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In the maintenance of cable structures, such as cable-stayed bridges, it is necessary to
estimate the tension acting on the cables. In current Japanese practice, the cable tension is
estimated from the cable’s natural frequency using vibration-based methods. However, in
recent years, dampers have been installed onto the cables to suppress aerodynamic
vibrations. Because the damper changes the cable’s natural frequencies, the methods
used for cables without dampers are not appropriate for cables with dampers. With this
background, the authors previously proposed a method (Method 0F) for estimating the
tension of a cable with a damper from the natural frequencies and their modal order.
Method 0F partially ignores the imaginary part of the complex natural frequencies to
simplify the problem. This study proposes a new method (Method 1F) that does not ignore
the imaginary part of a complex natural frequency. Method 1F still needs both the natural
frequencies and their modal order to be input. If the modal order is not correctly specified,
the accuracy deteriorates. Therefore, a new method (Method 2F) that only requires the
natural frequencies is also proposed. The validity of the proposed methods was confirmed
by numerical simulations and experiments. The numerical and experimental verifications
confirmed that the newmethods were superior compared with previousmethods, and that
Method 2F has the highest effectiveness.
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1 INTRODUCTION

In the maintenance of cable structures, such as cable-stayed bridges and extra-dosed bridges, the
estimation of the tension acting on the cables plays an important role. The tension of cables is
measured using a direct measurement method with a load cell, or an indirect estimation method that
considers the cable’s vibration characteristics. The former method is difficult to use in practical
situations owing to the high cost and installation of complicated devices. Therefore, the latter method
is used in practice because it is easy to implement and achieves a high estimation accuracy.

In current Japanese practice, the tension of cables is mainly estimated using the vibration method
proposed by Shinke et al. (1980) or the higher-order vibration method proposed by Yamagiwa et al.
(2000), which considers the cable’s natural frequencies.

The vibration method (Shinke et al., 1980; Zui et al., 1996) is based on the theory of strings,
whereby the cable’s tension is proportional to the square of the frequency. However, the actual cable
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is not a pure thread, and the effect of the bending stiffness is not
negligible. Therefore, the effect of the bending stiffness is
considered in the form of a correlation factor. In this method,
it is necessary to determine the bending stiffness of the cable in
advance. However, the correct bending stiffness is difficult to
determine because bridge cables are typically prestressed steel
strands rather than single-steel wires.

To address this problem, Yamagiwa et al. (2000) proposed a
higher-order vibration method based on the tensioned
Bernoulli–Euler beam theory. In this method, the natural
frequency of the ith mode is expressed by a polynomial of
modal order i with the bending stiffness and tension as
coefficients. The tension and bending stiffness of the cable are
simultaneously estimated using the natural frequencies of
multiple modes. The bending stiffness does not need to be
determined in advance. Currently, this method is more
frequently used to estimate tension.

In addition to the above-mentioned studies, various studies
based on modal data have investigated cable tension estimation
techniques. For example, studies have employed methods using
the mode shapes in addition to the natural frequencies (Chen
et al., 2016; Chen et al., 2018; Yan et al., 2019), methods dealing
with complicated boundary conditions (Chen et al., 2016; Chen
et al., 2018; Yan et al., 2019), a method dealing with the uncertain
boundary condition of a short cable by introducing an additional
mass block (Li et al., 2021), methods dealing with inclined cables
(Kim and Park, 2007; Ma, 2017), a method dealing with a cable
with flexible supports (Foti et al., 2020), a method dealing with
environmental temperature variation (Ma et al., 2021), methods
for two cables connected by an intersection clamp (Furukawa
et al., 2022), a method using power spectrum and cepstrum (Feng,
et al., 2010), a method using a finite element method (Gan et al.,
2019), a method using a genetic algorithm and particle swarm
optimization (Zarbaf et al., 2017), and a method using neural
networks (Zarbaf et al., 2018).

In recent years, the length of bridges and the length of installed
cables have been increasing. Because the damping performance of
the cable itself is small, the vibration caused by the wind is
notable. To suppress the aerodynamic vibration of the cables,
dampers are installed onto the cables. In the maintenance of
cables with dampers, the direct use of the vibration method or the
higher-order vibration method is inappropriate because the
damper changes the natural frequencies. Typically, the damper
increases the cable’s natural frequencies. Because a cable with a
large tension has high natural frequencies, the tension will be
overestimated if the vibration method or the higher-order
vibration method is directly applied to a cable with a damper.
Therefore, in practice, the damper is detached from the cable
before the natural frequencies of the cable without a damper are
measured, and the damper is then reattached to the cable. Because
the process of detaching and attaching the damper is time-
consuming and labor-intensive, it is useful to develop a
tension estimation method for a cable with a damper to
estimate the cable tension without detaching the damper from
the cable.

Previous studies on cables with dampers have mostly focused
on the optimal design of dampers for suppressing the cable

amplitude (Pacheco et al., 1993; Tabatabai and Mehrabi, 2000;
Izzi et al., 2016; Lazar et al., 2016; Shi and Zhu, 2018; Javanbakht
et al., 2019; Krenk, 2000, and have not dealt with the tension
estimation method. Krenk (2000) derived a theoretical equation
to obtain complex eigenfrequencies, from which the natural
frequencies and damping ratios were subsequently obtained.
However, the cable was modeled as a string, and the effect of
the cable’s bending stiffness was ignored. Therefore, these
equations cannot be used to estimate the tension of a cable
with bending stiffness.

Studies dealing with the tension estimation method for a cable
with a damper are still scarce. Yang et al. (2020) proposed a
tension estimation method for cables with two intermediate
supports (dampers). They assumed a damper whose reaction
force is the product of the damper’s spring constant and
displacement. The damping force that decays the displacement
is ignored. Moreover, the damper’s spring constant is assumed to
be known. However, because the damper’s performance gradually
degrades because of aging, it is occasionally difficult to obtain the
spring constant of an actual damper.

Shan et al. (2019) estimated the tension of a cable with a
supplemental damper. A viscous shear damper with a spring
constant and a damping coefficient is assumed. This method
assumes that the cable’s bending stiffness and damper’s damping
coefficient are known, and adopts a two-step identification. In the
first step, the damper’s spring constant is identified. In the second
step, the cable’s tension is identified using the damper’s spring
constant. However, as stated above, it is not always possible to
accurately obtain the cable’s bending stiffness and damper’s
damping coefficient.

Hou et al. (2020) proposed a cable tension estimation method
by adding virtual supports using the substructure isolation
method. Their method virtually separates a cable section from
the overall structure by adding virtual supports and avoids
unknown factors such as the boundary conditions and cable
length. It is considered that their method can be applied to a cable
with a damper by separating the cable section without a damper.
However, this method requires virtual supports, and the
installation and removal of virtual supports is time-consuming
and laborious compared with the high-order vibration method
without additional members.

The authors have been involved in research to develop a new
tension estimation method for a cable with a damper. Using the
concept of the higher-order vibration method (Yamagiwa et al.,
2000), a theoretical equation for estimating the natural
frequencies of a cable with a damper has been derived
(Furukawa et al., 2021a). In the authors’ previous method, the
theoretical equation for estimating the complex natural
frequencies from the tension and bending stiffness of the cable
and the damper parameters was derived. The natural frequencies
observed by a field experiment correspond to the real part of the
complex natural frequencies. Therefore, by inversely solving the
theoretical equation, the tension and bending stiffness of the cable
and the damper parameters can be estimated from the natural
frequencies. The cable’s bending stiffness and the damper
parameters do not need to be determined in advance and can
instead be estimated simultaneously with the cable tension.
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The authors’ previous method can estimate the cable tension
with good accuracy (Furukawa et al., 2021a), but requires
improvement with regard to two points.

