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Some types of dynamic stiffness, such as the dynamic ground stiffness used in soil-
structure interaction analyses and the viscoelastic body used in vibration control systems,
have strong frequency dependency. To perform seismic response analysis considering
this frequency dependence and the nonlinearity of the model, the dynamic stiffness in the
frequency domain must be transformed into the time domain, and a time-history nonlinear
response analysis is required. Therefore, many studies on these time-domain transforms
have been conducted. One of the present authors has already studied and proposed
transform methods for this purpose, and some of their results were used to design new
types of damping models. In the present study, the outline and characteristics of the
proposed methods (A to C) for this transform are described first. Next, typical problems
with strong frequency dependency (i.e., the dynamic soil stiffness, Maxwell element,
viscoelastic body, Biot model, and causal hysteretic damping) were transformed into the
time domain using these transform methods. The applicability of the transform methods
was examined. Subsequently, the characteristics of each problem in the frequency domain
and the characteristics of the obtained impulse response in the time domain were
analyzed. Finally, it was confirmed that the proposed methods were applicable to all
studied problems. These studies are important to understand the physical meaning of
these problems, which have strong frequency dependency.
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INTRODUCTION

The dynamic ground stiffness used in soil-structure interaction analyses and the viscoelastic body
used in vibration control systems may show strong frequency dependence. To perform a seismic
response analysis considering this frequency dependence and the nonlinearity of the ground and
buildings during strong earthquakes, the dynamic stiffness in the frequency domain must be
transformed to the impulse response in the time domain. For this purpose, a time-history response
analysis is required. Therefore, many studies on these time-domain transformations have been
conducted since the 1980s (i.e., Wolf and Obernhuber, 1985; Wolf andMotosaka, 1989; Hayashi and
Katukura, 1990; Meek, 1990; Motosaka and Nagano, 1992).

Moreover, the viscoelastic body used in vibration control systems may have nonlinear
characteristics, such as strain amplitude, temperature, and frequency dependences. To evaluate
the nonlinear dynamic response considering these characteristics, many studies have been conducted
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to express the complex stiffness in the frequency domain using a
dynamic model in the time domain (i.e., Makris and
Constantinou, 1991; Kirekawa et al., 1992; Xue et al., 1992;
Kasai et al., 2004).

However, these methods are difficult to apply in actual
problems because some have low-accuracy results. Moreover,
some require a heavy calculation load for transformation and
response analyses, and others need to estimate the property of
ω → ∞ of the complex stiffness appropriately, but this estimation
is very difficult. Further, all these methods have difficulty
transforming when the stiffness is not “causal.” Causal refers
to a state that satisfies the temporal order that the “result” must
happen after the “cause.”

Conversely, noncausal implies a state in which this temporal
order is broken, and a part of the result occurs before the cause.
Even in such a state in the frequency domain, it is possible to
analyze the response. However, in the real world of the time
domain, that state never happens and cannot be analyzed.

Given these issues, a method of transforming the dynamic
stiffness of a rigid foundation on layered soil into the time domain
and performing time-history response analysis was proposed by
Nakamura (2006a). However, the complex stiffness in the
frequency domain sometimes has noncausal properties.
Further, methods that enable approximate time-domain
transform were proposed even in noncausal cases. These
transform methods were organized as Methods A–C
(Nakamura, 2006b). Moreover, the theoretical explanation of
these methods by comparing with the Duhamel integral was
studied (Nakamura, 2012).

These methods have the following features:

1) Transforming calculation is simpler and easier.
Transformation can be done by solving simultaneous
equations only.

2) The number of dynamic stiffness data needed for the
transformation is small. Consequently, the obtained
impulse response is also simple, and the calculation of
nonlinear response analysis is not heavy.

3) The causality is automatically satisfied. Even a noncausal
stiffness in the frequency domain can be transformed
approximately and used for nonlinear response analysis.

4) Matrix stiffness can be transformed in the same way.

