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This study describes crash causes, conditions, and distribution of accident hot spots along
with an analysis of the risk factors that significantly affect severity levels of crashes and their
effects on pedestrian safety using machine learning (ML) techniques. Supervised ML
algorithm–random forest and decision tree–based algorithm-AdaBoost algorithms are
applied and compared to predict the severity level and future crashes based on road crash
elements. Association rule, an unsupervised learning algorithm, is utilized to understand
the association between driver characteristics, geometric elements of the highway, the
environment, time, weather, and speed. Slight, medium, and severe injuries and fatalities in
crashes are also considered to understand the behavior of road drivers, who are most likely
to cause crashes. Fatalities and injuries are studied with spatial statistics analysis. The
variables most affecting the severity of the crash are determined and discussed in detail.
The results are checked for accuracy, sensitivity, specificity, recall, precision, and F1 score
performance. The impact of drivers, vehicles, and road characteristics is investigated in
traffic crashes. The random forest model was found to be the most suitable algorithm to
predict crash severity levels.
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INTRODUCTION

Road safety and reducing traffic accidents have been a major concern of transportation
planners, engineers, and policymakers. Road accidents place a heavy burden on the world
economy due to significant loss of life and property damage. The number of traffic accidents in
Jordan is rising, and the consequences have a significant impact on people’s lives and on their
social and emotional well-being (Al-Masaeid, 2009; Alomari and Taamneh, 2020). It is a
complex behavioral problem due to the multiplicity of variables and factors affecting it such as
driver, pedestrian, passenger behavior, vehicle, highway, and infrastructure characteristics. To
develop effective countermeasures, a spatial and temporal analysis should be conducted using
geographic information systems (GIS) and artificial intelligence (AI) in countries that have
witnessed a decline in the numbers of injuries and deaths to identify and distinguish accidents
and then classify them according to the time of their occurrence, type, location, severity, and
causes.

Understanding the factors under which people are primarily harmed in car crashes could improve
the general safety standards. Variables that influence the level of extended injury to passengers in a
vehicle crash incorporate attributes of the individual, natural elements, highway conditions at the
time of the incident, and intrinsic qualities of the vehicle itself. In this research, considerable accident
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information collection was utilized alongside learning techniques
to reveal the connections between the number of accidents
compared to various injury severity levels and accident-related
factors.

The literature includes many studies carried out on traffic
accidents and their seriousness. Labib et al. (2019) stated in their
study that traffic accidents had become a significant problem in
Bangladesh and the whole world. Their study used the following
machine learning methods to analyze accident data: classified
decision tree, k-nearest neighbors (KNN), naive Bayes, and
AdaBoost. Radzuan et al. (2019) explained that the number of
traffic accidents in Malaysia grows by 5% every year. It is essential
to understand their occurrence to propose counter plans to
reduce the number of severe injuries. The research used an
artificial neural network method to predict the number of
serious severe injuries by applying a time-series algorithm. The
study by Al-Mamlook et al. (2019) compared different machine
learning algorithm performance on predicting crash severity and
found that the random forest algorithm outperformed logistic
regression, naive Bayes, and AdaBoost algorithms.

Traffic accident data provided by the public authorities are
essential in building a classification of these accidents based on
their type and severity, which could later lead to developing a
predictive model. These models help address and detect the
severity of the injury in accidents and guide general road safety
policies (Cuenca et al., 2018). In a study by Kumeda et al.
(2019), machine learning algorithms were used to analyze the
data to unlock invisible patterns and predict severity level.
Their study applied six different machine learning techniques
using the data from the United Kingdom: hierarchical LVQ,
Fuzzy–FARCHD, random forest, multilayer perceptron, naive
Bayes, and radial basis function network. The results revealed
that the Fuzzy–FARCHD algorithm was the most effective
method, with an accuracy of 85.94%. In another study by Cai
et al. (2020), the locations of traffic accidents were analyzed
and their relationships with the resulting behaviors based on
vehicle OBD data. This research relied on the RTSE method
implemented by the entropy weight method. Moreover, the
method includes three factors: piecewise calculation of each
index’s weight, optimization of the logarithm base, and
processing of zero-value secondary indices. In addition, Hu
et al. (2020) investigated clusters and injuries in pedestrian
crashes using GIS in Changsha, China. This study did not just
include standard traffic accident reports but also integrated
these reports with the GIS to analyze 791 pedestrian accidents.
The study concluded that casualties have a strong relationship
with road isolation facilities, light conditions, time of the
accident, and age of pedestrians. For example, casualty
numbers were higher at night than during the day, and
pedestrians of school age and the elderly made up the most
significant share of the casualties. Moreover, Al-Omari et al.
(2020) studied the prediction of traffic accident hot spots using
fuzzy logic and the GIS in Irbid city, north of Jordan. The study
applied the fuzzy overlay method (FOM) and the weighted
overlay method (WOM) since these two methods are generally
used in decision-making and alternative analysis. Eight
hotspots were identified; three are road sections and five are

major intersections, which were investigated to obtain
accident-contributing factors.

Lee et al. (2017) built an accident predictionmodel using twoML
methods: artificial neural networks (ANN) and k-nearest neighbor.
Due to the complexity and variety of factors involved in traffic
incidents, various data such as traffic data, weather conditions, light,
and road geometry were included. The accident characteristics are
important as well. Based on the comparison analysis, they concluded
that the ANN outperformed the k-nearest neighbor and provided a
helpful prediction with less than 30% error values. Achu et al. (2019)
used geospatial technology to examine traffic accident temporal and
spatial behaviors based on the collected data between 2013 and 2015.
The study usedmultiple methods (kernel density functions, Moran’s-
I, and Getis-Ord Gi hotspot analysis) for spatiotemporal behaviors of
traffic accidents. Moreover, this research revealed that the results are
helpful in terms of developing better safety policies for roads and
highways in the accident hot spots. Al-Aamri et al. (2020) conducted
their study in Muscat, Oman, based on 9,357 registered traffic
accidents from 2010 to 2014 collected by the Royal Oman Police.
The study used a combined analysis method based on the GIS and
RTC data. In addition, this study used estimation techniques using
kernel density estimation (KDE) for 1D and 2D space dimensions;
network-based, forest algorithm, and K-function were used in the
data analysis. In addition, the results of this study provided statistical
evidence that proved the hypothesis of the study, which was that road
junctions have a higher rate of causing RTCs than the rest of the road
features. Moreover, the findings of the study identified the
importance and influence of road- and traffic-related features in
road crash spatial analysis.

