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This study investigates the performance of several capped viscous damping models which
give an upper limit to the initial-stiffness-proportional damping force. The comparing
capped viscous damping models are the original and newly proposed one. The original
capped damping model is expected to have a certain degree of frequency insensitiveness.
However, unless the damping force reaches the capped value, the damping may be simply
behaving as the initial-stiffness-proportional damping, also there is no clear physical basis
for setting the capping value. Conversely, it is confirmed that the newly proposed damping
model improves the original model problems faced with setting the capping value and
frequency insensitiveness accuracy. In this study, the discussion is primarily focused on
structural engineering using a 20-story fish bone model comprising a steel and reinforced
concrete, but this argument can be applied to various engineering fields such as civil and
mechanical engineering. Especially, this proposed model does not have mass term
damping, it may be effective for a large nonlinear analysis such as sliding/uplifting and
base-isolated structure.

Keywords: viscous damping, capped damping, inelastic seismic analysis, moment-frame buildings, frequency
insensitiveness

1 INTRODUCTION

The main factors that influence the damping energy of a building are due to material friction and
contact between non-structural elements and this damping does not greatly depend on frequency
(Lazan (1968))., i.e., this damping is considered to more appropriately represent reality than viscous
damping in numerical simulation (Clough and Penzien (2003)). However, in time history analysis,
this hysteresis of damping must be expressed as complex damping. Hence, stiffness-proportional
damping and Rayleigh damping have long been used, even if it is difficult to use if the damping
should be constant over a wide frequency band. To compensate for this, constant modal damping is
often used, but it lacks practicality for large-scale analysis because of to the large computing load. In
recent times, performance-based building design is being increasing employed, and it is inevitable to
increase the scale of analysis models via a numerical simulation technology. Therefore, there is a need
to develop an ideal damping model.

Building damping is affected by various factors such as location conditions and aging, and it is
difficult to evaluate it quantitatively because of the large variation. However, the selection of the
damping model has considerable influence on the seismic response analysis and incorporating such
physical quantities into numerical simulation is an important engineering issue. Recent papers
Huang et al. (2019), Nakamura (2019), Mogi et al. (2021), and Ota et al. (2021) have attempted to
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solve this problem, describing a viscous damping scheme that
achieves frequency independent damping over a wide frequency
range. Although these damping models are excellent in
overcoming the problems of the existing viscous damping
models, high-level computational algorithms must be
incorporated. Therefore, this study focused on the capped
viscous damping for developing a damping model that easily
realizes frequency independence. The capped damping model
that gives an upper limit to the initial-stiffness-proportional
damping force is expected to have a certain degree of
frequency insensitiveness. However, unless the damping force
reaches the capped value, the damping may simply behave as the
initial-stiffness-proportional damping, and there is no clear
physical basis for setting the capping value.

For overcoming the aforementioned problems, this study
proposes a novel damping model that can clarify the concept
of setting a capping force. Then, the effectiveness of the proposed
model is demonstrated by comparing it with the original capped
viscous damping model and other conventional models.
Ultimately, we must confirm the practicality of the proposed
model through 3D analysis, but first we analyzed the basic
characteristics of the proposed damping model using a simple
20-story fish bone model.

2 PROBLEMS WITH EXISTING VISCOUS
DAMPING MODEL

2.1 Rayleigh Damping
Rayleigh damping is often used owing to its ease of use. It is a
classical damping model expressed by damping terms
proportional to mass m and initial stiffness k Eq. 1.

c � a0m + a1k (1)
Hence, if coefficients a0 and a1 are known, the i th mode damping
ratio ξi can be found using the following expression.

ξ i � 1
2ωi

a0 + ωi

2
a1 (2)

Coefficients a0 and a1 can be determined from the specified
damping ratios ξp and ξq for the pth and qth modes, respectively.
For these two modes in matrix form, Eq. 2 becomes.

1
2
[ 1/ωp ωp

1/ωq ωq
]{ ξp

ξq
} � { a0

a1
} (3)

These two algebraic equations can be solved to determine
coefficients a0 and a1.

The stiffness-proportional term a1k of Eq. 1 is a model created
on the basis of an assumed initial stiffness regardless the
nonlinearity of response history analysis (RHA). However,
Chrisp (1980) reported that an unintended spurious damping
force is generated in plastic hinges, and the mechanism of its
generation was explained later by Bernal (1994). This
phenomenon occurs when a stiffer nonlinear element is
explicitly incorporated into the end of a beam. Additionally,
Léger and Dussault (1992) and Charney (2008) pointed out

nonlinearity may change the natural frequency. Therefore, to
avoid all aforementioned problems, a model in which the stiffness
term is proportional to the tangential stiffness kT rather than the
initial stiffness k used.

cp � a0m + a1kT (4)
The damping force fd is calculated as fd � cp · _x using from

the tangential damping coefficient cp and velocity _x. Assuming
the spring is completely bilinear, its behavior exhibits initial
stiffness proportionality in the elastic stage and drastically the
damping force suddenly becomes zero after yielding. This
behavior lacks a physical basis and this discontinuity in the
damping force poses problems in numerical calculations.