The applicability of the time-domain transform method and
time-history response analysis of ground impedance calculated
using a finite element model when a building is embedded in
heterogeneous soil was shown in Nakamura (2008a). Moreover,
the applicability of the time-domain transform method to the
viscoelastic damper nonlinear problem, which has strong
frequency and strain amplitude dependence, was studied
(Nakamura, 2008b).

Furthermore, using these methods, the imaginary unit i in the
frequency domain was transformed and approximated as a causal
function in the time domain. This function was called the causal
unit imaginary function. Using this function, new damping
models with small frequency dependency were proposed
(Nakamura, 2007; Nakamura, 2016).

However, in these studies, each dynamic stiffness
characteristics and how the characteristics are expressed as an
impulse response in the time domain were not clear.

In this study, we collected the representative examples of
various frequency-dependent functions. We divided them into
several groups based on the transformation’s obtained impulse
response. Then, we examined them and analyzed the applicability
of the transform methods.

First, we listed the outline and features of the above time-
domain transform methods. Next, using them, typical frequency-
dependent problems were transformed. Then, these problems
were classified, and the applicability of the transformmethod was
evaluated. This approach will scrutinize the applicability of these
transform methods to new problems in the future.

OUTLINE OF THE PROPOSED
TRANSFORM METHOD

The outline of the proposed time-domain transform method and
its characteristics are shown below. Because the notation method
of the formula differs among studies, it is organized based on the
most common notation for complex functions (Nakamura,
2012).

Method A (Basic Method)
Let D(ω) be a complex function with frequency dependence and
consider its time-domain transform. ForD(ω), it is assumed that
N complex numbers D(ω1), D(ω2), ..D(ωN) (hereinafter, data
points) are given. Where 0<ω1 <ω2 < ..ωN. The time-domain
transform of D(ω) can be considered to be equivalent to passing
through all data points, smoothly interpolating between the data
points and approximating to a causal (=satisfying causal law)
function.

The most basic method is Eq. 1. HA(ω) is an approximated
complex function. yA(ω) and x(ω) are the output and input
values in the frequency domain. tj � Δtpj(j � 0 toN − 1). hj, hj
are the real undetermined constants and can be determined by
solving simultaneous linear equations. These are the impulse
responses in the time domain required. Details are described in
Determination of Unknowns Using Simultaneous Equations.

As Δt, the reciprocal of the maximum frequency of the data
point (fmax � ωN/2π) or a value close to it is recommended. Δt
does not have to match the time step (ΔT) of the time-history
response analysis, and in many cases, ΔT<Δt. For example, if
ΔT � 0.01 s and ΔT � 0.1 s, the past displacements and velocities
used to calculate the time-delay terms will be the values of every
10th-time-history analysis result.

In the time domain, Eq. 1 is expressed by Eq. 2.
yA(t), x(t), _x(t) are the output value, input value, and first
derivative of the input value (hereinafter, input first derivative
value) at time t (hereinafter, current time), respectively. Eq. 2
shows that the output value of the current time depends on the
current time and past input state values (input value and its first
derivative value).

This method is hereinafter referred to as Method A.
Moreover, 0hj is called the 0th-order component, and 1hj is
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called the 1st-order component. It can be said that the former
is multiplied by displacement and has the dimension of the
stiffness. The latter is multiplied by velocity and has the
dimension of the damping coefficient. 0hj and 1hj, 0h0 and
1h0 related to the current time state quantity are called
simultaneous terms, and 0h1 to 0hN−1, 1h1 to 1hN−1 related
to the past quantity are called time-delay terms.

yA(ω) � HA(ω) · x(ω)
HA(ω) � iω · 1h0 + 0h0 +⎛⎝iω · ∑N−1

j�1
1hj · e−iωtj + ∑N−1

j�1
0hj · e−iωtj⎞⎠⎫⎪⎪⎬⎪⎪⎭

(1)

yA(t) � h0 · _x(t)+h0 ·x(t)+⎛⎝∑N−1

j�1
1hj · _x(t− tj)+∑N−1

j�1
0hj ·x(t− tj)⎞⎠

(2)