First, the previously proposed method partially ignores the
imaginary part of the complex natural frequency to simplify the
inverse problem. However, the tension estimation accuracy may
deteriorate when the imaginary part of the complex natural
frequency is large. Therefore, accuracy improvement can be
expected if the first point is addressed, particularly when the
imaginary part of the complex natural frequency is large.

The second point is that the previously proposed method
requires the natural frequencies and their modal order as a set. If
the modal order is erroneously assigned, the tension estimation
accuracy deteriorates. Moreover, the modal order has to be
correctly assigned to each natural frequency, which is
occasionally difficult.

With this background, this study proposes new tension
estimation methods to improve the above-mentioned points. In
Section 2, the previously proposed method (Method 0F) for
estimating the tension of a cable with a damper is first described.
Next, the improvements in the two above-mentioned points are
explained. Section 3 presents two new methods (Methods 1F and
2F). Method 1F improves the first point, while Method 2F improves
both points. Section 4 presents the numerical verification of 90
numerical models. The natural frequencies of a cable with a damper
were calculated for 90 models and input into the proposed methods.
The estimated tension is compared with the assumed true value, and
the accuracy and validity of the proposed methods are discussed.
Section 5 presents the experimental verification of the proposed
methods. The estimated tension is compared with the tension
measured by the load cell, and the accuracy and validity of the
proposed methods are discussed.

2 PREVIOUSLY PROPOSED METHOD FOR
CABLE TENSION ESTIMATION
(METHOD 0F)

2.1 Vibration Equation of Tensioned
Bernoulli-Euler Beam
In the methods proposed by the authors, the cable is considered a
tensioned Bernoulli–Euler beam and its vibration equation is
explained in this section.

The vibration equation for a tensioned Bernoulli–Euler beam
can be written as the following partial differential equation:

ρA
z2y(x, t)

zt2
+ EI

z4y(x, t)
zx4

− T
z2y(x, t)

zx2
� 0 (1)

where y(x, t) is the deflection, which is a function of position x
and time t; ρ is the density; A is the cross-sectional area; EI is the
bending stiffness; and T is the tension.

The partial differential equation can be solved using the
variable separation method. The deflection y(x, t) is
transformed as follows:

y(x, t) � Y(x)exp(jωt) (2)

where Y(x) is the modal function of position x, j is an imaginary
unit, and ω is the circular frequency.

By substituting Eq. 2 into Eq. 1, the following ordinary
differential equation for function Y(x) can be derived:

−ρAω2Y(x) + EI
d4Y(x)
dx4

− T
d2Y(x)
dx2

� 0 (3)

The general solution of Eq. 3 is obtained as follows:

Y(x) � C1cosαx + C2sinαx + C3coshβx + C4sinhβx (4)
where C1, C2, C3, and C4 are the integration constants; α and β
are expressed, respectively, as follows:

α �

���������������������������������( T

2EI
)2

+ ρAω2

EI

√
− T

2EI

√√
(5)

β �

���������������������������������( T

2EI
)2

+ ρAω2

EI

√
+ T

2EI

√√
(6)

2.2 Authors’ Previously Proposed Method
(Method 0F)
2.2.1 Theoretical Equation for Estimating Natural
Frequencies
This section explains the previously proposed method for
estimating the tension of a cable with a damper from the
natural frequencies (Method 0F). Figure 1 shows the analytical
model of a cable with a damper and simple supports at the two
ends. The damper shown in Figure 1 is a viscous shear damper
with a spring constant k and damping constant c. The cable length
is L, and the distance from the damper position to the left and right
ends is L1 and L2(� L − L1), respectively. The deflection of the
cable on the left and right sides with regard to the damper position
x is denoted as y1(x, t) and y2(x, t), respectively. The deflection is
expressed similarly to Eq. 2, as follows:

y1(x, t) � Y1(x)exp(jωt) (7)
y2(x, t) � Y2(x)exp(jωt) (8)

FIGURE 1 | A model for a cable with a damper.
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where Y1(x) and Y2(x) are the modal functions on the left and
right sides of the cable, respectively, with regard to the damper
position. The general solutions of Y1(x) and Y2(x) are expressed
as follows:

Y1(x) � D1cosαx +D2sinαx +D3coshβx

+D4sinhβx (0≤x≤ L1) (9)

Y2(x) � D5cosα(x − L1) +D6sinα(x − L1) +D7coshβ(x − L1)
+D8sinhβ(x − L1) (L1 ≤ x≤ L) (10)

where D1, D2, D3, D4, D5, D6, D7, and D8 are the integration
constants, and α and β are expressed by Eqs. 5, 6, respectively.

Because there are eight integration constants, eight boundary
conditions are necessary. Four boundary conditions are
established at the two ends (x � 0 and x � L), that is, the
deflection is zero and the second derivative of deflection is
also zero owing to the simple supports (Y1(0) = 0, d2Y1(0)/dx

2

= 0, Y2(L) = 0, d2Y2(L)/dx
2 0). Three boundary conditions

are established at the damper position (x � L1), that is,
the deflection, the deflection angle, and the second
derivative of deflection are continuous (Y1(L1) � Y2(L1),
dY1(L1)/dx � dY2(L1)/dx, d2Y1(L1)/dx2 � d2Y2(L1)/dx2).
Moreover, the force exerted on the cable by the damper is
equal to the shear force change of the cable at the damper position
(EId3Y1(L1)/dx3 − EId3Y2(L1)/dx3 � kY1(L1) + jωcY1(L1)).

By substituting Eqs. 9, 10 into the eight boundary conditions,
the following equation is obtained:

sinαL{α2 + β2 + kp

EI
(sinαL1cosαL1

α
− sinhβL1sinhβL2

βsinhβL
)}

− cosαL(kp

EI

sin2αL1

α
) � 0 (11)

where kp is the complex stiffness of the damper. The unified
notation kp is used to model various types of dampers, as
follows:

kp � { ku + jkv (high − damping rubber damper)
k + jωc (viscous shear damper) (12)

In the case of the high-damping rubber damper, the complex
stiffness kp is expressed with ku and kv, which are the real and
imaginary parts of the complex stiffness, respectively. In the case
of the viscous shear damper, the complex stiffness kp is expressed
with a spring constant k and damping coefficient c.

Then, Eq. 11 can be transformed as follows:

sin(αL − θ) � 0 (13)
where

tanθ �
kp

EI
sin2αL1

α

α2 + β2 + kp

EI(sinαL1cosαL1
α − sinhβL1sinhβL2

βsinhβL ) (14)

Eq. 13 has infinite solutions for α. These solutions are
expressed with a positive integer i.