2.2 Wilson–Penzien Damping
Wilson and Penzien (1972) expresses the modal damping matrix
CWP by the following equation.

CWP � M⎛⎝∑n

q�1
2ξqωq

Mq
φqφ

T
q
⎞⎠M (5)

Where,M is the mass matrix; and ξ is the damping ratio; φq and
ωq are the undamped natural vibration mode vector and natural
frequency of the q th mode, respectively; and Mq is the
generalized mass φT

qMφq. From Eq. 5, if the rotational inertia
mass is zero, no damping force is generated in the rotational
degree of freedom. Therefore, the spurious damping force
generated by the plasticization of the beam-end-moment is
theoretically not generated. Chopra and McKenna (2016)
suggested using constant modal damping as a countermeasure
to the spurious damping force, but it leads to a high
computational load because it uses a dense matrix. To avoid
this problem, Chopra and McKenna (2016) proposed using
tangential stiffness in solving simultaneous equations and treat
the difference from the correct mode damping force as an
unbalanced force in the equation of motion. Then, this idea
was incorporated into OpenSees (McKenna, 1997). However,
similar to the problem of Rayleigh damping discussed by, e.g.,
Hall (2006) and Ryan and Polanco (2008), Pant and
Wijeyewickrema (2012), Pant et al. (2013), Hamidreza et al.
(2019), if the foundation is not fixed, as in the case of an
uplifting structure or base isolation system, or if there is a
large peeling between elements such as the formation of cracks
in concrete, the deformation will be underestimated, and the
model may become nonconservative.

In addition, Luco and Lanzi (2019) reported that in modal
damping, after the nonlinear element transition from the elastic
state to plastic state, the degree of freedom without mass becomes
an unintended velocity response because of numerical artifacts
and the absence of damping terms. To avoid this problem, model
damping can be improved by adding infinitesimal stiffness-
proportional damping.

2.3 Original Capped Viscous Damping
The capped viscous damping model is a damping model that can
be applied to a complex vibration model with large nonlinear
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behavior; for example, it can be applied to the sliding or uplifting
of a foundation. Although tangent Rayleigh damping is effective
in such an analysis, there is concern that tangent Rayleigh
damping has little physical basis for reducing the damping
force and that damping is overestimated owing to the
influence of the mass term. Hall (2006) discusses the increase
in the ratio of damping force to spring strength using a 10-story
lumped mass shear model as an example. In the elastic state, the
ratio of the restoring force and damping force is kept constant,
but after yielding, the restoring force is limited, whereas the
damping force increases in proportion to the velocity. This is
unnatural and cannot be explained as a real phenomenon. In the
case of initial-stiffness-proportional damping, the restoring force
fk and damping force fd due to the arbitrary story stiffness k
have the following relationship.

fk + fd � (1 + 2ξi)kx (6)
If the spring is elastic and oscillated in the first mode, the peak

values of the restoring force and damping force will maintain a
ratio of 2ξ with a phase difference of π/2. However, the spring
exceeds the yield displacement and the restoring-force peaks at
yield strength Rmax. Hence, the ratio to the damping force exceeds
2ξ. Hall (2006) reports that the computed maximum value of
damping force was 60% of the yield strength of the building, and
this response result is nonconservative. Therefore, this problem
can be avoided by setting the capped damping force as shown
below [Hall (2006)].

fd � ± min(akk| _x|、2ξRmax) (7)
Here, Rmax should be set before the analysis is executed, and

there is no established idea regarding this at present. Therefore, it
is necessary to set Rmax individually depending on the designer’s
engineering judgment. In previous works Hall (2006), Hall
(2018), and Qian et al. (2021), as examples of setting Rmax,
the yield strength of the story is assumed and determined by
calibration.