Method B (Method to Consider Virtual
Mass)
In Nakamura (2006b), the improvement of Method A was
examined. First, to improve the accuracy of the transform,
the 2nd-order component simultaneous term 2h0 was added
to make HB (ω) and yB (t) (see Eqs 3, 4). The 2h0 is a value
related to the input second derivative value of the current
time. This value corresponds to the virtual mass in the
transform of the ground impedance. This method is called
Method B.

yB(ω) � HB(ω) · x(ω)
HB(ω) � −ω2·2h0 + iω·1h0+0h0 +⎛⎝iω · ∑N−2

j�1
1hj · e−iωt + ∑N−1

j�1
0hj · e−iωt⎞⎠⎫⎪⎪⎬⎪⎪⎭

(3)

yB(t)�2h0 · €x(t)+1h0 · _x(t)+0h0 · x(t) +
⎧⎨⎩ ∑N−2

j�1
1hj · _x(t − tj)

+ ∑N−2

j�1
0hj · x(t − tj)⎫⎬⎭ (4)

In many cases, the time-delay term tends to be smaller as j
becomes larger. This is equivalent to the property that the
input state quantity in the near past has a considerable effect.
The state quantity in the distant past has a minor effect on
the current output value. It can be understood generally
(with exceptions, of course). Suppose the first n’ time-delay
terms are significant values among the calculated time-delay
terms; the values after n’ are negligible. In that case, it is
possible to reduce the upper limit of Σ in Eqs 1–4 from N−1
and N−2 to n’. Applying this idea to Eqs 3, 4 yields Eqs 5, 6,
respectively. Here, n’ < N−1. However, in this case, H’B (ω)
passes near the original data point but does not pass on the
data point.

HB′(ω) � −ω2·2h0 + iω·1h0+0h0 +
⎧⎨⎩iω ·∑n′

j�1
1hj · e−iωtj +∑n′

j�1
0hj · e−iωtj

⎫⎬⎭
(5)

YB′(t)�2h0 · €x(t)+1h0 · _x(t)+0h0 · x(t) +
⎧⎨⎩∑n′

j�1
1hj · _x(t − tj)

+∑n′
j�1

0hj · x(t − tj)⎫⎬⎭ (6)

Method C (Correction Method to Correct
When Noncausality is Strong)
Strictly speaking, the time-domain transform is impossible if
D(ω) is not causal. However, it may be possible approximately.
When the noncausal data points are approximated using Eq. 5,
there is a tendency to differentiate between the real and imaginary
parts. Therefore, Δ0h0 and Δ2h00, simultaneous terms of the real
part, are modified to obtain Eq. 7. Here, Δ0h0 and Δ2h0 are the
correction values obtained using Eqs 8, 9 via the least-squares
method.

Re(HC′(ω)) � Re(HB′(ω)) − ω2 · Δ2h0 + Δ0h0 (7)
Where,

Δ2h0 � V3n′ − V2V4

V1n′ − V2
2

, Δ0h0 � V2n3 − V1V4

V1n′ − V2
2

(8)

V1 � ∑n′
i�1

ω4
i , V3 � ∑n′

i�1
ω2
i {Re(HB′(ωi)) − Re(D(ωi))}

V2 � ∑n′
i�1

ω2
i , V4 � ∑n′

i�1
{Re(HB′(ωi)) − Re(D(ωi))}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (9)

Similarly, 1h0, a simultaneous term of the imaginary part, is
modified to obtain Eq. 10 (Waas, 1972). Here, Δ1h0 is the
correction value obtained using Eqs 11, 12 via the least-
squares method. This method is called Method C.

Im(HC′(ω)) � Im(HB′(ω)) + ω · Δ1h0 (10)
Δ1h0 � −V5

V2
(11)

V5 � ∑n′
i�1

ωi{Im(HB′(ωi)) − Im(D(ωi))} (12)

When the transform target is dynamic stiffness obtained from
the analysis in the frequency domain using complex damping, a
larger damping ratio results in a more noncausal function; from
the above transform methods, Method B is recommended when
the data points are almost causal. Method C is recommended
when noncausality is strong.

