the measured peak frequencies. Table 11 lists
the first to seventh measured mode shapes with the location of
two measurement points (p1 and p2).

TABLE 10 | First to seventhmeasured natural frequencies in ascending order (Hz).

Case no. 1st 2nd 3rd 4th 5th 6th 7th

1 1.70 3.35 5.04 6.73 8.42 10.10 11.79
2 1.74 3.49 5.25 7.00 8.78 10.54 12.32
3 1.79 3.60 5.42 7.26 9.08 10.90 12.73
4 1.86 3.73 5.62 7.49 9.41 11.32 13.21
5 1.97 3.95 5.94 7.95 10.03 11.96 13.94
6 1.75 3.50 5.25 7.01 8.77 10.54 12.30
7 1.81 3.61 5.43 7.25 9.06 10.89 12.71
8 1.87 3.74 5.61 7.49 9.38 11.26 13.15
9 1.99 3.96 5.96 7.94 9.95 11.93 13.93
10 1.73 3.46 5.20 6.95 8.68 10.44 12.19
11 1.78 3.57 5.35 7.15 8.96 10.75 12.54
12 1.82 3.65 5.49 7.33 9.17 11.05 12.90
13 1.92 3.85 5.79 7.75 9.72 11.65 13.60
14 2.48 4.96 7.43 9.91 12.39 15.10 17.36
15 2.49 4.99 7.50 10.27 12.56 15.12 17.68
16 2.54 5.16 7.76 9.91 13.09 15.66 18.20
17 2.62 5.28 8.02 10.66 13.13 16.38 19.31
18 2.93 5.67 8.64 11.57 14.80 17.32 20.03
19 2.53 5.08 7.64 10.20 12.76 15.36 17.91
20 2.61 5.25 7.89 10.55 13.24 15.89 18.55
21 2.69 5.41 8.15 10.88 13.62 16.37 19.12
22 2.86 5.75 8.64 11.53 14.51 17.33 20.21
23 2.53 5.08 7.65 10.21 12.76 15.34 17.90
24 2.62 5.25 7.90 10.54 13.03 15.85 18.51
25 2.70 5.41 8.14 10.87 13.59 16.33 19.07
26 2.86 5.75 8.64 11.56 14.48 17.36 20.25

TABLE 11 | First to seventh measured mode shapes in ascending order ofm (top:
ϕmi (p1); bottom: ϕmi (p2)).

Case no. p1(m) Order m in Ascending Order

p2(m) 1st 2nd 3rd 4th 5th 6th 7th

1 3.486 — 1.000 1.000 1.000 0.967 1.000 0.882
4.486 — 0.941 1.000 0.900 1.000 0.947 1.000

2 3.486 0.917 0.742 0.789 0.810 0.824 0.786 0.754
4.486 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 5.340 0.800 0.833 1.000 0.867 0.786 0.828 0.810
6.340 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 7.194 0.929 0.813 0.625 0.917 0.889 0.808 0.742
8.194 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 10.284 0.800 0.842 0.857 0.846 0.733 0.776 0.795
11.284 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 3.486 0.813 0.733 0.750 0.737 0.731 0.750 0.750
4.486 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 5.340 0.765 0.767 0.765 0.773 0.769 0.763 0.769
6.340 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8 7.194 0.800 0.742 0.722 0.727 0.730 0.750 0.750
8.194 1.000 1.000 1.000 1.000 1.000 1.000 1.000

9 10.284 0.792 0.941 0.813 0.938 0.800 0.800 0.800
11.284 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 3.486 0.813 0.722 0.700 0.793 0.786 0.778 0.757
4.486 1.000 1.000 1.000 1.000 1.000 1.000 1.000

11 5.340 0.857 0.686 0.684 0.786 0.923 0.794 0.750
6.340 1.000 1.000 1.000 1.000 1.000 1.000 1.000

12 7.194 1.000 0.733 0.706 0.808 1.000 0.793 0.793
8.194 1.000 1.000 1.000 1.000 1.000 1.000 1.000

13 10.284 0.733 1.000 1.000 0.769 0.708 0.722 0.800
11.284 1.000 1.000 0.782 1.000 1.000 1.000 1.000

14 3.486 1.000 1.000 1.000 1.000 0.833 1.000 1.000
4.486 0.875 0.960 0.960 0.969 1.000 0.688 0.851

15 3.486 1.000 0.929 0.769 0.846 0.833 0.767 0.821
4.486 0.955 1.000 1.000 1.000 1.000 1.000 1.000

16 5.340 1.000 0.938 1.000 1.000 1.000 1.000 1.000
6.340 1.000 1.000 0.938 0.846 1.000 0.950 0.947