In addition to the effect of suppressing an abnormal increase
in the damping force after yielding, caped damping has the
characteristic of causing a certain degree of frequency
insensitiveness. The capping fraction 2ξ is based on the ratio
of the damping and stiffness forces when a linear structure is
vibrating in a mode at the resonant frequency of that mode. The
single-degree-of-freedom oscillator with capped viscous damping
is illustrated Figure 1. If the system is oscillating at a given
displacement amplitude (Xa) with a random frequency below the
value of ξ, it will behave as an initial-stiffness-proportional
damping oscillator (red line). Further, if the system is
oscillating at the same Xa but with higher frequencies, it will
be characterized with more damping than desired. However, a
higher-mode damping does not increase with increasing
frequencies due to a capping effect. Currently, the damping
force of the oscillator has approached a frequency-insensitive
state. Therefore, the capped damping force is largely dependent
on the frequency-insensitive behavior. To further enhance the
frequency-insensitive nature, we evaluated an adjusted capped
value according to the restored force amplitude amount, which
was obtained from moment to moment in some way. This
approach was better than fixing the capped value in advance.
Furthermore, according to previous studies, the analyzed targets
have been limited to a one-way input; therefore, it is necessary to
model the system so that it can be applied to a three-way
simultaneous input.

2.4 Limitations of the Equivalent Viscous
Damping Model
The limitations of the equivalent viscous damping model
identified in previous studies are summarized as follows:

1) Generally, the viscous damping model depends on frequency
(Clough and Penzien (2003)).

2) Using Rayleigh damping in inelastic RHA, a spurious
damping force may be generated when stiff inelastic spring
inserted at the beam-end is yielding (Chrisp (1980); Bernal
(1994)).

3) The tangent Rayleigh damping concept is an ad hoc approach
since there is no physical basis to such a damping mechanism
(Hall (2006)).

4) Using Rayleigh or tangent Rayleigh damping in inelastic RHA,
inappropriate damping forces are generated because of the
changes in eigenmodes (Léger and Dussault (1992); Charney
(2008)).

5) It is inappropriate to apply Rayleigh damping or constant
modal damping to structures that are sliding/uplifting or to
seismic base isolation structures owing to the influence of the
mass term damping force (e.g., Hall (2006); Ryan and Polanco
(2008); Pant and Wijeyewickrema (2012); Pant et al. (2013);
Hamidreza et al. (2019)).

6) It is effective to use modal damping to avoid spurious
damping force generation (Chopra and McKenna (2016)),
but an unintended velocity response occurs with no mass
degrees of freedom after the element transitions from elastic to
inelastic (Luco and Lanzi (2019)).

FIGURE 1 | Element force and viscous damping forces vs. displacement
for a single-degree-of-freedom oscillator under harmonic motion with
increasing frequency at constant displacement amplitude X: Rmax is maximum
restoring force of spring. [presented by Hall (2018)].
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7) The original capped viscous damping provides little
rationale for setting the upper limit, and it is unclear how
effective the capped damping force is on the frequency
independence of stiffness-proportional damping.
Furthermore, modeling by the story shear damping force
is not enough when three-dimensional vibration is
considered (Qian et al. (2021)).

In this study, we focused on the capped viscous damping
proposed by Hall (2006) with the aim of exploring a well-
balanced model that can avoid the aforementioned problems.
The vibration characteristics were analyzed by comparing it with
several damping models, and the engineering convenience/
effectiveness of this damping model was considered.

3 BASIC CONCEPTS OF IMPROVED
CAPPED VISCOUS DAMPING

The amount of capped damping force is an important factor for
determining the damping characteristics. Hall (2006), Hall
(2018), Qian et al. (2021) propose that the story shear
damping force is capped at 2ξFy using the yield value of the
restoring story force Fy. But unless the damping force reaches the
capped damping force, the damping may be simply be initial-
stiffness-proportional damping. Therefore, to realize frequency
insensitiveness, it is necessary to set the capped damping force
according to the real-time amplitude amount. Further, the
damping mechanism should be modeled directly at the
member level rather than the story level. This section proposes
a mechanism to generate frequency-insensitive damping
according to the amplitude of the restoring force at the
member level.

3.1 Modeling Frequency-Insensitive
Damping With Capped Viscous Damping
If the building undergoes simple vibration in the first mode and
the displacement is the maximum amplitude Xa, the maximum
damping force Dmax can be expressed using the story stiffness k.

Dmax � 2ξ · k ·Xa � 2ξ · Rmax (8)
Rmax is the maximum restoring force, which is equal to k ·Xa.
And the building is oscillated in the first mode, the damping will
be linear viscous damping unless the restoring force is capped by
the yield strength. Next, considering the vibration system
oscillates simply in the second mode, the maximum damping
force can be similarly evaluated by the following equation using
the maximum amplitude Xa.