Determination of Unknowns Using
Simultaneous Equations
In any of the Methods A–C, the impulse response components
(simultaneous terms 0h0, 1h0, 2h0 and time-delay terms 0h 1 ‥, 1h 1

‥) are unknown and can be obtained by solving simultaneous
equations usingN known complex data pointsD (ω1),D (ω2), ‥D
(ωΝ). The case of Method B is shown below as an example. The
case of Method C is also common, but in Method A, 2h0 = 0.
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Eq. 3 of Method B can be expressed using Eq. 13 separately for
the real and imaginary parts. Eqs 14, 15 are the matrix
representations of this relationship for N data of complex
stiffness (D (ω1) to D (ωN)). By solving the simultaneous Eq.
14 having a coefficient matrix of 2N × 2N, the value of the
unknown impulse response (0h 0 to 0h N−1, 1h 0–1h N−2 and 2h 0)
can be obtained. Notice that data D (0) should never be used. If D
(0) is used, the coefficients on the right side of the imaginary part
SI(ω) in Eq.13 become all 0 and Eq. 14 becomes singular and
cannot be calculated.

{S(ωi)} � { SR(ωi)
SI(ωi) }

�
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑N−1

j�0
cos θij·0hj + ωi ∑N−2

j�0
sin θij·1hj − ω2

i h0

− ∑N−1

j�0
sin θij·0hj + ∑N−2

j�0
cos θij·1hj

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (13)

⎧⎪⎪⎨⎪⎪⎩
{D(ω1)}

..

.

{D(ωN)}

⎫⎪⎪⎬⎪⎪⎭ �[[�C0] [�C1] [�C2]] ·
⎧⎪⎨⎪⎩ {G0}

{G1}
G2

⎫⎪⎬⎪⎭ (14)

When θij � ωi · tj, tj � Δt · j

{D(ωi)} �{Re[D(ωi)]
Im[D(ωi)]}, {G0} �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0h0
0h1
..
.

0hN−1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, {G1} �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1h0
1h1
..
.

1hN−2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, G2 � 2h0

[�C0]� ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ {�c01,0} / {�c01,N−1}
..
.

1 ..
.{�c0N,0} / {�c0N,N−1}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, [�C1]� ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ {�c11,0} / {�c11,N−2}
..
.

1 ..
.{�c1N,0} / {�c1N,N−2}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,{�C2}�⎧⎪⎪⎨⎪⎪⎩
{�c21}
..
.{�c2N}

⎫⎪⎪⎬⎪⎪⎭
{�c0i,j}�{ cosθij

−sinθij}, {�c1i,j}�{ωi · sinθij
ωi · cosθij} {�c2i}�{−ω2

i

0
} (15)

Characteristics of the Transform Methods
The characteristics of the proposed transform method can be
summarized as follows.

1) Using two series of an impulse response.

This point is different from many transform methods such as
the Duhamel integral. It can be said to be the greatest
characteristic of these methods. This is particularly effective
for the vibration amplitude increase in proportion to ω
(i.e., problem No.1 in Classification and Organization of
Typical Dynamic Stiffness).

2) Can be transformed using discrete data within a finite
frequency range.

The proposed methods target complex data that are given
discretely within a finite frequency range (0 to ωN). In some
transform methods, it may be necessary to predict the properties
of complex stiffness ω → ∞; however, the proposed methods do
not require it. Moreover, the number of data used for the
transform is relatively small (in many cases, less than 20).

3) Causality is automatically satisfied.

The causality may be impaired with methods such as the
inverse Fourier transform. To avoid this, there is a method of
calculating other parts using the Hilbert transform from the real
or imaginary part of complex stiffness. However, it distorts the
original function. In the proposed methods, the impulse response
components are considered in the range of t ≥ 0, so the causality is
always satisfied.