Ando et al. (2018) investigated the links between traffic crashes
and urban crime in Toyota City, Japan. They defined urban safety
in terms of urban crime and traffic accidents using the GIS and
statistical analysis. They found that there were some overlap and
common factors, including narrow streets and medium-to-high
rise residential buildings. Longer street segments tended to
discourage both phenomena. A graphical modeling method for
individual driving behavior and its application in driving safety
analysis using GPS data was proposed by Chen et al. (2019). The
study found that the different aspects of driving safety concerns
originate from the skills and behaviors of drivers. The study applied
a quantitative analysis method to evaluate the graphs extracted
from the method mentioned previously. The study concluded that
the graphical method could describe the individual features of a
driver’s longitudinal acceleration behavior and distinguish
differences among drivers. Another study by Özcan and
Küçükönder (2020) identified the spatial density of traffic
accidents and targeted the modifications of spatiotemporal
elements in high-density areas in the city of Kahramanmaras,
Turkey. The researchers developed their methodology based on
kernel and hotspot estimation (KDE) methods to identify the
spatial densities in the GIS, which successfully detect the high
density of traffic accidents in the selected areas.

According to the World Health Organization (WHO), about
1.35 million people die annually due to road traffic accidents,
making them the eighth leading cause of death for people of all
ages. The cost of road traffic accidents in most countries is
estimated at 3% of their GDP (WHO, 2018). Road traffic
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injuries remain an important public health problem at global,
regional, and national levels; hence, improving traffic safety is a
real challenge worldwide. As a result of the political and economic
conditions surrounding it, Jordan has witnessed an increase in
residents, vehicles, and accidents. In 2019, 161,511 traffic
accidents occurred in Jordan, resulting in 17,013 accidents of
human injuries; among them were 643 deaths, 792 seriously
injured, 6062 medium injuries, and 10,159 slightly injured
people; the financial cost is estimated to be $457 million.
Jordan’s population reached 10,554 million, and the number
of registered vehicles was 1,637,981, in addition to 767,614
foreign vehicles entering Jordan annually (PSD, 2018).

The main objective of this research is to develop a framework
to identify and traffic accident hot spots in urban regions, with
Zarqa City in Jordan as a case study. Themethodology is based on
combining the GIS, indicators of the severity of traffic accidents,
artificial intelligence, and statistical methods. This framework
defines crash causes, conditions, crash risk factors, and their
impact on severity levels. In addition, it involves analyzing the
factors that significantly affect each type of crash and forecast the
risk factors affecting the level of traffic crashes using ML
techniques. In addition, this study identifies and maps high-
density black spots, fatality crashes, and pedestrian crash
locations using the Optimized Hot Spot Analysis method.
Finally, it recommends appropriate remedial measures to
decrease traffic crashes and their severity levels and improve
crash reduction factors.

METHODOLOGY

The study area comprised the minor arterials and collectors of
Zarqa City, Jordan. According to the number of residents, Zarqa

is the center of the Zarqa governorate and the third major city in
Jordan after the capital (Amman) and Irbid (Alomari and
Taamneh, 2020). Its population constitutes 14.3% of all
Jordanians, reaching 1,534,577 inhabitants. It is also the third-
highest city in accident frequency. It is located to the northeast of
the country and has an area of over 4761 km2 with a road network
of around 440 km2. The data set for pedestrian, run-off-road, and
collision accidents that occurred in urban areas in Zarqa City was
obtained from the Jordan Police Traffic Department (PTD). It
includes nearly 97,900 accidents in Zarqa City during 2014–2018,
as shown in Figure 1. The data consist of the numbers of vehicles
and category; road properties, type, speed limit, surface, and lane
design; driver’s gender, age, and mistakes; weather; light
conditions; coordinates; accident type, time, day and date;
severe, medium, and slight injuries; and fatalities.

Accident locations were defined using the projected
coordinate system Universal Transverse Mercator (UTM),
World Geodetic System (WGS 1984 Zone 36 North). X and Y
coordinates were automatically calculated by the traffic cop using
the GPS at each accident location. The time of crashes is also
essential for accident analysis and finding the leading cause before
giving suitable remedies. The time is required in three
configurations: the time of day (morning, noon, and evening),
the day of the accident (workday, holiday), and the time of the
year (winter, spring, summer, or autumn). Several causes
invariably characterize an accident. The alignment of the road
is a significant impact factor: flat straight, upright straight,
straight slope, flat curve, elevated curve, and slope curve.
Other data groups that can represent independent variables
and help in accident analysis study are as follows: weather
conditions (clear, rainy, dusty, hazy), pavement surface
conditions (dry, wet, glacier, sandy), light conditions (noon,
sunrise, night, road lights are sufficient; night time and road

FIGURE 1 | Traffic accidents from 2014 to –2018 occurred in Zarqa city.
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lights are not enough; sunset; and dark), road type (flexible
pavement, rigid pavement, soil road, gravel road), road lane
(two-way with central island, two-way without central island,
one way, parking, and public square), vehicle category (small
passenger cars, shipping vehicles, joint transport, trailer, mid-size
passenger cars, bus, construction vehicle, and particular purpose
vehicle), road speed limit, driver gender, the number of cars
involved in the accident, the type of accident, and driver
mistakes).