Dmax � 2ξ
ω1

· k · ω2 ·Xa � 2ξ · ω2

ω1
· Rmax (9)

Equation 9 shows that the damping force increases in
proportion to ω2/ω1, Where ω2 is the second mode natural
frequency, and this is a characteristic of the initial-stiffness-
proportional damping. However, the damping force is capped

at 2ξRmax, the system vibrating in the second mode has a
frequency-dependent coefficient ω2/ω1 of 1.0. Considering that
the secondmode vibrates with the same amplitude, the amount of
damping energy dissipated per cycle is about the same. If this
principle can be incorporated into numerical analysis well, it will
be possible to realize modeling that does not depend on the
frequency but depends on the amplitude. Therefore, it is
necessary to determine the damping force that depends on the
amplitude of the current restoring force. However, a phase
difference of π/2 occurs at the time of the maximum response
of displacement (i.e., restoring force) and velocity. As a simple
method, it is conceivable to determine the capped damping force
with the maximum restoring force experienced in the past as
Rmax, but the frequency insensitiveness performance may be
inferior after the maximum value experience. Rmax to be set
during the time history analysis is an important topic. Therefore,
in this study, it is assumed that the relationship of _Xa � ωXa is
approximately established between the maximum displacement
Xa and velocity _XA recorded near an arbitrary time, and the
capped damping force Dmax can be evaluated by Dmax � 2ξ ·
Rmax using the maximum restoring force Rmax recorded most
recently. This is based on the rule of thumb that the maximum
displacement Xa and velocity _XA near a certain time are often
governed by one primary mode with a natural frequency ω.
Therefore, the secondary higher-mode damping force cannot
behave independently because of the capped damping force
Dmax. Hence, it is considered that frequency insensitiveness
can be achieved to some extent. However, this concept may
have weak points in that the prediction accuracy of the maximum
damping force value is poor in the case where multiple modes are
overlapping, e.g., in the case of simultaneous input RHA in three
directions and RHA of high-rise buildings where higher modes
are prominent. This point is discussed in the Discussion section.

In the next section, we explain the setting of the maximum
restoring force Rmax.

FIGURE 2 | Update procedure for the maximum amplitude of restoring
force Rmax .
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3.2 Update Procedure for Rmax
This study proposes a capped damping force 2ξRmax; here, Rmax

is the most recently recorded restoring-force peak. Figure 2
shows the time history of any restoring force at the nodal end
of the stiffness element. The procedure for updating Rmax will be
explained using this restoring-force time history as an example.
Rmax stores the maximum value in each of the positive and
negative directions and updates it according to the following
rules.

1) If Rmax is compared with the current time restoring force and
if the current time restoring force is larger, Rmax is updated by
the current restoring force.

2) If the restoring-force changes from the increasing state to the
decreasing state, Rmax is updated with the current
restoring force.

The red and blue dashed lines in Figure 2 indicate the time
domain in which Rmax on the positive and negative sides is
updated, and circle indicates the time when Rmax was updated at
the end immediately before the decrease. In the figure, “A”
represents the state where the restoring force is increasing to the
positive side, and at this time, the peak value pRmax

on the
positive side is continuously updated along the red dashed line
according to Rule I. “B” represents the stage of switching to the
negative side, and the restoring force increased to the negative

side, and the peak value nRmax on the negative side was
sequentially updated by Rule I in the area of this blue broken
line. “C” represents the stage of increase on the positive side
again, and pRmax

is sequentially updated by Rule I in the area of
the red dashed line that exceeds the most recently recorded

pRmax
. “D” represents the stage of increase on the negative side

again, and although it does not exceed the most recently
recorded nRmax, the value of mRmax is updated by Rule II.
Even if the direction of the restoring-force changes from
decreasing to increasing on the positive side as at “D’,” the

nRmax is not updated.
As described earlier, by setting the peak value of the most

recently recorded restoring force to Rmax, a damping force that
depends not on the frequency but on the amplitude near the
current time is created. There is no distinction between the elastic
and inelastic elements in the update of Rmax, and the restoring
force at that time is applied to the judgment. By updating the
Rmax of each restoring-force vector of all elements according to
the above rules, the general-purpose application in three-
dimensional dynamic analysis will become possible.

3.3 Programmatic Implementation of
Capped Damping
Figure 3 shows the program flow which is written specifically test
capped viscous damping. For the total equation of motion,
incremental Eq. 10 at the integral time interval ΔT is
cumulatively obtained.

M €Δx + CΔ _x + KΔx � Δp (10)
Here, M is mass, K is tangent stiffness, and C is the initial-

stiffness-proportional damping matrix. The incremental
equation forms the form of the relational expression Eq. 11
between the static load and displacement. The effective stiffness
matrix ~K is as shown in Eq. 12, and the effective load Δ~p is as
shown in Eq. 13.