4) Does not require simultaneous term separation.

With the inverse Fourier transform methods, the complex
stiffness needs to be integrable with −∞ < ω < ∞. Therefore,
removing the singular components (corresponding to the
simultaneous terms in the proposed methods) that do not
satisfy this condition before transform is necessary. However,
for this purpose, it is necessary to estimate the property of ω→∞
of complex stiffness. This method requires neither separation of
simultaneous terms nor property prediction in the infinite range
because transform is possible with simultaneous terms included.

5) Noncausal functions can be converted approximately.

Even if the complex stiffness is noncausal, it can be
transformed into an approximate causal impulse response. In
this sense, the proposed methods are capable of the causal
approximation of noncausal functions. However, if the
noncausality is extremely strong, the deviation of the obtained
causal function from the original function is considerable and the
result may not be satisfactory.

6) The number of significant components in obtained impulse
responses is small.

The number of the components of the two-series impulse
responses obtained via the transform of the proposed methods is
N or N−1, which is almost the same as the number of the data
points (N) of complex stiffness. However, because there are few
small and negligible components in the obtained impulse
responses, the number of significant components n’ is
relatively small (10 or less in each series in many cases).
Therefore, the calculation load in the time-history response
analysis is relatively small. The time step (Δt) of the impulse
response obtained using these methods is usually larger than the
time step (ΔT) of the time-history response analysis (in many
cases, ΔT = 0.005–0.01 s and Δt = 0.05–0.1 s). This implies that
the past displacements and velocities used in the time-history
response analysis are the values of the skipping ΔT. For example,
10 skipping values are used, when ΔT = 0.01 s and Δt = 0.1 s.

7) High conversion accuracy.

In many cases, the original complex stiffness could be well
approximated with 10 or fewer impulse Classification and
organization of typical dynamic stiffness.
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FIGURE 1 | Typical transform examples for time-domain transform. * The dimension of lateral axis is (Hz) for stiffness and (s) for the impulse response (0th- and 1st-
order components). In the impulse response, the value corresponds to time = 0 is the simultaneous term and the others are time-delay terms. The dimension of vertical
axis is stiffness (N/m) for Nos. 1–7 and dimensionless for No. 8.
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CLASSIFICATION AND ORGANIZATION OF
TYPICAL DYNAMIC STIFFNESS

Figure 1 shows eight transform examples of typical dynamic
stiffness studied in the literature to be shown later as the
problems with frequency dependency. This figure shows the
following;

1) The physical image of each problem.
2) Dynamic stiffness in the frequency domain. The dimension of

the lateral axis is the frequency (Hz).
3) Obtained impulse response in the time domain (both 0th- and

1st-order components). The dimension of the lateral axis is
the time (s)—the value when t = 0 is the simultaneous term,
and the others are time-delay terms.

4) Recovered dynamic stiffness from obtained impulse response
using time-delay terms only by Eqs 5, 7.

For all figures, the dimension of the vertical axis is stiffness (N/
m) for Nos. 1–7 and dimensionless for No. 8.

These eight problems can be classified into the following three
types according to the impulse response characteristics. Below, we
analyze and organize each problem.

(1) Horizontal ground impedance (dynamic stiffness) of layered
soil (Nos. 1 and 2).

(2) Ground impedance with cut-off frequency (Nos. 3 and 4).
(3) Maxwell element, viscoelastic body, and similar impedance

(Nos. 5–8)

Ground Impedance of Layered Soil (Nos. 1
and 2)
No. 1 is the horizontal ground impedance of the rigid base on the
two-layered soil. Figure 2 shows its soil properties. No. 2 is the off-
diagonal component of the ground impedancematrix of the building
embedded in the two-layered soil. That component corresponds to
the reaction force at the ground point position when forced vibration
is performed on the rigid base at the bottom of the structure. Both
impedances are greatly wavy. The rightmost column of the figure
shows the impedance recovered using only the time-delayed terms,

which is the main cause of frequency dependency; thus, periodic
vibration appears clearly.