The data were cleaned and preprocessed by looking for
missing values and inspecting any outliers that could interfere
with the learning process. Feature selection using ML was applied
to find the most relevant and correlated attributes affecting the
learning process. These datasets were studied using supervised
learning to predict the class label according to the characteristics
of drivers and road properties. Figure 2 shows the research
methodology used in this study.

Association Rules
Association rule learning is an unsupervised learning approach
that detects the reliance of one database object on another and
maps it appropriately to make it more lucrative. It applies various
techniques to identify interesting relationships between variables
in a database. They are used to find the relations between
variables in the dataset.

The association rule can be defined as follows: if we let D = {t1,
t2, . . ., tm} be a set of transactions that causes the accidents and let
I = {i1, i2, . . ., in} be the set of all considered items in the possible
factors, each transaction in D has a unique transaction ID and
contains a subset of the items. A rule is defined as X 0 Y where
X, Y ⊆ I and X ∩ Y = ∅. The sets of items (for short item sets) X
and Y are called antecedent (left-hand-side or LHS) and
consequent (right-hand side or RHS) of the rule. The rules are
often restricted to only a single-item inconsequent. The

association rules surpass the user-specified minimum support
and confidence. The support, supp(X), of an itemset X is a
measure of importance, defined as the proportion of
transactions in the data set containing the itemset. The
confidence of the rule is defined as conf (X 0 Y) = supp (X
∪ Y)/supp(X), measuring how likely it is to see Y in a transaction
containing X. The association rule X0Y needs to satisfy supp (X
∪ Y) ≥ σ and conf (X0 Y) ≥ δ, where σ and δ are the minimum
support and minimum confidence thresholds, respectively.

This research will use association rules to find the relationship
between variables. It will also check which variables affect slight
injury, medium injury, severe injury, or fatalities. The association
algorithm can be summarized as converting all variables to
factors and fitting the model with an a priori algorithm. It
also specifies which variable has the most significant impact
on each type of injury (Galárraga et al., 2013).

Decision Tree
It is a supervised learning approach that may solve classification
and regression issues. However, it is most often used to solve
classification tasks. It is a tree-structured classifier in which internal
nodes contain dataset characteristics, branches represent decision
rules, and each leaf node represents the result. A decision tree has
two nodes: the decision node and leaf node. Decision nodes judge
and have numerous branches, whereas leaf nodes result from those
selections and have no more branches. The judgments or
assessments are based on the characteristics of the provided
dataset. It is a graphical depiction of all potential answers to a
problem/decision, given specific criteria. It is termed a decision tree
because, like a tree, it begins with the root node and extends on
subsequent branches to form a tree-like structure. The CART
algorithm, which stands for classification and regression tree,
creates a tree. A decision tree asks a question and divides the
tree into subtrees based on the answer (yes/no).

FIGURE 2 | Research methodology.
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The decision tree coding algorithm may be defined as
follows. Two approaches are used: one with the class label
(type of integer) and another with a class label (0 and 1), where
zero indicates no injury and one indicates injuries. The data
set is then divided into training and testing sets using the 70/
30 technique and the (rpart) function for estimating the
decision tree. The model’s effectiveness is then evaluated.
The decision tree classification model uses the dataset to
create a tree structure. A decision tree is created by
breaking down a large dataset into smaller components. A
decision tree node is split into two or more branches at each
step-in algorithm until it reaches leaf nodes. The leaf nodes
show the class labels or outcomes. Di Noia et al. (2020) stated
that the decision tree picks a feature that best divides the data
at each stage.

Ensemble Method
Bagging and boosting are two techniques that use the ensemble
method. Both models can predict the result of the type of injury
in a traffic accident. Bagging (random forest) is a well-known
ML algorithm from the supervised learning approach. It may be
applied to both classification and regression issues in machine
learning. It is built on the idea of ensemble learning, which
integrates several classifiers to resolve a complicated issue and
enhance the model’s performance. It is a classifier that uses
several decision trees on different subsets of a given dataset and
averages them to enhance the prediction accuracy of that
dataset. On the other hand, the boosting (AdaBoost)
algorithm, short for adaptive boosting, is used in machine
learning, adjusted to each instance, with increased weights
applied to erroneously categorized instances. Boosting is used
in supervised learning to minimize bias and variation. It is based
on the progressive development of learners. The boosted
methods are applied when there is a large amount of data to
produce a forecast. It is used to transform weak optimization
algorithms into strong learning algorithms. The boosted
algorithm’s basic principle combines several weak classifiers
to create a strong classification.

This study uses adaptive boosting (AdaBoost). It fits a series of
weak classifiers to various weighted training data. It begins by
predicting the original data set and then distributing it evenly to
each observation. If the first learner’s prediction is incorrect, it
rewards a greater score to the incorrectly predicted observation.
As an iterative process, it continues to add trainees until the
variety of models or accuracy is reached. AdaBoost combines
multiple inadequate learners to create a more powerful model.
The result is the weighted sum of the weak algorithms. Because it
is a sequential model, a poor learner gets replaced at each phase in
favor of misclassified data points in the preceding classifier.
Weighting is used to train the first basic classifier, y1 (x).
Every transaction is the same. The weighting will be increased
in the following phases of reinforcement. For data, misclassified
data point attributes increase and decrease. The points were
correctly categorized. The epsilon value is the weighted error
rate for each basic classifier. As a result, the weights provide alpha.
A higher weight is assigned to a more successful classification
(Mayr et al., 2014).