17 7.194 0.917 0.889 0.882 0.850 0.867 0.875 0.875
8.194 1.000 1.000 1.000 1.000 1.000 1.000 1.000

18 9.784 1.000 1.000 1.000 1.000 1.000 0.768 —

10.784 0.867 0.889 0.944 0.900 0.950 1.000 —

19 3.486 0.852 0.778 0.786 0.771 0.808 0.789 0.789
4.486 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20 5.340 0.815 0.769 0.783 0.760 0.769 0.750 0.743
6.340 1.000 1.000 1.000 1.000 1.000 1.000 1.000

21 7.194 0.833 0.842 0.808 0.781 0.771 0.757 0.788
8.194 1.000 1.000 1.000 1.000 1.000 1.000 1.000

22 10.284 0.900 0.792 0.778 0.774 0.733 0.757 0.781
11.284 1.000 1.000 1.000 1.000 1.000 1.000 1.000

23 3.486 0.800 0.789 0.808 0.783 0.800 0.792 0.778
4.486 1.000 1.000 1.000 1.000 1.000 1.000 1.000

24 5.340 0.632 0.750 0.846 0.950 1.000 0.852 0.821
6.340 1.000 1.000 1.000 1.000 0.808 1.000 1.000

25 7.194 0.854 0.929 0.910 0.985 0.893 0.954 0.970
7.694 1.000 1.000 1.000 1.000 1.000 1.000 1.000

26 10.284 0.706 0.810 0.750 0.786 0.792 0.786 0.929
11.284 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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5.2 Estimation Results
The measured natural frequencies listed in Table 10 were input
into Methods 2F and 2FM, and the mode shapes listed in
Table 11 were input into Method 2FM.

5.2.1 Results of Tension Estimation
Figure 9A shows the tension estimation results. The
horizontal axis is the case number, and the vertical axis is
the ratio of the estimated tension to the true tension
measured by a load cell. Table 12 compares the RMSER of
tension.

The vertical axis value for Method 2F is between 0.993 and
1.069. Method 2F has high accuracy, but the estimation error of
Method 2F for case Nos. 11 and 14 exceeds 5%. In contrast, the
vertical axis value for Method 2FM is between 0.993 and 1.048.
The estimation error of Method 2FM is smaller than 5% for all
cases, and the RMSER of Method 2FM is smaller than that of
Method 2F.

In the numerical verification considering the measurement
noise, the same measurement noise ratio was assumed for the
natural frequencies and the mode shapes. The tension
estimation error decreased significantly by adding the mode

shapes in the numerical verification. However, in the
experimental verification, the tension estimation error did
not decrease significantly by adding the mode shapes. It is
considered that the mode shape contains more measurement
error than the natural frequencies in the experiment. The
accuracy of the mode shapes depends on the measurement
position. It is possible that the damper affects the accuracy of
the mode shapes if the accelerometers are placed near the
damper. Therefore, it is found necessary to investigate
appropriate measurement positions for the mode shapes
from the viewpoint of the tension estimation accuracy.

5.2.2 Results of Bending Stiffness Estimation
Figure 9B shows the bending stiffness estimation results. Both
methods did not obtain reliable results. As discussed in the
previous section, measurement noise is one reason for the low
estimation accuracy.

5.2.3 Results of Damper Parameter Estimation
Figures 9C,D shows the estimation results for cases other than
tension estimation. The vertical axis in Figure 9D is displayed in
the logarithmic scale because the range is very wide. Both
methods did not obtain reliable results.

In the numerical verification discussed in the previous
section, Method 2FM estimated the damper parameters with
satisfactory accuracy. However, in the experiment, low damper
parameter estimation accuracy was obtained with Method 2FM.

TABLE 12 | RMSER of estimated tension in experimental verification.

Method 2F 0.033
Method 2FM 0.029

FIGURE 9 | Estimation results obtained by experiments: (A) tension, T; (B) bending stiffness, EI; (C) real part of complex stiffness, ku; (D) imaginary part of complex
stiffness.
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This is attributed to the modeling error of the damper. To confirm
this, the load–displacement relationship of damper B was obtained
by an element test under various displacement amplitudes and
various frequencies. Figure 10 shows the load–displacement
relationship of damper B. Figure 10A shows that the damper
has amplitude-dependency, and Figure 10B shows that the
damper has frequency-dependency. However, the damper was
modeled as a high-damping rubber damper whose complex
stiffness is constant regardless of the displacement amplitude
and frequency (Eq. 12a), because the damper is commercially
available as a high-damping rubber damper. Hence, the low
accuracy of damper parameter estimation is attributed to the
modeling error of the damper’s complex stiffness.