~KΔx � Δ~p (11)
~K � K + 6

ΔT2
M + 3

ΔTC (12)

Δ~p � Δp + ( 6
ΔT x + 3€x)M + (3 _x + ΔT

2
€x)C (13)

The program performs the triangular decomposition of the
effective stiffness matrix ~K by the modified Cholesky
decomposition in 1) as shown in Figure 3. Next, the
effective load shown in Eq. 13 is calculated by 2). The
element stress and maximum restoring force Rmax are
updated in 3). Finally, in 4), the smaller of the element
damping force vector fd obtained by the element initial-
stiffness-proportional damping matrix c in Eq. 14 and the
element damping force vector obtained from the maximum
restoring force is adopted as the element damping force f’

d.
Further, i in Eq. 15 represents the degree of freedom of the
local element. Here Rmax is a two-dimensional array and holds
the maximum values of the positive and negative sides of the

FIGURE 3 | Program flow.
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restoring force to evaluate the positive and negative directions
of the fd, respectively.

fd � c · _x, c � 2ξ
ω1

· k (14)
f′
d(i) � min(fd(i), 2ξRmax(i)) (15)

The balance of the total equation of motion is calculated using
the updated damping force vector d’ which is the sum of each
local element damping force vector f’

d and the unbalanced force
u is calculated using Eq. 16 and carried over to the next step. p
and r are the external force and restoring-force vectors at the
current time.

u � p −M€x − d′ − r (16)

4 VERIFICATION BY 20-STORY FISH BONE
MODEL

4.1 Analysis Model Overview
To evaluate the differences in the responses of different
damping models, a comparative study was conducted using

a fish bone model that simulates a high-rise building and a
period for 2 s (Figure 4A). The vertical degrees of freedom of
all nodes were constrained, and the horizontal displacement
of the nodes at each beam level were equal to the that of the
beam–column joint node by multi-point constraints. The
story height was 3.5 m, and the span is assumed to be 6 m,
and 3-m-long beams were set on the left and right. The beam
and column sections are listed in Table 1. The beam stiffness
was multiplied by Φ (=1.5) considering the slab, and the
column stiffness was about 1.8–1.9 times that of the beam.

FIGURE 4 | (A)Overall view of the 20-story fish bonemodel, (B) beam-end nonlinear model skeleton, (C) Takeda model hysteresis, and (D) concentrated plasticity
beam element.

TABLE 1 | Element stiffness.

Beam

Story — EI (kN.cm2)
12–21 H-800 × 250 × 16 × 32 5.929 × 109

2–11 H-800 × 300 × 16 × 32 6.897 × 109

Column

Story — EI (kN.cm2)
11–20 □−800 × 32 1.284 × 1010

1–10 □−800 × 36 2.199 × 1010
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A mass (59.19 t) was uniformly applied to each floor at the
beam–column joint node as shown in Figure 4A so that the
period was 2.0 s and the rotational inertia mass of each node
was zero. To confirm the differences depending on the types of
structures, two cases were considered: the case of the beam-end
assuming a steel (S) structure with restoring-force
characteristics is shown in Figure 4B, and the case of the
beam-end assuming a reinforced concrete (RC) structure with
the Takeda model is shown in Figure 4C. The initial stiffness
and yield moment of the RC model are the same as those of the
S model for convenience. The crack-bending strength of the
Takeda model is assumed to be 0.3 times its yield strength, and
the post-cracking stiffness is assumed to be 0.5 times the initial
stiffness. Table 2 lists the initial stiffness (3EI/L) of the beam,
post-cracking stiffness ratio, cracking moment, and yielding

moment. The inelastic spring at the end of beam is generally
incorporated into the element stiffness matrix implicitly or
arranged explicitly with an additional node. In the arranged
explicitly with an additional node case, the initial stiffness of
the end hinge spring is set at a higher value so as that the linear
natural vibration of the model is unaffected; however, the
spurious damping force is prominent in such modeling
(Chrisp (1980); Bernal (1994)). In this study, this method is
used to insert an inelastic spring with stiffness 1,000 times
higher than the beam (Figure 4D). Therefore, for the inelastic
spring with nonlinear characteristics (Table 2), K1 should be
multiplied by 1,000, and conversely, the post-cracking stiffness
ratio of K2 and K3 should be multiplied by 1/1,000, and K2

gives 0.0005 and K3 gives 1.0E-6.
Table 3 lists the natural period and effective mass ratio

(cumulative values from lower mode).

4.2 Ground Motion
Ground motion was created by using an acceleration response
spectrum with 5% damping as the target spectrum and using the
random phase characteristic (return period of 500 years).
Figure 5 shows the simulated ground motion and
acceleration/pseudovelocity response spectra.

4.3 Comparison of Various Capped Viscous
Damping Models
The three types of capped viscous damping models, including
the original capped viscous damping [CP(O)], capped viscous
damping A [CP(A)], and capped viscous damping B [CP(B)]
models, were compared to prove the effectiveness of the

TABLE 2 | Beam-end nonlinearity.