αiL − θi � iπ i � 1, 2, . . . . (15)

By substituting Eq. 5 into Eq. 15, the natural circular
frequency ωi of the ith mode can be obtained as follows:

ω2
i �

π4EI

ρAL4(i + θi
π
)4

+ π2T

ρAL2(i + θi
π
)2

i � 1, 2, . . . (16)

Finally, the theoretical equation for estimating the natural
frequencies ft

i of the ith mode, and the relevant equations, are
expressed as follows:

ft
i �

����������������������������
π2EI

4ρAL4
(i + θi

π
)4

+ T

4ρAL2
(i + θi

π
)2

√√
i � 1, 2, . . . (17)

θi � tan−1
kpi
EI

sin2αiL1
αi

α2
i + β2i + kpi

EI(sinαiL1cosαiL1
αi

− sinhβiL1sinhβiL2
βisinhβiL

) (18)

αi �

�����������������������������������������( T

2EI
)2

+ ρA(2πft
i)2

EI

√
− T

2EI

√√
(19)

βi �

�����������������������������������������( T

2EI
)2

+ ρA(2πft
i)2

EI

√
+ T

2EI

√√
(20)

kpi � { ku + jkv (high − damping rubber damper)
k + j(2πft

i)c (viscous shear damper) (21)

From the cable parameters, namely, ρ, A, L, EI, and T, and the
damper parameters ku and kv or k and c, the ith mode natural
frequencies ft

i can be calculated using Eqs. 17–21. Notably, the
natural frequency ft

i of the i
th mode is included on the right-hand

side of Eqs. 19b–21b. Therefore, Eqs. 17–21 must be satisfied
simultaneously.

Notably, ft
i in Eq. 17 is a complex value if kp is complex.

Therefore, this study refers to ft
i as the complex natural

frequency.
The real part of the complex natural frequency Re(ft

i ) is
referred to as the natural frequency of the cable with a damper
and can be obtained by measurement. Therefore, the constraint
equation can be developed by considering that Re(ft

i ) is equal to
the measured natural frequencies fm

i .
However, the imaginary part of the frequency Im(ft

i ) is
related to the damping factor or logarithmic decrement.
Because the damping factor is difficult to measure with a
high accuracy, this study considered that only the real parts
of the complex natural frequencies of several modes are
known and used them in the estimation.

2.2.2 Procedure for Estimating Cable Tension from
Natural Frequencies
The proposed method inversely estimates T, EI, ku, and kv for the
high-damping rubber damper, or T, EI, k, and c for the viscous
shear damper, from ρ, A, L, i, and the measured natural
frequency fm

i of the ith mode.
As mentioned previously, the natural frequency ft

i on the
left side of Eq. 17 is included on the right-hand side of Eqs.
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19, 20, and 21b, which complicates the solution of the
optimization problem. The previously proposed method
ignores the imaginary term of ft

i , inputs the measured
natural frequency fm

i to fm
i in Eqs. 19, 20, and 21b, and

assumes that the effect of the imaginary part is not
very large.

The approximated parameters, such as ft
i , are denoted with an

overline. To summarize the procedure, the approximated complex
natural frequency ft

i is estimated through the one-way calculation
using Eqs. 22–26 and is the function of four parameters (T, EI, ku,
and kv, or T, EI, k, and c). Then, the optimization problem
expressed by Eq. 27 is solved to estimate these four parameters
simultaneously. Thus, the squares error between the ratio of the
theoretical natural frequencies to the measured natural frequencies
and 1 is minimized.

�αi �

�������������������������������������������( T

2EI
)2

+ ρA(2πfm
i )2

EI

√
− T

2EI

√√
(22)

�βi �

�������������������������������������������( T

2EI
)2

+ ρA(2πfm
i )2

EI

√
+ T

2EI

√√
(23)

�k
p

i � { k + j(2πfm
i )c (high − damping rubber damper)

ku + jkv (viscous shear damper) (24)

�θi � tan−1
�k
p
i

EI
sin2 �αiL1

�αi

�α2
i + �β

2
i +

�k
p
i

EI(sin�αiL1cos�αiL1
�αi

− sinh�βiL1sinh
�βiL2

�βisinh
�βiL

) (25)

�f
t

i �

����������������������������
π2EI

4ρAL4
(i + �θi

π
)4

+ T

4ρAL2
(i + �θi

π
)2

√√
i � 1, 2, . . . (26)

minimize G0(T, EI, ku, kv)
� ∑n

i�1
{Re(�ft

i)/fm
i − 1}2 (high − damping rubber damper)

(27a)
minimize G0(T, EI, k, c)

� ∑n
i�1
{Re(�ft

i)/fm
i − 1}2 (viscous shear damper) (27b)

Because there are four unknowns, namely,T, EI, ku, and kv, or
T, EI, k, and c, the number of natural frequencies n must be at
least four.

The advantage of the previously proposed method is that the
bending stiffness EI and damper parameters ku and kv, or k and c
are estimated simultaneously with tension T, and the pre-
evaluation of the bending stiffness and damper parameters is
not required. The effectiveness of the method was confirmed in a
previous study (Furukawa et al., 2021a).

The above-mentioned formula can be applied to a cable
without a damper. By setting the damper’s complex stiffness �k

p

i
0, �θi of Eq. 25 becomes zero. Therefore, Eq. 26 becomes the
same formula used in the high-order vibration method, that is,
the tension estimation method for a cable without a damper
(Yamagiwa et al., 2000).

2.3 Two Improvement Points of Previously
Proposed Method (Method 0F)
In this study, improvements in the previously proposed method
(Method 0F) were made with regard to two points. The first point
is that the imaginary part of the complex natural frequencies is
ignored. The second point is that the method requires the natural
frequencies and their modal order as a set.

2.3.1 First improvement Point: Ignoring the Imaginary
Part of Complex Natural Frequencies
The previously proposed method (Method 0F) ignores the imaginary
part of the complex frequency in Eqs. 22, 23 and 24b. The imaginary
part of the complex natural frequency is caused by the imaginary part
of the damper stiffness kpi . Ignoring the imaginary part of the complex
natural frequency decreases the estimation accuracy when the
imaginary part of the complex natural frequency is large.

To improve the estimation accuracy, a method that does not
ignore the imaginary part of the complex natural frequencies
must be developed.

2.3.2 Second Improvement Point: Need to Specify the
Modal Order
The previously proposed method (Method 0F) requires the natural
frequency fm

i and its modal order i as a set, which means that the
modal order of each natural frequency should be correctly specified.
However, specifying the modal order of each natural frequency is
occasionally difficult in practical bridge cable applications.

Generally, the modal order is assigned to the measured natural
frequencies in an ascending order. However, if some natural
frequencies are not detected, the correspondence between the
natural frequencies and the modal order may be erroneously read.
If the wrong modal order is input, the estimation accuracy will
deteriorate.

If an accelerometer is installed at the node of the vibration mode,
the corresponding natural frequency cannot be detected. However,
this case can be avoided by installing accelerometers at multiple
locations.

There is another case wherein the natural frequency of a certain
mode cannot be detected, and this case is particular to a cable with
a damper. If Figure 1 is considered a cable belonging to a cable-
stayed bridge, the left end can be considered the girder side, and the

FIGURE 2 | A computer-generated image of a cable with a damper.
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right end can be considered the main tower side. Because the
damper is installed closer to the girder for the convenience of
construction, the span on the girder side becomes shorter. In
Figure 1, the span on the left (girder) side is called the shorter span,
and the span on the right side is called the longer span. Figure 2
shows a computer-generated image of the cable and damper on the
girder side. Because the cable with the shorter span is typically
inside a fixing steel pipe, it is difficult to install accelerometers at the
shorter span, and is instead practical to install them only on the
longer span. Furthermore, hitting the longer span with a hammer
to generate free vibration is realistic.