The Empirical Evaluation
This section explains the empirical evaluation. Because of the
enormous data, the data have divided the model into 70% training
data and 30% testing data. The following performance
measurements used the confusion matrix, accuracy, recall,
precision, sensitivity, F1 score, and errors. The confusion
matrix is a matrix used to analyze the quality of classification
models for a given set of test data. It can be determined only if the
real values of the test data are given. The matrix itself is simple to
grasp, but the associated terminology can be perplexing because it
displays themodel performance faults in amatrix. Figure 3 shows
the confusion matrix table, where:

1) True positive: It is the number of correctly classified instances.
2) True negative: It is the number of correctly classified

instances.
3) False negative: It is the number of incorrectly classified

instances.
4) False positive: It is the number of incorrectly classified

instances.

Accuracy is an essential metric in determining the accuracy of
classification issues. It specifies how frequently the model predicts
the proper outcome. Furthermore, it may be computed as the
ratio of the classifier’s correct predictions to the total number of
predictions produced by the classifiers. The error rate defines how
frequently the model makes incorrect predictions. By dividing the
number of wrong predictions by the total number of predictions
made by the classifier, the error rate can be figured.

Recall is an essential metric for dealing with imbalanced data
(where the number of observations per class is not equally
distributed). It equals the true positive over the summation of
true positive and false negative. The research team does not want
to miss recording any injuries. Therefore, it makes the “false
negative” as low as possible, so the recall should be high.

Precision isessential to using the essential metric for
imbalanced data and very high accuracy. However, it is not a
good model as the accuracy is misleading. It equals the true
positive over the summation of true positives and false positives.
In this research, the term “false positive” (which means we do not
have an injury, but we predict having one).

F1 score is the harmonic mean of precision and recall. It takes
both false positives and false negatives into account. This formula

FIGURE 3 | Confusion matrix (Draelos, 2019).
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can be used on the imbalanced data to decide which one is better
in terms of high precision and low recall.

Identification of Hazardous Locations Using
Geographic Information Systems
Optimized Hot Spot Analysis uses parameters obtained from
input data characteristics to run the Hot Spot Analysis (Getis-Ord
Gi*) application. The Optimized Hot Spot Evaluation method
interrogates data to obtain the settings that will produce optimum
hot spot performance. The application can aggregate incident
point data into weighted features if the dataset of input features
includes incident point data. The tool can figure out how big an
analysis can be based on the distribution of weighted features.
Spatial autocorrelation hot spot analysis is one of the spatial
statistics toolset of inferential spatial pattern analysis tools.
Probability theory underpins inferential analysis. Probability is
a measure of variance, and all mathematical analyses (directly or
indirectly) are based on probability equations that evaluate the
impact of chance on the study results. Nonspatial statistics often
include working with a random sample and attempting to
calculate the probability that the data collected is a successful
approximation (is reflective) of the population. Like the spatial
autocorrelation statistics mentioned above, many spatial statistics
frequently deal with all accessible data for the research area (such
as all crimes, disease cases, and attributes for every census block).

The null hypothesis is the starting point for most statistical
experiments. Complete spatial randomness (CSR), regardless of
the features directly or the attributes associated with those
features, is the null hypothesis for the pattern analysis
methods (analyzing patterns framework and mapping clusters
toolset). The pattern analysis technique’s’ z-scores and p-values
indicate whether to reject the null hypothesis or not. According to
the pattern analysis framework, it is likely that a random
sampling technique generated the detected spatial pattern.
When the p-value is very low, it means that the observed
spatial trend is very unlikely (low probability) to be the
product of random processes, and the null hypothesis can be
rejected. Z-scores are standard deviations.

RESULTS AND DISCUSSION

Machine Learning Model Evaluation
The evaluation techniques used in this research are based on the
results of the confusion matrix of each ML model. The
performance of the model can be evaluated by checking
accuracy, recall, precision, F1 score, error, and sensitivity. This
research evaluates the rules to find the relations between
variables. After applying ML algorithms, Tables 1–3 describe
the results for accuracy for every type of injury. The comparison
shows that the random forest model has the highest accuracy rate
measurement in each database compared to the otherMLmodels.
The slight injury rate was 97.93%, the medium injury rate was
99.78%, the severe injury rate was 99.81%, and the fatality rate
was 99.96%. The results are imbalanced, so the researchers will
also check the recall, precision, and F1 score to check the injuries.

In the recall part, the focus is on the false negative, trying to
make it as low as possible to obtain the highest recall. Then, ML
models were checked to see the highest recall. The comparison
showed that the decision tree model has the highest recall for
slight injuries at 99.2%, the random forest has the highest recall
for medium injuries at 100%, the decision tree has the highest
recall for severe injuries at 100%, and the random forest has the
highest recall for fatalities at 100%. The precision matrix has been
checked because of the imbalanced data. The focus was on the
false positives. The comparison showed that the random forest
model has the highest precision rate measurement in each
database compared to the other ML models. The slight injury
rate was 99.96%, the medium injury rate was 100%, the severe
injury rate was 100%, and the fatality rate was 100%.

The precision and recall were checked. The emphasis was on
both false-positive and false-negative results. The
abovementioned comparison showed that the random forest
model had the highest accuracy rate measurement in each
database compared to the other ML models. The slight injury
rate was 98.86%, the medium injury rate was 99.88%, the severe
injury rate was 99.9%, and the fatality rate was 99.97%. Based on
the confusion matrix F1-score, the test results showed that
random forest seemed to perform better than other models.

TABLE 1 | Percentages of parameters in the result of the decision tree.

Parameter Slight injury Medium injury Severe injury Fatalities

Precision 33.08% 32.97% 32.96% 32.97%
F1 score 49.41% 49.59% 49.57% 49.59%
Accuracy 34.08% 32.97% 32.96% 32.97%
Error 0.5592 0.5703 0.5704 0.5703
Recall 97.60% 100% 100% 100%
Sensitivity 33.09% 33.00% 33.00% 32.97%
Specificity 68.50% 37.50% 0.00% 37.00%

TABLE 2 | Percentages of parameters in the result of random forest.