Story K1 (kN.cm/rad) K2 K3 Mp (kN.m) Mc

12–21 5.929 × 107 0.51 K1/1,000 2,971 0.3 Mp
2–11 6.897 × 107 0.51 K1/1,000 3,410 0.3 Mp

TABLE 3 | Eigen value analysis results.

Mode Period (sec) Effective
mass ratio (%)

1 2.000 80
2 0.679 89
3 0.392 93

FIGURE 5 | Simulated earthquake motion. (A) Input earthquake wave, (B) Response acceleration (h = 5%), (C) Response pseudo velocity (h = 5%).
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proposed modeling. The accuracy of each damping model was
verified by comparison with the nonlinear constant modal
damping model (WP), which creates a damping matrix by
performing an eigenvalue analysis each time the structural
stiffness changes.

The original or CP(O) model has been proposed as a method
for giving a lateral interstory damper (Hall (2006); Hall (2018)).
The same modeling was used in this study. The height-wise
distribution of damper coefficients (Ci) was taken as proportional
to the lateral interstory stiffness (Ki), i.e., Ci � αKi (where i is a
story number). With this assumption, the coefficient (α) for the
assumed first mode damping ratio (ξ1) was calculated by Eq. 17
Qian et al. (2021).

ξ1 � α
T1∑iKi(ϕ1,i − ϕ1,i−1)2

4π∑imiϕ
2
1,i

(17)

Where, mi, ϕ1,i, and Ti denote the mass lumped at the floor,
lateral displacement vector of the first mode, and first mode
period, respectively.Ki was obtained by static elastic analysis with
a horizontal external force (ϕ1,i) distribution. Based on these
parameters, α � 0.0127. A story strength (Ri) value was estimated
as the maximum story shear force responses, which resulted from
a nonlinear RHA due to the assumed seismic motion with ξ � 2%
of the nonlinear constant modal damping. The results estimated
from the measurements of elastic and inelastic RHA in RC and S
structures are summarized in Table 4. The damper coefficient
after the relief velocity is 1/1,000 times the initial damper
coefficient.

The CP(A) is a method for determining the capped damping
force. This was done by setting the maximum value of the
restoring force experienced in the past as Rmax. This model was

not the recommended model in this study; however, it was
considered as the target for comparison because of its clearer
mechanism. This model was also easier to implement in the
program used than CP(B).

The CP(B) was considered as the main method in this study.
This is a method for determining the capped damping force from
the maximum value of the most recently experienced restoring
force, which was set as Rmax.

4.4 Elastic RHA Using Sinusoidal Waves
The oscillation characteristic of constant modal damping WP,
CP(A), and CP(B) were compared using three cycles of sinusoidal
wave synchronized with the building period; further, CP(O) was
not compared. The input wave is shown in Figure 6A. Using this
input wave, the steady vibration at the time of input and the free
vibration after the input can be examined in one analysis. The
maximum acceleration was 100 gal, and the response analysis
time was 30 s. The integration step was 0.001 s; the damping ratio
was 2%; The responses obtained by using each sinusoidal wave
tuned to the first mode to the third-mode periods of the frame
were compared. Figure 6 shows the maximum story drift angle
and acceleration for each floor. Figure 6B is the result of the first
mode periodic input. The maximum responses of CP (A) and CP
(B) consistently show the same results in the first to third modes.
Further, CP(A) and CP(B) have slightly larger responses than
WP. This is because as suggested in the previous section, the
velocity precedes the displacement, and hence, the damping force
peaked at the maximum value of the past restoration force, and
the damping force could not be fully exerted. Moreover, as shown
Figures 6C,D, the maximum response of the CP(A) and CP(B) of
the second- and third-mode periodic inputs was the same as that

TABLE 4 | Interstory capped damping force 2ξRi of CP(O) estimated from seismic RHA.

Floor ϕ1,i Ki (kN/cm) Ri (kN) 2ξRi (kN)