If the damping effect is large and the cable is hit on the longer
span, the damper will absorb the vibration, and it may be difficult
for the vibration to be transmitted to the shorter span. Therefore,
it is difficult to excite the dominant vibration mode on the shorter
span by hitting the cable on the longer span. Additionally, it is
also difficult for the dominant vibration mode on the shorter span
to be transmitted to the longer span because the damper absorbs
the vibration; therefore, this mode is far difficult to measure using
accelerometers installed on the longer span.

Hence, if the natural frequencies of certain modes cannot be
detected, the wrong modal order is assigned to the measured
natural frequencies. Therefore, a new method that does not
require the modal order to be specified is needed.

Furthermore, to assign a modal order to each natural frequency
in Eq. 26, the previously proposedmethod has to solve �θi in Eq. 25.
Because Eq. 25 has infinite number of solutions, �θi is limited in the
range of (0, π), assuming that the increase in natural frequencies
caused by the damper is not large. However, there is no guarantee
that this assumption can always be satisfied. Therefore, a new
method that does not require the modal order to be specified, that
is, it does not require Eq. 25 to be solved, is needed.

3 PROPOSED METHODS FOR CABLE
TENSION ESTIMATION (METHODS 1F
AND 2F)

3.1 Proposed Method for Cable Tension
Estimation Considering Imaginary Part of
Complex Natural Frequencies (Method 1F)
3.1.1 Concept of Considering the Imaginary Part of a
Complex Natural Frequency
This section presents a modified method (Method 1F), which does
not ignore the imaginary part of the complex natural frequency.

The ith mode complex natural frequency ft
i can be written

using Hi, as follows:

ft
i � Re(ft

i)(1 + j
Im(ft

i)
Re(ft

i)) � Re(ft
i)(1 + jHi) (28)

where Hi is defined as the ratio of the imaginary part to the real
part of the complex natural frequency; Hi is also defined as the
ratio between the logarithmic decrement of the ith mode δi to 2π
(Hi � δi/2π), and is also related to the damping factor hi of the i

th

mode (Hi � hi/
�����
1 − h2i

√
).

Because it is difficult to obtainHi through measurements, this
study considered Hi as an unknown. Because the number of
unknowns increases when Hi is considered an unknown, the
number of constraint equations should also increase. This study
uses the additional constraint equation wherein the ratio of the
imaginary part to the real part of the complex natural frequency is
equal to Hi.

3.1.2 Procedure for Estimating Cable Tension From
Natural Frequencies
The proposed method inversely estimates T, EI, ku, kv, andHi for
the high-damping rubber damper, or T, EI, k, c, and Hi for the
viscous shear damper, from ρ, A, L, i, and the measured natural
frequency fm

i of the ith mode.
The procedure is summarized as follows. It is assumed that n

sets of natural frequencies fm
i have been measured. The complex

natural frequency ft
i can be computed using Eqs. 29–33, and is

the function of 4 + n parameters (T, EI, ku, kv, andHi, or T, EI, k,
c, and Hi). Then, the optimization problem in Eq. 34 can be
solved to simultaneously estimate these 4 + n parameters. The
two constraint equations for the real and imaginary parts of the
natural frequency are used.

αi �

�����������������������������������������������������������( T

2EI
)2

+ ρA(2πfm
i (1 + jHi))2
EI

√
− T

2EI

√√
(29)

βi �

�����������������������������������������������������������( T

2EI
)2

+ ρA(2πfm
i (1 + jHi))2
EI

√
+ T

2EI

√√
(30)

kpi � { ku + jkv (high − damping rubber damper)
k + j(2πfm

i (1 + jHi))c (viscous shear damper)
(31)

TABLE 1 | A comparison of three tension estimation methods (i is the modal order and n is the number of natural frequencies).

Method Unknown parameters (number of unknown parameters) Given parameters Points of improvement

High-damping rubber damper Viscous shear damper 1* 2**

0F T ,EI, ku , kv (4) T ,EI, k, c (4) n sets of natural frequencies and modal order Exist Exist
1F T ,EI, ku , kv ,Hi (4 + n) T ,EI, k, c,Hi (4 + n) n sets of natural frequencies and modal order Does not exist Exist
2F T ,EI, ku , kv ,Hi (4 + n) T ,EI, k, c,Hi (4 + n) n natural frequencies without modal order Does not exist Does not exist

1* Ignoring the imaginary part of complex natural frequencies.
2** Need to specify modal order for each natural frequency.
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θi � tan−1
kpi
EI

sin2αiL1
αi

α2
i + β2i + kpi

EI(sinαiL1cosαiL1
αi

− sinhβiL1sinhβiL2
βisinhβiL

) (32)

ft
i �

����������������������������
π2EI

4ρAL4
(i + θi

π
)4

+ T

4ρAL2
(i + θi

π
)2

√√
i � 1, 2, . . . (33)

minimize G1(T, EI, ku, kv,Hi)

� ∑n
i�1

⎧⎨⎩(Re(ft
i)

fm
i

− 1)2

+ (Im(ft
i)

fm
i

−Hi)2⎫⎬⎭(high − damping rubber damper) (34a)

minimize G1(T, EI, k, c,Hi)
� ∑n

i�1

⎧⎨⎩(Re(ft
i)

fm
i

− 1)2

+ (Im(ft
i)

fm
i

−Hi)2⎫⎬⎭(viscous shear damper) (34b)

Because n is the number of natural frequencies, there are
4 + n unknowns, namely, T, EI, ku, kv, and Hi, or T, EI, k, c,
and Hi. In contrast, there are 2n constraint equations.
Therefore, n must at least be equal to four. In the new
method (Method 1F), the number of the required natural
frequencies is the same as that in the previously proposed
method (Method 0F).

3.2 Proposed Cable Tension Estimation
Method Considering Imaginary Part of
Complex Natural Frequencies Without
Specifying Modal Order (Method 2F)
3.2.1 Concept of Method That Does Not Require
Specifying the Modal Order
This section proposes a modified method (Method 2F), which
does not ignore the imaginary part of the complex natural
frequency and does not require the modal order to be
specified. The idea behind not specifying the modal order is to

TABLE 2 | Analytical parameters.