Parameter Slight injury Medium injury Severe injury Fatalities

Precision 99.96% 100% 100% 100%
F1 score 98.86% 99.88% 99.90% 99.97%
Accuracy 97.93% 99.78% 99.81% 99.96%
Error 0.0203 0.0012 0.0019 0.0004
Recall 97.80% 99.77% 99.81% 99.95%
Sensitivity 99.96% 99.78% 99.81% 100.00%
Specificity 72.30% 71.90% 83.30% 83.30%

TABLE 3 | Percentages of parameters in the result of AdaBoost.

Parameter Slight injury Medium injury Severe injury Fatalities

Precision 99.40% 99.60% 99.90% 99.90%
F1 Score 97.40% 98.70% 99.60% 99.70%
Accuracy 95.10% 97.60% 99.30% 99.90%
Error 0.049 0.0234 0.0062 0.0027
Recall 95.60% 97.90% 99.40% 99.70%
Sensitivity 95.60% 97.90% 99.40% 99.00%
Specificity 61.00% 57.10% 40.00% 50.00%
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After applying the ML model, we get the following results for
sensitivity and specificity. Sensitivity was used to evaluate the
model’s ability to predict the true positive of each available class.
Specificity was used to evaluate the model’s ability to predict the
true negatives of each available class. In general, the results
reported higher sensitivity and specificity for the random
forest model. The lower the error rate measurement is, the
better the performance of the ML model will be. On
comparing the ML models used in this research, the random
forest gives the lowest error rate when predicting every type of
injury. The slight injury rate was 0.0203, the medium injury rate

was 0.0012, the severe injury rate was 0.0019, and the fatality rate
was 0.0004.

The results demonstrate that the best ML technique is the
random forest model compared with other models. The random
forest has excellent ability to resist the noise by randomly
selecting variables and data to generate plenty of classification
trees. It can also process discrete data and continuous data.

Evaluating Result for Association Rules
In this part, the research checks the relationship between
variables and every type of injury (slight injury, medium

TABLE 4 | Slight injury results.

lhs rhs Support Confidence Coverage Lift Count

{} => {Slight.Injuries = 1} 0.07455724 0.07455724 1 1 7304
{vehicle. category = 0} => {Slight.Injuries = 1} 0.04820089 0.07486682 0.6438218 1.0041522 4722
{Driver.gender = 1} => {Slight.Injuries = 1} 0.05152861 0.07702872 0.6689532 1.0331487 5048
{Light = 0} => {Slight.Injuries = 1} 0.04818047 0.06900383 0.698229 0.9255148 4720
{Road.properties = 0} => {Slight.Injuries = 1} 0.06672791 0.07368789 0.9055479 0.9883398 6537
{Road.surface = 0} => {Slight.Injuries = 1} 0.07197468 0.07496757 0.9600776 1.0055036 7051
{The.type.of.accident = 0} => {Slight.Injuries = 1} 0.05023223 0.05213918 0.9634257 0.6993175 4921
{weather = 0} => {Slight.Injuries = 1} 0.07188282 0.07459351 0.9636605 1.0004864 7042
{Road.type = 0} => {Slight.Injuries = 1} 0.07280151 0.07524556 0.967519 1.0092321 7132
{Severe.Injuries = 0} => {Slight.Injuries = 1} 0.07088246 0.07174073 0.9880365 0.9622235 6944
{Medium.Injuries = 0} => {Slight.Injuries = 1} 0.07353647 0.07393571 0.9946001 0.9916637 7204
{Fatalities = 0} => {Slight.Injuries = 1} 0.07329148 0.07360328 0.9957638 0.987205 7180
{Road.surface = 0, vehicle. category = 0} => {Slight.Injuries = 1} 0.04672077 0.0753787 0.619813 1.011019 4577
{weather = 0, Vehicle. category = 0} => {Slight.Injuries = 1} 0.04678201 0.0752125 0.621997 1.008789 4583
{Road.type = 0, vehicle. category = 0} => {Slight.Injuries = 1} 0.0471597 0.0753609 0.625784 1.0107791 4620
{Medium.Injuries = 0, vehicle. category = 0} => {Slight.Injuries = 1} 0.04754759 0.0742369 0.640483 0.9957047 4658
{Fatalities = 0, vehicle. category = 0} => {Slight.Injuries = 1} 0.04754759 0.0740729 0.641902 0.9935037 4658
{Road.surface = 0, Driver.gender = 1} => {Slight.Injuries = 1} 0.04956872 0.0776699 0.6381973 1.0417486 4856
{weather = 0, Driver.gender = 1} => {Slight.Injuries = 1} 0.04941561 0.07708599 0.6410453 1.0339169 4841
{Road.type = 0, Driver.gender = 1} => {Slight.Injuries = 1} 0.05009953 0.07771971 0.644618 1.0424167 4908
{Severe.Injuries = 0, Driver.gender = 1} => {Slight.Injuries = 1} 0.04886439 0.07396706 0.6606237 0.9920842 4787
{Medium.Injuries = 0, Driver.gender = 1} => {Slight.Injuries = 1} 0.05102843 0.07656492 0.6664727 1.026928 4999
{Fatalities = 0, Driver.gender = 1} => {Slight.Injuries = 1} 0.05068137 0.07609545 0.6660236 1.0206313 4965
{Road.surface = 0, Light = 0} => {Slight.Injuries = 1} 0.04694534 0.0693864 0.6765784 0.930646 4599

TABLE 5 | Medium injury results.