Elastic S RC Elastic S RC

21 1.00 — — — — — — —

20 0.99 694.4 350.1 491.9 413.7 14.0 9.8 8.3
19 0.98 806.3 697.2 891.5 686.1 27.9 17.8 13.7
18 0.96 824.7 1,039.1 1,218.7 832.8 41.6 24.4 16.7
17 0.93 826.3 1,373.6 1,445.0 980.9 54.9 28.9 19.6
16 0.89 828.2 1,698.3 1,569.0 1,113.4 67.9 31.4 22.3
15 0.85 827.0 2010.8 1,632.7 1,229.1 80.4 32.7 24.6
14 0.81 829.3 2,309.0 1,639.0 1,289.7 92.4 32.8 25.8
13 0.76 831.5 2,590.7 1,649.7 1,261.8 103.6 33.0 25.2
12 0.70 842.5 2,854.1 1856.7 1,414.6 114.2 37.1 28.3
11 0.64 884.4 3,097.6 1949.0 1,549.2 123.9 39.0 31.0
10 0.58 940.7 3,320.5 1958.1 1,586.1 132.8 39.2 31.7
9 0.52 951.5 3,522.7 2079.8 1,628.3 140.9 41.6 32.6
8 0.45 954.1 3,703.3 2,159.0 1,665.5 148.1 43.2 33.3
7 0.39 954.8 3,861.2 2,201.0 1,611.5 154.4 44.0 32.2
6 0.32 955.4 3,995.7 2,166.8 1,627.8 159.8 43.3 32.6
5 0.25 957.0 4,105.9 2,150.2 1,680.9 164.2 43.0 33.6
4 0.17 963.3 4,191.2 2,269.7 1767.5 167.6 45.4 35.4
3 0.10 988.8 4,251.6 2,290.8 1792.4 170.1 45.8 35.8
2 0.04 1,103.3 4,287.3 2,371.9 1858.9 171.5 47.4 37.2
1 0.00 2029.6 4,300.9 2,461.0 1867.9 172.0 49.2 37.4
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of the WP. Figure 7 shows the mode RHA, which is the mode
response sy extracted by the expansion theorem shown in Eq. 18.

sy � {sϕ}T[M]{x}{sϕ}T[M]{sϕ} (18)

{x}: Response displacement vector {sϕ}: sth mode eigenvector.

From Figure 7, we can see that the maximum response occurs
at the final peak of the sweep excitation, but CP(A) and CP(B)
show a relatively frequency insensitiveness characteristics for the
response of such an amplification process. However, in the free
vibration after the forced-excitation phase, there is a tendency to
overestimate the damping slightly compared to the estimates of
WP. This overestimation is attributed to the fact that since Rmax is

FIGURE 6 |Maximum response for the sinusoidal wave. (A) Input acceleration, (B) wave period = 2.000 s, (C) wave period = 0.679 s, (D) wave period = 0.394 s.

FIGURE 7 | Modal displacement.
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the previous peak value, in the case of free vibration in which the
amplitude gradually decreases, the Rmax is evaluated to be larger
than the amplitude at the current time. CP(B) did not
significantly increase the damping during free vibration
compared to CP(A) because the Rmax evaluation continued to
be updated even after the maximum peak.

4.5 RHA by Ground Motion
Next, Evaluate the oscillation characteristics of real-phase seismic
waves as elastic and inelastic. To compare the differences in the
characteristics of the steel and reinforced concrete structures, the
integration time step was 0.0001 s, and the damping ratio was 2%
for both S and RC structures.

FIGURE 8 | Maximum response of elastic response history analysis (RHA).

FIGURE 9 | Time histories of the modal displacement.
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4.5.1 Elastic RHA
For the elastic RHA, according to the response results of the
elastic analysis shown in Figure 8, the maximum interstory
drift angles of the CP(B) and WP models are similar but that
of CP(O) and CP(A) are smaller. The maximum
displacement of the CP(O), CP(A), and WP models are
similar but that of CP(B) is slightly larger. This tendency
was also seen in the examination of sinusoidal waves, but it is
attributed to the slight underestimation of the attenuation of
the first mode. The maximum acceleration is observed for the
WP model, followed by the CP(B), CP(A), and CP(O)
models. Figure 9 shows the displacement time history
response of each mode decomposed by the expansion
theorem of shown in Eq. 18. Although the response of the
all model is almost the same in the first mode, in higher
mode, the responses of CP(O) and CP(A) are smaller than
CP(B) and WP and the responses of CP(B) is slightly smaller
than that of WP. However, in the third mode, the responses
of all capped viscous damping models were smaller than that

of the WP, and the higher mode tended to reduce the
frequency insensitive effect of the damping force capping.
From these results, the CP(B) shows relatively more
frequency-insensitive characteristics than CP(O) and
CP(A) in the elastic RHA.

4.5.2 Inelastic RHA
Figure 10 shows the maximum responses obtained by inelastic
analysis. The ductility factor was evaluated by the ratio of the
maximum node rotation angle of the beam–column joint to the
beam yield rotation angle. The RC ductility factor diagram also
shows the ratio of the crack rotation angle to the yield
rotation angle.

In the steel structure model, the ductility factor, CP(A),
and CP(B) correspond relatively well with the WP; however,
its response was larger than the WP in the lower story. CP(O)
also showed a relatively good response in the upper story;
however, its response in the lower story was smaller than the
other damping models. As for the displacement responses,

FIGURE 10 | Maximum response of inelastic RHA.
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CP(B) showed a slightly larger response than the other
damping models. Meanwhile, the other models provided
almost the same responses. In general, there were
variations in the acceleration responses, where the CP(A)
showed a smaller response than the other damping models.