A Cable parameters

No. Mass per unit length Length Tension Bending stiffness

ρA (kg/m) L (m) T (kN) EI (kN·m2)

10 30.1 25 1650 106.4
20 30.1 25 3300 106.4
30 30.1 50 3300 106.4
40 30.1 100 3300 106.4
50 30.1 200 1650 106.4
60 30.1 200 3300 106.4
70 94.7 200 5340 1111
80 94.7 200 10,680 1111
90 160.1 500 9030 3175
100 160.1 500 18,060 3175

B Damper parameters

No. Damper
position

High-damping rubber damper Viscos shear damper

Real part of
complex
stiffness

Imaginary
part of
complex
stiffness

Spring
constant

Damping coefficient c (kN·s/m)

Cable No

L1
(m)

ku
(kN/m)

kv
(kN/m)

k
(kN/m)

10 20 30 40 50 60 70 80 90 100

1 7 280.0 0.0 280 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 7 236.9 149.3 237 4.37 3.28 6.82 13.99 39.80 28.33 39.66 28.15 99.79 70.64
3 2 473.8 298.5 474 9.82 7.04 14.21 28.56 80.84 57.25 79.90 56.54 199.96 141.42
4 4.5 473.8 298.5 474 9.04 6.65 13.80 28.14 80.03 56.84 79.46 56.36 199.67 141.31
5 7 473.8 298.5 474 8.17 6.18 13.27 27.60 79.10 56.29 78.85 56.08 199.22 141.13
6 7 947.6 597.0 948 15.49 11.57 25.81 54.49 157.48 111.88 156.62 111.51 397.45 281.75
7 7 560.0 0.0 560 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 7 531.8 175.5 532 4.81 3.63 7.80 16.23 46.52 33.10 46.34 32.96 117.11 82.96
9 7 341.4 443.9 341 12.08 9.25 19.73 41.03 117.52 83.69 117.30 83.48 296.36 209.93

C Solution range when solving optimization problem

Parameters T EI ku or k kv or c Hi

Lower/Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Ratio to true value 0 10 0 10 0 10 0 10 0 2
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use Eq. 11 instead of Eq. 15. The left-hand side of Eq. 11 is
rewritten using i as the modal order, and a new function gi for the
ith mode is defined as follows:

gi ≡ sinαiL{α2
i + β2i +

kpi
EI

(sinαiL1cosαiL1

αi
− sinhβiL1sinhβiL2

βisinhβiL
)}

− cosαiL(kpi
EI

sin2αiL1

αi
) (35)

Because Eq. 35 does not explicitly include the modal order i, a
method that does not require using the modal order can be
developed.

3.2.2 Procedure for Estimating Cable Tension From
Natural Frequencies
The procedure is summarized as follows. It is assumed that n sets
of natural frequencies fm

i have been measured. The function gi in
terms of 4 + n parameters (T, EI, ku, kv, andHi, or T, EI, k, c, and
Hi) is computed using Eqs. 29–31, 35. Then, the optimization
problem in Eq. 36 is solved to simultaneously estimate the 4 + n
parameters. The two constraint equations for the real and
imaginary parts of gi are used.

minimize G2(T, EI, ku, kv,Hi)
� ∑n

i�1
{(Re(gi))2 + (Im(gi))2}(high − damping rubber damper) (36a)

minimize G2(T, EI, k, c,Hi)
� ∑n

i�1
{(Re(gi))2 + (Im(gi))2} (viscous shear damper) (36b)

Because n is the number of natural frequencies, there are 4 + n
unknowns, namely, T, EI, ku, kv, andHi, or T, EI, k, c, andHi. In
contrast, there are 2n constraint equations. Therefore, n must at
least be equal to four. The number of necessary natural
frequencies of the new method (Method 2F) is the same as
that of the other two methods (Methods 0F and 1F).

Method 2F improves two points, namely, ignoring the
imaginary part of the complex natural frequencies and the
necessity of specifying the modal order. Among the three
methods, Method 2F is only appropriate when it is difficult to
specify the modal order correctly for each natural frequency.
Notably, Method 1F is advantageous over Method 2F when it is
possible to specify the modal order correctly, because Method 1F
uses more information (both the natural frequencies and modal
order) for estimation.

The comparison of the three methods is presented in Table 1.

3.3 MultiStart Algorithm
All methods solve the nonlinear least squares problem.
Therefore, there may be multiple local minimum solutions,
although the global minimum solution is preferable. The
solution depends on the initial points (initial parameters for
unknowns). Therefore, this study used the MultiStart algorithm
(MathWorks, 2020), wherein the solver attempts to find
multiple local minima solutions to a problem by starting

from various initial points. The final solution is the one with
the best objective function value among the local minimum
solutions. Although there is no guarantee that this algorithm
will always find the global minimum solution, it can still find a
better solution than the general nonlinear least squares method
using only one starting point.

4 NUMERICAL VERIFICATION

4.1 Overview
The validity of the proposed method was verified by numerical
simulation. First, the values of the cable parameters (ρ, A,
L, L1, T, and EI) and damper parameters (ku and kv, or k
and c) were assumed. Next, the natural frequencies of the cable
with a damper, which are the real parts of the theoretical
complex natural frequencies Re(ft

i ), were calculated from
Eqs. 17–21. Then, the calculated natural frequencies were
input into the proposed methods to estimate T, EI, ku, kv,
and Hi, or T, EI, k, c, and Hi. The estimation accuracy was
investigated by comparing the estimated values to the assumed
values.

4.2 Analytical Conditions
4.2.1 Analytical Cases
The cable parameters are listed in Table 2A, and the damper
parameters are listed in Table 2B. These values were set to cover a
wide range of cables and dampers. In practical situations, the
damper is installed near the girder. Therefore, the damper
location, L1, was set to a small value compared with the cable
length, L.

The two damper types, namely, the high-damping rubber
damper and a viscous shear damper, were compared.

For the high-damping rubber damper, the values of the real
part ku and the imaginary part kv of the complex stiffness kpi are
listed in Table 2B.

For the viscous shear damper, the spring constant k was set to
the same value as |kpi | of the high-damping rubber damper. The
damping coefficient c was determined such that the imaginary
part of the first mode complex stiffness Im(kp1) becomes similar
for the two damper models. To be more concrete, the damping
coefficient c was determined by c � kv/2πf1 where f1 is the first
mode natural frequency of a cable with a high-damping rubber
damper in the same damper case. The values of k and c are listed
in Table 2B.

By combining ten cable models and nine damper models, 90
numerical models were established in total. The model number is
defined as the sum of the cable number and damper number. For
example, the analytical model No. 15 consists of cable model No.
10 and damper model No. 5.

4.2.2 Number of Natural Frequencies Used in
Estimation
At least four natural frequencies are required to estimate the
unknowns. Based on the authors’ previous experience on
measuring the natural frequencies of a cable with a damper, it
is known that there are cases wherein the natural frequencies can
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be measured only up to the seventh mode (Furukawa et al.,
2021b). The natural frequencies of the higher modes are
occasionally difficult to measure because the higher-mode

vibration is rapidly dissipated by the dampers. Therefore, the
natural frequencies of the first seven modes were used to estimate
the unknowns.

4.2.3 Solving Nonlinear Optimization
The MultiStart algorithm with the nonlinear least-squares
method was used to estimate the unknowns. The estimation
accuracy depends on the number of initial points and the lower
and upper bounds of each unknown. This study randomly
generated 200 sets of initial points for unknowns to avoid a
local minimum solution. Table 2C indicates the lower and upper
bounds of the unknowns when searching for solutions.

4.3 Estimation Results
The first-mode to seventh-mode natural frequencies of 90 models
were input into the proposed methods, and the unknowns were
estimated. In Methods 0F and 1F, the modal order was also input.
For Method 0F, four unknowns, namely, T, EI, ku, and kv for the
high-damping rubber damper, or T, EI, k, and c for the viscous
shear damper, were estimated. Methods 1F and 2F estimate 11
unknowns, namely, T, EI, ku, kv, and Hi (i = 1, . . . ,7) for the
high-damping rubber damper, or T, EI, k, c, andHi (i = 1, . . . ,7),
for the viscous shear damper.