Equation 12a is a simplified design equation for determining
appropriate damper parameters and may not perfectly express
the damper’s dynamic characteristics. Therefore, it is necessary to
develop a new equation of complex stiffness that can accurately
express the dynamic characteristics of the damper to estimate the
damper parameters with high accuracy.

Furthermore, the proposed method ignores the effect of
damper mass. In the future study, it is necessary to investigate
the effect of damper mass on the estimation accuracy and to
improve a damper model.

Although the damper’s complex stiffness and effect of damper
mass could not be modeled exactly, the tension estimation error
was within 5% owing to the stronger sensitivity of tension and
lower sensitivity of the damper parameters against the vibration
characteristics. It is expected that the tension and damper
parameter estimation accuracy can further improve by
adopting an appropriate damper model.

6 CONCLUSION

This paper proposes a new method (Method 2FM) for estimating
the tension and bending stiffness of cable and damper parameters
based on the natural frequencies and two-point mode shapes.
Method 2FM is an updated version of the previously proposed
Method 2F, which only uses the natural frequencies. The novelty

of Method 2FM is the use of mode shapes measured at only two
points, in addition to the natural frequencies. Only two
accelerometers are needed, and measurement at multiple
locations throughout the cable is not required.

Firstly, the validity of the previously and newly proposed
methods was numerically verified. Ninety numerical models
were established with ten cable models and nine damper
models for two damper types: a high-damping rubber damper
and a viscous shear damper.

Method 2FM improves the tension estimation accuracy of
Method 2F through the addition of two-point mode shapes.
Method 2FM has higher tension estimation accuracy than
Method 2F, even with measurement noise. Moreover, the
tension estimation result is less likely to be affected by
measurement noise compared with other parameters.

The bending stiffness estimation accuracy improved with
Method 2FM when there was no measurement noise.
However, reliable bending stiffness estimation is difficult with
measurement noise because the bending stiffness is less sensitive
to the vibration characteristics of the lower modes.

With regard to damper parameter estimation, the accuracy of
Method 2F is very low, even in the case without measurement
noise. However, the accuracy dramatically improves in Method
2FM, and the sensitivity of the damper parameters against the
objective function dramatically increases with the addition of
mode shapes.

The validity of the proposed method was experimentally
verified using a cable with a length of 61.8 m. A high-damping
rubber damper was installed, and 26 cases were prepared by
changing the cable tension, damper models, and damper
position.

The tension estimation accuracy of Method 2FM is higher
than that of Method 2F, and the maximum estimation error is
4.8%. For method 2FM, the tension estimation error is within 5%.
It was found necessary to investigate appropriate measurement
positions for the mode shapes from the viewpoint of the tension
estimation accuracy.

Both models did not estimate the damper parameters with
high accuracy, possibly owing to the modeling error of the

FIGURE 10 | Amplitude-dependency and frequency-dependency of load–displacement relationship of damper used in element test (damper B): (A) different
amplitudes with constant frequency; (B) constant amplitude with different frequencies.
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damper’s complex stiffness. Because a high-damping rubber
damper was used in the experiment, the damper’s complex
stiffness was set to constant values regardless of the vibration
amplitude and vibration frequencies. However, the element
test revealed that the actual damper was amplitude-dependent
and frequency-dependent. Although the damper’s complex
stiffness could not be modeled exactly, a tension estimation
error within 5% was achieved owing to the stronger
sensitivities of tension and lower sensitivity of damper
parameters to the vibration characteristics. It is expected
that the tension and damper parameter estimation accuracy
can further improve by adopting an appropriate
damper model.

The numerical and experimental verifications demonstrate the
superiority of Method 2FM over Method 2F, and it is possible to
estimate the cable tension without detaching the damper. The fact
that the cable does not have to be detached is a great advantage in
terms of work efficiency.

This study proposed a deterministic estimation method.
The cable’s tension and bending stiffness and two damper
parameters are estimated from the natural frequencies and
the two-point mode shapes, assuming that the mass per unit
length and length of cable, and damper position are given
correctly. However, these parameters contain uncertainty. In
addition, the measured natural frequencies and the two-
point mode shapes contain uncertainty. Therefore, it is

desirable to consider the uncertainty of the input
parameters. In the next step, the authors would like to
develop a probabilistic estimation method based on
Bayesian inference.

In future work, the authors will attempt to improve the
estimation accuracy of both the tension and damper
parameters by developing an appropriate damper model.
Moreover, the authors will investigate the effect of damper
mass on the estimation accuracy and improve the damper
model. Furthermore, verification will be carried out using
measurement data obtained for actual bridges.
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