As for No. 1, in the impulse response obtained using the time-
domain transform, pulses are generated at 0.1 s for the 0th- and 1st-
order components. This time-delay can be considered as follows. A
wave generated by the forced vibration of the rigid base at the soil’s
surface propagates underground. If it is uniform soil, it will dissipate
as it is. However, in layered soil, the wave is reflected at the boundary
of the bottom layer and comes back. A reaction force is generated to
shake the rigid base again. This appears as a time-delay term of the
impulse response, and the time-delay corresponds to the round-trip
time of the wave. In this groundmodel, the shear wave velocityVs of
the surface layer is 400 m/s. The surface layer thickness is 20 m, so
the wave trips 40 m, and the time delay is 0.1 s.

In No. 2, it is considered that the wave generated by the vibration
at the midpoint position propagates in the ground, reaches the
ground surface position, and corresponds to the reaction force that
tries to shake the point. The time delay of 0.1 s in this model is
considered the time required for wave propagation from the
midpoint to the ground surface. The Vs of the surface layer is
200m/s, and the surface layer thickness is 20 m for this problem.
Because the reaction force does not occur simultaneously as the
vibration, the simultaneous terms do not appear (although a minute
value appears, it is considered a numerical cause). Consequently, the
impedance becomes a property close to the periodic harmonic wave.
Periodic vibration corresponding to the timementioned above delay
is often seen in the off-diagonal components of the impedance
matrix.

Another common characteristic of Nos. 1 and 2 is that the
effect of the time-delay terms of the 1st-order compnents cannot
be ignored. For such problems, the proposed method using two
types of impulse responses, the 0th- and 1st-order components, is
considered particularly useful. For other impedances (Nos. 3–8),
the time-delay terms of 1st-order component are small.

Ground Impedance With Cut-Off Frequency
(Nos. 3 and 4)
No. 3 is the dynamic stiffness at the top of a semi-infinite material
whose cross-section increases exponentially (Wolf andMotosaka,
1985) and has a cut-off frequency. It is a typical example of the
problem that the radiation damping is almost 0 below a certain
frequency. In this problem, the theoretical value of the impulse
response and impedance are obtained. Impedance S(ω) and
impulse response G(t) are shown using Eqs 16, 17, respectively.

S(ω) � E · A0

2x0
(1 + !!!!!!

1 − 4a20

√ ) (16)

G(t) � E · A0

x0
(1
2
δ(t) + x0

C0
· d(δ(t))

dt
+ 1
2t
J1(C0

x0
· t))

a0 � ω · x0

C0
, C0 �

!!
E

ρ

√ (17)

Where,
Here, E denotes the Young’s modulus; ρ denotes the mass

density; and J1 denotes the first-order Bessel function. The first

FIGURE 2 | Soil properties for No. 1.
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and second terms of Eq. 17 correspond to the simultaneous terms
of the proposed methods 0h0 and 1h0, respectively. The third term
corresponds to the time-delay terms of the 0th-order component.

The theoretical value of the impulse response in Eq. 17 is given
as a continuous quantity concerning time t, whereas the impulse
response obtained the proposed methods is discrete values for
each Δt. Therefore, the theoretical value was converted using Eq.
18, and it was confirmed that the impulse response obtained
using the proposed method corresponds well to this.

G′(tj) � ∫tj+Δt
2

tj−Δt
2

G(t)dt (tj � Δt · j) (18)

No. 4 is the dynamic stiffness of the side of the massless rigid
cylinder embedded in the viscoelastic surface layer on the rigid
soil and is known as a problem having a cut-off frequency similar
to No. 3. Tajimi (1969) performed a rocking vibration analysis
of rigid foundations and calculated theoretical solutions.
Harada et al. (1983) improved this and expressed it as a
spring per unit layer thickness in the underground sidewall
and showed that this distribution became almost constant in
the depth direction.