The results estimated for the high-damping rubber damper are
shown in Figure 3. The estimated results for the viscous shear
damper are shown in Figure 4. The horizontal axis is the model
number. The vertical axis is the ratio of the estimated value to the
true (assumed) value. Notably, a model whose vertical axis value
is closer to 1.0 has a higher estimation accuracy.

4.3.1 Results of Tension Estimation
Previous studies have reported that the tension estimation error
of the higher-order vibration method is 5% for a cable without a
damper (ShinkoWire Company, Ltd, 2020). Therefore, the target
tension estimation error for a cable with a damper was set to 5%
in this study.

4.3.1.1 High-Damping Rubber Damper
The result of tension estimation for a cable with a high-damping
rubber damper is shown in Figure 3A. Methods 0F, 1F, and 2F
are indicated by blue, red, and yellow dots, respectively. When the
blue and red dots cannot be seen, they overlap the yellow dot.
When only the red dot cannot be seen, it overlaps the yellow dot.
When only the blue dot cannot be seen, it overlaps the red or
yellow dots.

The range of the vertical axis was 0.96–1.02. For all methods, the
estimation error was within 4%. The high estimation accuracy was
confirmed for tension, and the target error of 5% was achieved.

Next, the three methods are compared in terms of tension
estimation accuracy. For models No. 11 to 49, when the cable was
shorter than or equal to 100 m, the estimation accuracy of
Method 0F was the lowest. For models No. 51 to 109, when
the cable was longer than or equal to 200 m, the estimation
accuracy of Method 0F was the highest. The reason for this is as
follows. For models No. 11 to 49 with a shorter cable, the effect of
damping became large. Therefore, ignoring the imaginary part of
the complex natural frequency of Method 0F deteriorates the

FIGURE 3 | Estimation results for a cable with a high-damping rubber
damper: (A) tension, T; (B) bending stiffness, EI; (C) real part of complex
stiffness, ku; (D) imaginary part of complex stiffness, kv; (E) imaginary part to
real part ratio of complex natural frequency of 1st mode, H1.

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 8129999

Furukawa et al. Tension Estimation Method for Cable

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


tension estimation accuracy. For models No. 51 to 109 with a long
cable, the effect of damping is not large. Therefore, ignoring the
imaginary part of the complex natural frequency of Method 0F
does not deteriorate the tension estimation accuracy and

improves the tension estimation accuracy because the
unknowns of Method 0F are fewer than those of Methods 1F
and 2F.

Next, the tension estimation accuracy of Methods 1F and 2F is
compared. Method 1F uses the natural frequencies and their
modal orders as a set, while Method 2F only uses natural
frequencies and does not use the modal order. In this
numerical verification, the modal order was correctly assigned.
Therefore, Method 1F has more information than Method 2F.
Hence, the accuracy of Method 1F is higher than that of Method
2F, particularly for models with a long cable. The tension
estimation accuracy of Method 2F is lower than that of
Method 1F, but the estimation accuracy is still high.

4.3.1.2 Viscos Shear Damper
The result of tension estimation for a cable with a viscous shear
damper is shown in Figure 4A. In most cases, the estimation
error was within 5%. However, the estimation error of
Methods 0F and 1F was larger than 5% for models No.19,
36, and 39. As presented in Table 2B, these models have a short
cable and large damping coefficient. This indicates that the
models with large estimation errors have high natural
frequencies for higher modes and a large damping
coefficient. If the natural frequency is high and the damping
constant is large, the imaginary part of the damper’s complex
stiffness kpi is also large.

For this reason, �θi and θi of models No. 19, 36, and 39 exceed
π, and the limitation of �θi and θi in the range of (0, π) has a
deteriorating effect on the tension estimation accuracy.

Method 2F could estimate the tension accurately for model
No. 19, 36, and 39 because Method 2F does not require the
calculation of θi and has no limitation.

FIGURE 5 | Tension estimation results for cases with measurement
error: (A) high-damping rubber damper; (B) viscos shear damper.

FIGURE 4 | Estimation results for a cable with a viscous shear damper:
(A) tension, T; (B) bending stiffness, EI; (C) spring constant, k; (D) damping
coefficient, c; (E) imaginary part to real part ratio of complex natural frequency
of 1st mode, H1.
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4.3.2 Results of Bending Stiffness Estimation
The bending stiffness estimation result for the two dampermodels is
shown in Figures 3B, 4B. The bending stiffness estimation accuracy
is low compared with the tension estimation accuracy because only
the low frequencies from the first to the seventh modes were used in
the estimation. As expressed by Eqs. 26, 33, the sensitivity of the
bending stiffness EI over the complex natural frequencies ft

i is low
because the EI coefficient is much smaller than the T coefficient in
the lower mode. Therefore, to estimate the bending stiffness with a
high accuracy, it is necessary to use higher-order natural frequencies.
However, considering that the higher-mode vibration is rapidly
dissipated by the damper, it is difficult to measure the higher-
mode natural frequencies in practical situations. Therefore, it is
concluded that it is difficult to estimate the bending stiffness with
high accuracy in actual situations.

4.3.3 Results of Damper Parameter Estimation
The damper parameter estimation result for the two damper
models is shown in Figures 3C,D, 4C,D. Satisfactory accuracy,
such as that of tension estimation, is difficult to achieve in damper
parameter estimation because the kpi value is not independent of
the bending stiffness EI, as follows from Eqs. 25, 32. The kpi /EI
ratio is an independent parameter; therefore, the accuracy of the
damper parameter estimation depends on the accuracy of
bending stiffness estimation. Because the bending stiffness
estimation accuracy is not high, the accuracy of the damper
parameters is also not high.

A comparison between the results shown in Figures 3D, 4D
reveals that the estimation accuracy of c is better than that of kv,
particularly when the cable is short (the model number is small).
The sensitivity of the imaginary part of the damper stiffness is
higher for a short cable with a viscous shear damper.

4.3.4 Results of Estimation of Imaginary Part to Real
Part Ratio of Complex Natural Frequency
The estimation result for the imaginary part to the real part ratio
of the first mode complex natural frequency, H1, is shown in
Figures 3E, 4E. The results for higher modes exhibited a tendency
similar to that of the first mode. The accuracy deteriorates as the
cable length increases because the effect of the damper decreases
as the cable length increases. Therefore, it is difficult to achieve a
satisfactory accuracy such as that of tension estimation.

The accuracy with the viscous shear damper in Figure 4E is
better than that with the high-damping rubber damper in

Figure 3E, for the same reason that the estimation accuracy
for c is higher than that for kv.

4.4 Effect of Measurement Error on Tension
Estimation Accuracy
4.4.1 Analytical Condition
When measuring the acceleration of an actual bridge cable, the
natural frequencies always contain measurement error.
Therefore, this section discusses the effect of measurement
error on the tension estimation accuracy. Artificial
measurement error was added to the natural frequencies
calculated by eigenvalue analysis. The natural frequencies with
measurement error were calculated as follows according to the
approach used by Thyagarajan et al. (1998).

fnoise
i � (1 + η rand)Re(ft

i) i � 1, 2, . . . (37)
where ft

i denotes the natural frequencies of the i th mode
calculated by eigenvalue analysis, η is the measurement error
ratio, and rand is a uniform random number between −1 and 1.
The measurement error ratio η = 0.02 was used.