lhs rhs Support Confidence Coverage lift Count

{} => {Medium.Injuries = 1} 0.0053998 0.0053998 1 1 529
{Road.properties = 0} => {Medium.Injuries = 1} 0.0051344 0.0056700 0.90554 1.05002 503
{Road.surface = 0} => {Medium.Injuries = 1} 0.0052978 0.0055181 0.96007 1.02189 519
{weather = 0} => {Medium.Injuries = 1} 0.0053182 0.005518775 0.9636605 1.0220167 521
{Road.type = 0} => {Medium.Injuries = 1} 0.0053692 0.005549518 0.967519 1.02771 526
{Severe.Injuries = 0} => {Medium.Injuries = 1} 0.0051957 0.0052586 0.98803 0.97384 509
{Fatalities = 0} => {Medium.Injuries = 1} 0.0052773 0.0052998 0.99576 0.98147 517
{Road.surface = 0,Road.properties = 0} => {Medium.Injuries = 1} 0.0050324 0.0057607 0.87356 1.06682 493
{weather = 0,Road.properties = 0} => {Medium.Injuries = 1} 0.0050528 0.0057719 0.87541 1.06889 495
{Road.type = 0,Road.properties = 0} => {Medium.Injuries = 1} 0.0051038 0.0058010 0.87981 1.07429 500
{Fatalities = 0,Road.properties = 0} => {Medium.Injuries = 1} 0.0050119 0.0055571 0.90189 1.02913 491
{Road.surface = 0,weather = 0} => {Medium.Injuries = 1} 0.0052774 0.0055583 0.94946 1.02933 517
{Road.surface = 0,Road.type = 0} => {Medium.Injuries = 1} 0.0052671 0.0056495 0.93232 1.04623 516
{Severe.Injuries = 0,Road.surface = 0} => {Medium.Injuries = 1} 0.0050936 0.0053699 0.94855 0.99445 499
{Fatalities = 0,Road.surface = 0} => {Medium.Injuries = 1} 0.0051753 0.0054133 0.95603 1.00248 507
{Road.type = 0,weather = 0} => {Medium.Injuries = 1} 0.0052978 0.0056539 0.93701 1.04704 519
{Severe.Injuries = 0,weather = 0} => {Medium.Injuries = 1} 0.0051242 0.0053807 0.95232 0.99646 502
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injury, severe injury, and fatalities). It also specifies which variable
has the most significant influence on each type of injury. After
applying the inspect code, the results found several rules that
strongly influence the slight injury; according to the following
rules: road-properties = flat–straight; road-surface = dry; weather
= clear; road-type = flexible-pavement; and crash-types =
collision, as shown in Table 4.

After applying the inspect code, the results found several rules
that strongly influence the medium injury; according to what they
get, the road-properties=flat–straight; road-type=flexible-
pavement; crash-types collision; and weather = clear, as shown
in Table 5.

After applying the inspect code, the results found several rules
that strongly influence the severe injury; according to what they

get, the road properties = flat-straight; road surface = dry; weather
= clear; road type = flexible-pavement; and road surface = dry and
clear weather, as shown in Table 6.

After applying the inspect code, the results found several rules
that strongly influence the occurrence of fatalities; according to
what they get: the crash-types = collision; driver-mistakes =
tailgating; driver-age = [25,32]; road-lanes = two-way (with
central island); vehicle-category = small passenger-cars, as
shown in Table 7.

Generally, collision accidents on flat–straight roads and
flexible pavement roads were more effective variables in the
data set for every type of injury, with assigned support and
confidence. According to the results, which confirm the
support and confidence, it is confirmed that the road

TABLE 6 | Severe injury results.

lhs rhs Support Confidence Coverage lift Count

{} => {Severe.Injuries = 1} 0.011963456 0.011963456 1 1 1173
{Driver.gender = 1} => {Severe.Injuries = 1} 0.008329505 0.012451552 0.6689532 0.9276155 1027
{Road.properties = 0} => {Severe.Injuries = 1} 0.010473128 0.011565515 0.9055479 0.9202381 1130
{Slight.Injuries = 0} => {Severe.Injuries = 1} 0.008288675 0.008956442 0.9254428 0.6622587 1111
{Road.surface = 0} => {Severe.Injuries = 1} 0.011524524 0.012003743 0.9600776 0.9259468 1127
{weather = 0} => {Severe.Injuries = 1} 0.011330577 0.011757852 0.9636605 0.7515682 1153
{Road.type = 0} => {Severe.Injuries = 1} 0.011493901 0.011879767 0.967519 0.740365 1047
{Medium.Injuries = 0} => {Severe.Injuries = 1} 0.011759302 0.011823145 0.9946001 0.7271596 998
{Fatalities = 0} => {Severe.Injuries = 1} 0.010677283 0.010722706 0.9957638 0.7351375 978
{Road.surface = 0,Driver.gender = 1} => {Severe.Injuries = 1} 0.007962027 0.012475808 0.6381973 0.9669399 985
{Road.type = 0,Driver.gender = 1} => {Severe.Injuries = 1} 0.007962027 0.012351544 0.644618 0.9717923 1007
{Medium.Injuries = 0,Driver.gender = 1} => {Severe.Injuries = 1} 0.008247844 0.012375366 0.6664727 0.7087523 1104
{Road.surface = 0,Road.properties = 0} => {Severe.Injuries = 1} 0.010177104 0.011650054 0.8735671 1.0084241 1091
{weather = 0,Road.properties = 0} => {Severe.Injuries = 1} 0.00997295 0.011392257 0.8754147 0.953732 1110
{Road.type = 0,Road.properties = 0} => {Severe.Injuries = 1} 0.010044404 0.011416505 0.8798142 1.0732998 1013
{Medium.Injuries = 0,Road.properties = 0} => {Severe.Injuries = 1} 0.010268974 0.011404732 0.9004134 1.0891904 1073
{Fatalities = 0,Road.properties = 0} => {Severe.Injuries = 1} 0.009329863 0.01034475 0.9018935 1.0915744 1092
{Slight.Injuries = 0,Road.surface = 0} => {Severe.Injuries = 1} 0.008053897 0.009068653 0.8881029 1.0514448 998
{Slight.Injuries = 0,weather = 0} => {Severe.Injuries = 1} 0.007890573 0.008848139 0.8917777 1.003407 974