Eq. 19 shows the impedance of the Harada’s spring. Here, H
denotes the surface layer thickness; Vs denotes the surface shear
wave velocity; r0 denotes the equivalent radius of the foundation;
μ denotes the shear modulus of the ground; h denotes the
damping ratio of the layer; ] denotes the Poisson’s ratio; and
Kn (ω) denotes the nth order of the modified Bessel function.

KH(ω) � 8r20μ
H2

·∑N
n

ξ2n · Ωn

n3
· (−1)n−12 (n � 1, 3, 5 . . .N) (19)

Where,

Ωn � 4K1(γR)K1(βR) + βRK1(γR)K0(βR) + γnK0(γR)K1(βR)[γRK0(γR) +K1(γR)].[βRK0(βR) +K1(βR)] − K1(γR)K1(βR)
βR � βnr0, γR � γnr0

βn �
π

2H
· 1!!!!!!!

1 + 2i · h√ · ξn, γn �
π

2H
·

!!!!!!!
1 − 2]
2(1 + ])

√
· ξn

ξn �
!!!!!!!!!!!!!!!!!!!!
(1 + 2i · h)n2 − (ω/ωg)2√

, ωg � πVs

2H

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

The impulse responses of Nos. 3 and 4 show almost the same
properties. The 0th-component of the impulse response has
simultaneous term and time-delay terms. The latter converges

to 0 while oscillating as the time delay increases. The 1st-
component has almost simultaneous terms only. Even in the
impedance recovered using only the time-delay terms, Nos. 3 and
4 have almost the same shape.

Maxwell Element, Viscoelastic Body, and
Similar Impedance (Nos 5–8)
The Maxwell element of No. 5 is a spring (K0) and a dashpot (C0)
connected in series and its characteristics are expressed using the
relaxation, shown in Figure 3 time τr = C0/K0. Further, the
impedance is expressed using Eq. 21. When ω = 0, the real
part and the imaginary part become 0, and when ω→ ∞, the real
part becomes K0, and the imaginary part gradually approaches
K0/(τrω). Eq. 22 provides the theoretical impulse response, and
the simultaneous and time-delay terms are only in the 0th-
component. Similar to No. 3, the theoretical impulse response
value was converted to a discrete value using Eq. 18. It was
confirmed that the impulse response obtained using the proposed
method corresponds well to this.

S(ω) � K0
⎛⎝1 −

1
τr

iω + 1
τr

⎞⎠ (21)

G(t) � K0(δ(t) − e−
t
τr

τr
) (22)

No. 6 is a constitution rule identified by Kasai et al. (2004)
from the experimental results of acrylic materials. The storage
stiffness G’(ω) and loss coefficient η(ω) are expressed using Eqs
23, 24, respectively. The parameters of this material are obtained
as a = 5.60 × 10–5, b = 2.10, μ = 3.92 × 102 N/m2, and α = 0.558.

G′(ω) � μ
1 + abω2α + (a + b)ωα cos(απ/2)
1 + a2ω2α2 + aωα cos(απ/2) (23)

η(ω) � (−a + b)ωα sin(απ/2)
1 + abω2α + (a + b)ωα cos(απ/2) (24)

No. 7 is the Biot model (Biot, 1958), the limit of the generalized
Maxwell element. The 0th-order component of the impulse
response is similar to Nos. 5 and 6.

No. 8 is a time-domain approximation of the unit imaginary
function obtained using the transform of the imaginary unit i
from the frequency to time domain. This is the main component
of the damping models with small frequency dependency as the
causal history damping model (Nakamura, 2007) and the

FIGURE 3 | Examples of the generalized Maxwell elements.
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extended Rayleigh damping model (Nakamura, 2016). The
applicability of these models to practical problems was
examined (Nakamura, 2019; Mogi et al., 2021; Ota et al., 2021).

The impulse responses of Nos. 5–8 obtained via transform
have the following characteristics.

1) For the 0th-order component, the time-delay term becomes a
significant value, which occurs on the negative side of the
figure and converges to 0 as the time delay increases. The
simultaneous term is a positive and significant value in Nos.
5–7, but 0 in No. 8.