The tension, bending stiffness, and damper parameters were
estimated using Methods 0F, 1F, and 2F by inputting natural
frequencies with measurement error. Because the bending
stiffness and damper parameter estimation accuracy is not
satisfactory, even in the case without measurement error, only
the accuracy of estimating tension was investigated.

4.4.2 Results
Because the estimation accuracy depends on the combination of
random numbers generated for each natural frequency, the
average value of ten sets of natural frequencies with
measurement error was used for the estimation by iterating
the calculation of Eq. 37 10 times.

The tension estimation results for a cable with a high-damping
rubber damper and a viscos shear damper are shown in Figure 5.

For the high-damping rubber damper, model No. 23 had the
largest maximum error among all methods. The largest maximum
error of Method 0F, Method 1F, and Method 2F is 0.081, 0.094, and
0.073, respectively. The maximum error of Method 2F is the
smallest, but the difference among the three methods is small.

For the viscos shear damper, model No. 36 had the largest
maximum error for Methods 0F and 1F (0.295). Method 2F had
the smallest maximum error of 0.073 with model No. 41.

Next, the root mean squares error ratio (RMSER) expressed by
Eq. 38 was calculated for each method.

RMSER �

����������������������
1
90

∑90
i�1

(Testimated
i /Ttrue

i − 1)2√√
(38)

Here, i is the model number, Testimated
i is the estimated tension

of model number i, and Ttrue
i is the assumed true tension of model

number i.
The calculated RMSER is presented in Table 3. For

comparison, the values in the cases without measurement
error (the measurement error ratio is 0.0) and cases with

TABLE 3 | RMSER of tension estimation.

A High-damping rubber damper

Measurement error ratio Method 0F Method 1F Method 2F

0.0 0.00389 0.00438 0.00994
0.02 0.0251 0.0256 0.0226

B Viscous shear damper

Measurement error ratio Method 0F Method 1F Method 2F

0.0 0.0443 0.0443 0.00956
0.02 0.0475 0.0477 0.0158

Frontiers in Built Environment | www.frontiersin.org February 2022 | Volume 8 | Article 81299911

Furukawa et al. Tension Estimation Method for Cable

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


FIGURE 6 | Experimental setting: (A) schematic diagram of experimental setting; (B) photograph of experimental setting; (C) photograph of damping device.

TABLE 4 | Cable parameters.

Parameter Value

Outer diameter (m) 0.0286
Mass per unit length ρA (kg/m) 4.26
Bending stiffness EI (kN·m2) 3.219
Cable length L (m) 61.8

TABLE 5 | Damper parameters estimated by element test.

Damper name Real part of complex
stiffness ku (kN/m)

Imaginary part of
complex stiffness kv (kN/m)

Damper A 29.3 17.9
Damper B 57.1 31.4
Damper C 84.7 52.5
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measurement error (the measurement error ratio is 0.02) are
shown. The RMSER increased owing to the measurement error,
regardless of the damper type and the method used.

For the high-damping rubber damper,Method 2F had the smallest
RMSER but the difference among the three methods is very small.

For the viscos shear damper, Method 2F had the smallest
RMSER, even in the case wherein the measurement error was
0.02, because no assumptions nor limitations exist in Method 2F,
as already explained in Section 4.3.1.2.

4.5 SUMMARY

In this section, the validity of Methods 0F, 1F, and 2F was
numerically verified. The tension estimation accuracy is high,
but the estimation accuracy of the other parameters is low.

First, the comparison between methods 0F and 1F is
summarized. Method 0F ignores the imaginary part of the
complex natural frequencies and requires the estimation of four
unknowns. Method 1F does not ignore the imaginary part of the
complex natural frequencies and recognizes them as unknowns,
and thereby has more unknowns to estimate compared with
Method 0F. In the case of short cables, the effect of the damper
and the effect of the imaginary part of the complex frequency are
relatively large. Therefore, Method 1F achieves a higher accuracy.
However, in the case of long cables, the effect of the damper is not
large; therefore, ignoring the complex frequency is acceptable.
Thus, Method 0F with fewer unknowns achieves a higher
accuracy compared with Method 1F with more unknowns.

Next, the comparison among the threemethods is summarized. In
most models, the tension estimation error was within 5%, regardless
of the method used. However, when the cable had high natural

TABLE 6 | Test cases.

Case No Cable Damper Accelerometer

L (m) Tension
(load
cell)

Name Position L1 / L Real
part

of complex

Imaginary
part

of complex

Position Position

T
(kN)

L1
(mm)

stiffness
ku

(kN/m)

stiffness
kv

(kN/m)

p1

(m)
p2

(m)

1 61.8 177.36 No damper ― ― ― ― 4.49 3.99
2 61.8 180.19 Damper A 2.472 0.04 29.3 17.9 4.49 3.99
3 61.8 180.86 Damper A 4.326 0.07 29.3 17.9 6.34 5.84
4 61.8 181.03 Damper A 6.18 0.1 29.3 17.9 8.19 7.69
5 61.8 181.2 Damper A 9.27 0.15 29.3 17.9 11.28 10.78
6 61.8 176.02 Damper B 2.472 0.04 57.1 31.4 4.49 3.99
7 61.8 178.86 Damper B 4.326 0.07 57.1 31.4 6.34 5.84
8 61.8 179.02 Damper B 6.18 0.1 57.1 31.4 8.19 7.69
9 61.8 179.36 Damper B 9.27 0.15 57.1 31.4 11.28 10.78
10 61.8 176.02 Damper C 2.472 0.04 84.7 52.5 4.49 3.99
11 61.8 175.02 Damper C 4.326 0.07 84.7 52.5 6.34 5.84
12 61.8 172.85 Damper C 6.18 0.1 84.7 52.5 8.19 7.69
13 61.8 171.68 Damper C 9.27 0.15 84.7 52.5 11.28 10.78
14 61.8 381.43 No damper ― ― ― ― 4.49 3.99
15 61.8 374.75 Damper A 2.472 0.04 29.3 17.9 4.49 3.99
16 61.8 376.42 Damper A 4.326 0.07 29.3 17.9 6.34 5.84
17 61.8 378.59 Damper A 6.18 0.1 29.3 17.9 8.19 7.69
18 61.8 377.92 Damper A 9.27 0.15 29.3 17.9 11.28 10.78
19 61.8 377.09 Damper B 2.472 0.04 57.1 31.4 4.49 3.99
20 61.8 376.92 Damper B 4.326 0.07 57.1 31.4 6.34 5.84
21 61.8 376.59 Damper B 6.18 0.1 57.1 31.4 8.19 7.69
22 61.8 376.75 Damper B 9.27 0.15 57.1 31.4 11.28 10.78
23 61.8 377.09 Damper C 2.472 0.04 84.7 52.5 4.49 3.99
24 61.8 377.25 Damper C 4.326 0.07 84.7 52.5 6.34 5.84
25 61.8 377.59 Damper C 6.18 0.1 84.7 52.5 8.19 7.69
26 61.8 377.75 Damper C 9.27 0.15 84.7 52.5 11.28 10.78

TABLE 7 | Solution range when solving optimization problem (T0: tension measured by load cell in Table 5C; EI0: design value in catalog listed in Table 5A).