TABLE 7 | Fatality results.

lhs rhs Support Confidence Coverage lift Count

{} => {Fatalities = 1} 0.004236207 0.004236207 1 1 415
{Driver.gender = 1} => {Fatalities = 1} 0.002929618 0.004379406 0.6689532 1.0338037 287
{Light = 0} => {Fatalities = 1} 0.002980656 0.004268881 0.698229 1.0077131 292
{Road.properties = 0} => {Fatalities = 1} 0.003654366 0.004035531 0.9055479 0.9526284 358
{Slight.Injuries = 0} => {Fatalities = 1} 0.002970449 0.003209759 0.9254428 0.7576966 291
{Road.surface = 0} => {Fatalities = 1} 0.00404226 0.004210347 0.9600776 0.9938956 396
{The.type.of.accident = 0} => {Fatalities = 1} 0.002317154 0.00240512 0.9634257 0.5677531 227
{weather = 0} => {Fatalities = 1} 0.003970806 0.004120544 0.9636605 0.9726967 389
{Road.type = 0} => {Fatalities = 1} 0.003991221 0.004125212 0.967519 0.9737986 391
{Severe.Injuries = 0} => {Fatalities = 1} 0.002950033 0.002985753 0.9880365 0.7048176 289
{Medium.Injuries = 0} => {Fatalities = 1} 0.004113714 0.004136048 0.9946001 0.9763566 403
{Road.properties = 0,Driver.gender = 1} => {Fatalities = 1} 0.002541724 0.004215837 0.602899 0.9951916 249
{Road.surface = 0,Driver.gender = 1} => {Fatalities = 1} 0.002745879 0.004302554 0.6381973 1.015662 269
{weather = 0,Driver.gender = 1} => {Fatalities = 1} 0.002684632 0.004187898 0.6410453 0.9885962 263
{Road.type = 0,Driver.gender = 1} => {Fatalities = 1} 0.002705048 0.004196358 0.644618 0.9905933 265
{Medium.Injuries = 0,Driver.gender = 1} => {Fatalities = 1} 0.002847956 0.004273177 0.6664727 1.0087272 279
{Light = 0,Road.properties = 0} => {Fatalities = 1} 0.002613178 0.004107962 0.6361251 0.9697266 256
{Road.surface = 0, Light = 0} => {Fatalities = 1} 0.002868371 0.004239526 0.6765784 1.0007834 281
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TABLE 8 | Effect of driver characteristic on traffic accidents.

lhs rhs Support Confidence Coverage lift Count

=> {A11 = 1} 0.050467464 0.05046746 1 1 1085
Driver_gender = mALE1 => {A11 = 1} 0.027954789 0.04968995 0.56258431 0.9845939 601
{Driver.Mistakes = other} => {A11 = 1} 0.02367552 0.05030638 0.47062654 0.9968083 509
{speed--(40.60]} => {A11 = 1} 0.023489465 0.05123782 0.45843993 1.0152645 505
{Driver._gender = FEMALE} => {A11 = 1} 0.022512675 0.05146746 0.43741569 1.0198147 484
{Speed=(20.40]} => {A11 = 1} 0.022001023 0.05174489 0.42518257 1.0253118 473
{Driver._age=(18.36]} => {A11 = 1} 0.015442579 0.05144894 0.3001535 1.0194477 332
Driver_gender-mALE,driver.mistakes-otherl => {A11 = 1} 0.013488999 0.05064618 0.26633797 1.0035411 290
iSpeed=(20.40],Driver._gender = mALEI => {A11 = 1} 0.012977348 0.05366417 0.2418252 1.0633419 279
iSpeed-(40.60],Drivers_gender-MALEI => {A11 = 1} 0.012419182 0.04860732 0.25550026 0.9631417 267
ispeed--(40.60],driver._gender = FEmALE1 => {A11 = 1} 0.011070282 0.05454962 0.20293967 1.0808869 238
{Speed-(40.60],Driver.mistakes-Other} => {A11 = 1} 0.010884227 0.04929429 0.22080097 0.9767539 234
driver._age=(18.36],driver._gender = mALEI => {A11 = 1} 0.010744686 0.05261959 0.20419554 1.0426438 231
iSpeed=(20,401, Driver.mistakes = 0therl => {A11 = 1} 0.010605144 0.05358402 0.19791618 1.0617538 228
fDriver._gender-FEMALE, Driver.Mistakes-Otherl => {A11 = 1} 0.01018652 0.04986339 0.20428857 0.9880304 219
fspeed=(20.40],driver._gender = FEmALE1 => {A11 = 1} 0.009023676 0.0492136 0.18335737 0.975155 194
iSpeed=(20.40],Driver._age-(18,361} => {A11 = 1} 0.007628262 0.05608755 0.13600633 1.1113606 164
fdriver’s_age=(18.36],driver.mistakes = otherl => {A11 = 1} 0.007209638 0.05122274 0.14075073 1.0149655 155
{Driver._age=(36.54]} => {A11 = 1} 0.00711661 0.04750078 0.14982092 0.9412158 153

TABLE 9 | Descriptive statistics of 5-year accidents in Zarqa City.

Year Overall no.
of accidents

Collision Pedestrian Run-off-road No. of
fatalities

No. of injuries

Severe Medium Slight

2014 14745 14024 563 158 91 334 456 1997
2015 18663 17895 548 220 112 267 549 2493
2016 20969 20181 547 241 98 370 745 2634
2017 22089 21441 486 162 58 154 813 1597
2018 21499 20841 510 148 56 118 511 1156
Sum 97965 94382 2654 929 415 1243 3074 9877

FIGURE 4 | Optimized hot spot analysis for Zarqa City in 2014–2018.
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characteristics have more effect than the driver characteristics.
However, the impact of driver characteristics on traffic accidents
was investigated, as shown in Table 8. The data are split into two
classes: 1) making an accident without injury and 2) making an
accident with injury. Then, the researchers will study the
association between driver characteristics and traffic accident
variables.