2) In the 1st-order component, the time-delay term is almost 0.

Consequently, the impedances of Nos. 5–8 recovered only
using the time-delay term have similar shapes. It is considered
that these frequency dependences are of the same type. The
viscoelastic damper of No. 6 is often approximated using the
generalized Maxwell element of No. 8, consistent with this
result.

The time-domain transform could perform with generally
good accuracy in any problem in this section. Table 1
summarizes the properties of the impulse responses
transformed for each problem. X in the figure indicates that
each component plays an important role in the impulse response.

Regarding the time-delay term related to frequency
dependency, the 0th-order component was indispensable in all
the problems examined while the 1st-order component was not
necessary in many cases. However, it was shown that the 1st-
order component is also important in the impedance of the
foundation of layered soil (Nos. 1 and 2). It is considered that
this is because their dynamic stiffness tends to increase the
amplitude of vibration as the frequency increases, and the 1st-
order component is required to express this property.

Furthermore, most problems show either the 0th- or 1st-
order component for simultaneous terms. This indicates that
many dynamic stiffnesses are related to the current
displacement or velocity. The exception is No. 2. This
corresponds to the fact that the reaction force does not
occur simultaneously. This soil stiffness corresponds to the
reaction force from where the forced vibration is applied at
different places. Therefore, it needs some time that the effect
propagates to a different place.

CONCLUSION

Herein, the following studies were conducted. First, the outline of
the transformMethods A to C proposed so far was shown inmore
general expressions and their characteristics were analyzed and
organized. When the noncausality of the dynamic stiffness in the
frequency domain is weak, Method B is recommended. When the
hysteretic damping of the dynamic stiffness is large, the stiffness
has a strong and considerable noncausality; for this case, Method
C is recommended.

Next, the above time-domain transform methods were applied
to eight typical problems with frequency dependence and their
properties were examined. All dynamic stiffnesses could be
transformed well, and the effectiveness of the transform method
was confirmed. For all problems, it was found that in the time-
delay terms related to frequency dependence, the 0th-order
component was essential. Moreover, they were roughly classified
into three types, and the characteristics of them are as follows:

1) The ground impedance of layered soil (Nos. 1 and 2)

The time delay corresponds to the wave propagation time, so
the physical meaning of the time delay is clear. Because the
vibration amplitude tends to increase as the frequency increases,
the time-delay terms of the 1st-order component are important to
represent it.

2) Ground impedance with cut-off frequency (Nos. 3 and 4)

The 0th-order component has simultaneous and time-delayed
terms. The latter converges to 0 while oscillating as the time delay
increases. The 1st-order component has almost simultaneous
terms only. Even in the impedance recovered using only the time-
delay term, Nos. 3 and 4 have almost the same shape.

3) Maxwell element, viscoelastic body, and similar impedance
(Nos. 5–8).

For the 0th-order component, the time-delay terms become
significant values, which occur on the negative side of the figure
and converge to 0 as the time delay increases. For the 1st-order
component, the time-delay term is small.

TABLE 1 | Components of each case in the time domain.

No. of dynamic stiffness Simultaneous term Time-delay term

0th-Order component
(0h0)

1st-Order component
(1h0)

0th-Order component
(0h 1 ~)

1st-Order component
(1h 1 ~)

1 X X X X
2 X X
3 X X X
4 X X X
5 X X
6 X X X
7 X X X
8 X X

aX: the value is significant; Blank: the value is small or nearly 0.
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It is considered these findings useful for understanding
the properties and physical meanings of dynamic stiffnesses
with frequency dependence in the time domain. Through these
studies, if the frequency dependency of the dynamic stiffness
is stable, it is considered that there is no major problem
with this transform method. However, if the frequency
dependency change largely due to strain or temperature
dependency, it is necessary to interpolate and use the
transformed results according to the strain and temperature
changes. However, it requires a considerable calculation effort;
therefore, it is necessary to improve practical methods for such
problems.
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