In the RC structure model, the ductility factor and CP(O)
showed smaller responses than the other damping models.
Meanwhile, the other damping models gave almost the same
responses. The displacement responses were almost the same in
all the damping models. In general, the acceleration responses
varied; however, the CP(O), CP(A), and CP(B) showed smaller
responses than the WP.

These comparisons showed that the CP(B) varied in
acceleration response from the WP. However, the
displacement responses and ductility factors (story drift
angles) were relatively in good agreement in both steel and
RC structure models. The responses of the CP(O) were not
as good.

From the above comparison, it is confirmed that CP(B)
shows better characteristics than CP(O) and CP(A) in the
inelastic RHA.

5 DISCUSSION

The proposed viscous damping force is estimated using the
recently recorded maximum restoring force Rmax, which is
based on the rule of thumb that the maximum displacement
and velocity near a certain time are often governed by a primary
mode. Although this proposed model is expected to be applied
in large-scale 3D analysis, the prediction accuracy of the
maximum damping force may decrease in cases where
multiple modes overlap. For example, in the case of
simultaneous input in three directions, such assumptions
may lead to an overestimation of vertical damping force.

This study assumes that the variable axial force due to
horizontal movement does not act on the columns, but it is
predicted that the large variable axial force due to the
horizontal mode is applied to the corner columns or the
side columns of the shear wall or brace. In this case, since
the Rmax of column axial force is not the stress due to vertical
mode response, the application of proposed model may lead to
an overestimation of vertical mode damping compared to
constant modal damping.

Currently, the damping of vertical oscillation in buildings is
not as clear as horizontal motion because the vertical motion is
less than the horizontal motion and the destruction of the
building is primarily caused by the horizontal motion.
However, in structural design practice, evaluating the axial
force ratio of columns, deformation due to beam vibration,
and the surface pressure of seismic isolation bearings is
essential. If vertical vibration mode is critical to structural
design, its mechanism should not overestimate the damping
force even when considering the simultaneity of multiple
vibration modes. Because the capped viscous damping
depends only on the stiffness term, the damping ratio of the

element deformation component predicted to be over-damped is
reduced in advance.

6 CONCLUSION

To verify the effectiveness of capped viscous damping based on
the maximum restoring force experienced in the past, original
method CP(O) and simple method CP(A) based on the past
maximum value and a method CP(B) based on the latest
maximum value were compared and verified. Capped
viscous damping is a practical damping model with low
computational load and no spurious damping force
excitation. It is expected to be applied in the field of
structural, civil and mechanical engineering. The findings of
this study are as follows:

1) The original method has a problem in the capping force
setting, and the appropriate value depends on the scale of
the assumed seismic motion. Conversely, the proposed
method can automatically determine the capping force by
the amplitude of the restoring force.

2) In the proposed method, the current maximum damping
force is evaluated by the amplitude of the latest maximum
restoring force of the element. Therefore, when increasing the
amplitude, the damping is slightly underestimated.
Conversely, when reducing the amplitude, the damping is
slightly overestimated.

3) In the elastic RHA, the story drift angle of CP(B) is similar
to that of nonlinear constant modal damping (WP);
however, CP(O) and CP(A) are less accurate than CP(B).
Further, in the inelastic RHA, CP(B) shows the closest
response to WP in both steel and RC structures
compared to other capped damping models. The
acceleration responses of all capped viscous damping
models show large variations relative to WP. Therefore,
the proposed capped viscous damping CP(B) has more
desirable frequency insensitiveness characteristics and
practicality than the original model.

4) In contrast to the tangent Rayleigh damping, which lacks a
physical basis, the proposed model provides a clear physical
basis because the capping value is determined based on the
concept of energy equality per cycle regardless of the
frequency.

7 FUTURE OUTLOOK

Recently, performance-based building design is widely used, and
the scale of the analytical models can be increased via numerical
simulations. However, existing classical damping models do not
provide enough terms, whereas Rayleigh damping and modal
damping have their damping force in the mass term, so they tend
to overestimate the damping force for rigid body motions such as
sliding, lifting, and base isolation systems. Conversely, if tangent
stiffness-proportional damping is used for such nonlinear
problems, the damping force suddenly changes in time and
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even be discontinuous when there is a sudden change in tangent
stiffness. It has been pointed out that the damping in numerical
analysis has an important role in stabilizing nonlinear analysis in
addition to its physical meaning [e.g., Soroushian (2018)]. On
other hand, the proposed model does not have mass term
damping but does have some degree of viscous damping force
in the stiffness term, so it may effective for the stabilization of
large nonlinear analysis.
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