Hazardous Locations Based on Optimized
Hot Spot Analysis
As explained in the Identification of Hazardous Locations
Using Geographic Information Systems section, the
optimized hot spot analysis application is run using
parameters derived from the characteristics of the input
data. The optimized hot spot evaluation method

FIGURE 5 | Detailed sample of Optimized Hot spot Analysis on King Al Hussein Bin Talal Street.

FIGURE 6 | Fatality crashes for Zarqa City in 2014––2018.
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interrogates data to obtain the settings that will produce
optimum hot spot performance. The tool can determine an
effective scale of analysis based on the distribution of weighted

features. Accident locations were defined according to the
projected coordinate system, with X and Y coordinating
automatically by the traffic policeman using the GPS at

FIGURE 7 | Slight injuries crashes for Zarqa City in 2014––2018.

FIGURE 8 | Medium injury crashes for Zarqa City in 2014–2018.
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each crash location. Table 9 shows the descriptive statistics of
5 year accidents in Zarqa city.

In 5 years, there were 9,877 slight injuries, 3,074 medium
injuries, and 1,243 severe injuries accidents in Zarqa City. Around
2,654 (2.7%) of them were pedestrian accidents, 929 (0.9%) were

run-off-road accidents, and 94,382 (96.4%) were collision
accidents. Since the study area is an urban area, pedestrian
accidents were expected due to the high pedestrian movements
in such areas. Figure 4 shows the optimized hot spot analysis on
each street from 2014 to 2018. Hot spots were distributed on the

FIGURE 9 | Severe injury crashes for Zarqa City in 2014–2018.

FIGURE 10 | Pedestrian crashes for Zarqa City in 2014–2018.
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following streets: Al Jaish Street, WasfiAl-Tall Street, Makkah Al-
Mokaramah Street, King Al Hussein Bin Talal Street, King
Abdullah II Bin al Hussein Street, the intersection of Bab Al
Wad Street with King Talal Street, the intersection of Al Jaish
Street with Al Shurtah Street, Abdullah Ghosheh Street, and King
Talal Street. Figure 5 shows a sample of a detailed optimized hot
spot analysis on King Al Hussein Bin Talal Street.

Fatality accidents have a lower frequency than injury accidents
in general. The study area recorded 415 fatality accidents over
5 years. Figure 6 shows that fatality accidents are mainly
distributed on the main streets with high traffic volumes and
the outer border arterial roads of the city (outside the CBD).
Fatalities were distributed on the following streets: Al Jaish Street,
Wasfi Al-Tall Street, Makkah Al- Mokaramah Street, King Al
Hussein Bin Talal Street, King Abdullah II Bin al Hussein Street,
the intersection of Bab Al Wad Street with King Talal Street, and
the intersection of Al Jaish Street with Al Shurtah Street. Traffic
accidents resulting in injuries in the study area were more
frequent than fatality accidents. As shown in Figures 7–9,
there were slight, medium, and severe injury accidents in
Zarqa City from 2014 to 2018. The most noticeable was the
nature of locations, where most of these accidents occurred on
high-speed corridors and pedestrian high-density areas.

The study area recorded 2,654 pedestrian crashes over 5 years.
There are many reasons for them such as excessive speed,
inadequate light at nighttime, slippery pavement, high traffic
volume, inadequate signing, dual parking, inadequate lane width,
inadequate maintenance, a high percentage of heavy vehicles, and
poor signing. Figure 10 shows the pedestrian crashes in each
street from 2014 to 2018. Pedestrian crashes were distributed on
the following streets: King Al Hussein Bin Talal Street, King
Abdullah II Bin Al Hussein Street, King Talal Street, Al Hashemi
Street, and the intersection of Al Jaish Street with Abdullah
Ghosheh Street.

Considering the studied crashes and their causes, several
factors can be assessed to enhance traffic safety and reduce
accidents in the studied urban areas, such as offering parking
in the urban area and near the commercial centers, improving
street light, prohibiting on-street parking on one side of the
narrow-old roadway due to lack of typical street widths, and
finally, introducing a public transport system along with high
standards and specifications, including trip schedules and clear
trip routes.

CONCLUSION

This research aims to identify the causes and conditions of
crashes; distribution of hot spots; analyze the factors that
significantly affect each crash severity level; forecast the risk
factors that affect these levels; and the effect of all these
factors on pedestrian safety using ML techniques. The results
showed that the random forest model was the most suitable
method to predict slight, medium, and severe injuries,
considering the factors specific to the highway, vehicle, and
environment. There were significant factors that caused
different types of injuries and fatalities, including the type of
crash (collision), road properties (flat straight), road type
(flexible pavement), road surface (dry), road lanes (two ways
with median), weather (clear), vehicle category (small passenger
car), driver mistake (not taking necessary safety precautions while
driving), light conditions (night with sufficient road light), day of
the week (Thursday), range of speed limit (20 km/h to 60 km/h),
and driver age (18–36 years). However, the time of the day was the
most significant variable in traffic crashes.

Future work based on this research could involve analyzing
data from all regions in Jordan to investigate crashes in other
parts of the country. In addition, it is recommended for future
studies to better understand the relationship between accident
occurrence (hot spots), enforcement, and land use in urban areas
such as residential, commercial, educational, industrial, etc.
Furthermore, field visits to hazardous locations (hot spots) are
recommended to understand the causes of crashes specific to each
location to help in formulating strategic plans to reduce or
prevent future crashes at these sites.
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