Parameters T EI ku kv Hi

Lower/Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Lower
bound

Upper
bound

Value 0 10 T0 0 10 EI0 0 ∞ 0 ∞ 0 0.019
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frequencies and the viscous shear damper had a large damping
coefficient, the tension estimation error of Methods 0F and 1F was
larger than 5% because the assumption was not satisfied. In these
cases, the estimation error of Method 2F was within 5% because no
assumptions nor limitations exist in Method 2F.

The effect of the measurement error on the tension estimation
accuracy was also investigated. Method 2F had the smallest
estimation error (maximum error and RMSER), particularly
when the viscos shear damper was used.

Based on the above-mentioned findings, this study concluded
that Method 2F is the most versatile among the three methods.

5 EXPERIMENTAL VERIFICATION

5.1 Experimental Condition
This section describes the experimental validation of the proposed
methods. The experimental setting is shown in Figure 6A. The
experiment was conducted using a horizontal cable with a length of
61.8 m. The distance between the two ends was considered equal to
the cable length. A load cell was installed at the right end, and the
tension value of the load cell was considered the true tension value.
The cable was hit with a hammer between the damper position and
the right end. Additionally, the acceleration histories weremeasured
by accelerometers. The natural frequencies were measured by
reading the peak frequencies of the acceleration Fourier spectra.

Figure 6B shows a photograph of the experimental setting.
The damper was placed at a distance L1 from one end.
Piezoelectric accelerometers were magnetically attached to the

cable. A compression load cell was used, but the photograph of
the load cell is not shown here.

Figure 6C shows a photograph of the damper device. A
rectangular steel plate with a circular hole for the cable to pass
through was fixed to the floor. The cable was not in contact with
the steel plate. A disk-shaped steel plate with a circular hole for
the cable to pass through was fixed to the cable. The damper was
installed between the rectangular steel plate and the disk-shaped
steel plate. The rectangular steel plate and the disk-shaped steel
plate were installed parallel to each other. The damper shown in
Figure 6C exerted a stiffness and damping effect.

The cable parameters are presented in Table 4. A prestressed
steel strand was used as the cable because it is used in actual
bridge cables.

The damper parameters are listed in Table 5. Three high-
damping rubber dampers were used.

The test cases are listed inTable 6. Cases No. 1 to No. 13 involve
tension of approximately 180 kN. Cases No. 14 to No. 26 involve
tension of approximately 380 kN. Cases No. 1 and No. 14 are cases
without a damper. Regarding the damper position, four cases were
considered for each tension and damper combination.

To solve the optimization problem using the MultiStart
algorithm, this study randomly generated 200 sets of initial
points for the unknowns to avoid a local minimum solution.
Table 7 presents the lower and upper bounds of the unknowns
in the search for solutions. The lower bounds were set to zero
for all parameters. The upper bound of tension was set to ten
times the true value. The upper bound of the bending stiffness
was set to ten times the design value. The upper bounds of the
damper parameters were not limited because the damper
stiffness has amplitude-dependency and frequency-
dependency. The damper parameters during the vibration
test are considered to be different to the values obtained
during an element test (Table 5). Regarding the imaginary
part to the real part ratio of the complex natural frequencies,
the upper value was set to 0.019. The damping factor of each
mode was evaluated using the half-power method, and 0.019
was set as the upper bound.

TABLE 8 | First to seventh measured natural frequencies in ascending order (Hz).

No 1st 2nd 3rd 4th 5th 6th 7th

1 1.70 3.35 5.04 6.73 8.42 10.10 11.79
2 1.74 3.49 5.25 7.00 8.78 10.54 12.32
3 1.79 3.60 5.42 7.26 9.08 10.90 12.73
4 1.86 3.73 5.62 7.49 9.41 11.32 13.21
5 1.97 3.95 5.94 7.95 10.03 11.96 13.94
6 1.75 3.50 5.25 7.01 8.77 10.54 12.30
7 1.81 3.61 5.43 7.25 9.06 10.89 12.71
8 1.87 3.74 5.61 7.49 9.38 11.26 13.15
9 1.99 3.96 5.96 7.94 9.95 11.93 13.93
10 1.73 3.46 5.20 6.95 8.68 10.44 12.19
11 1.78 3.57 5.35 7.15 8.96 10.75 12.54
12 1.82 3.65 5.49 7.33 9.17 11.05 12.90
13 1.92 3.85 5.79 7.75 9.72 11.65 13.60
14 2.48 4.96 7.43 9.91 12.39 15.10 17.36
15 2.49 4.99 7.50 10.27 12.56 15.12 17.68
16 2.54 5.16 7.76 9.91 13.09 15.66 18.20
17 2.62 5.28 8.02 10.66 13.13 16.38 19.31
18 2.93 5.67 8.64 11.57 14.80 17.32 20.03
19 2.53 5.08 7.64 10.20 12.76 15.36 17.91
20 2.61 5.25 7.89 10.55 13.24 15.89 18.55
21 2.69 5.41 8.15 10.88 13.62 16.37 19.12
22 2.86 5.75 8.64 11.53 14.51 17.33 20.21
23 2.53 5.08 7.65 10.21 12.76 15.34 17.90
24 2.62 5.25 7.90 10.54 13.03 15.85 18.51
25 2.70 5.41 8.14 10.87 13.59 16.33 19.07
26 2.86 5.75 8.64 11.56 14.48 17.36 20.25

FIGURE 7 | Tension estimation results.
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Table 8 lists the first to seventh measured natural frequencies,
for which the order was assigned in an ascending order based on
the measured peak frequencies.

5.2 Tension Estimation Results
The measured natural frequencies and their orders listed in
Table 8 were input into Methods 0F and 1F, and only the
measured natural frequencies were input into Method 2F.
Because the accuracy of estimating parameters other than
tension is not satisfactory, as discussed in the previous section,
only the tension estimation accuracy is discussed here.

Figure 7 shows the estimation results for tension. The horizontal
axis is the case number, and the vertical axis is the ratio of the
estimated tension to the true tension measured by a load cell.

The vertical axis for Method 2F is between 0.993 and 1.069. The
estimation error of Method 2F for cases No. 6 and 11 exceeds 5%,
but Method 2F has the highest accuracy among the three methods.

The vertical axis for Methods 0F and 1F is larger than 1.4 for
case No. 5, 9, 13, 18, 22, and 26. These are cases wherein the
damper is installed furthest from the edge (L1/L is 0.15). To
determine why the accuracy of Methods 0F and 1F is
unsatisfactory when the damper is installed far from the edge,
the measured natural frequency was compared with the theoretical
natural frequencies. Table 9 presents the comparison between the
measured and theoretical natural frequencies. The theoretical

natural frequencies are the real parts of the theoretical complex
natural frequencies Re(ft

i ), and were calculated using Eqs. 17–21
with the cable and damper parameters listed in Table 4 and
Table 5. From Table 9, two conclusions can be drawn. First,
the measured natural frequencies are slightly different to the
theoretical values. The reason for this is that the actual damper
stiffness is different to the value inTable 5, which was estimated by
an element test because the actual damper is amplitude-dependent
and frequency-dependent. Second, the natural frequency of the
fifth mode was not detected in the experiment. Therefore, the
modal order was fixed by skipping the fifth mode, as presented in
Table 9. The fifth mode is the mode wherein the vibration in the
shorter span with a length of L1 is dominant. The cable was excited
using a hammer at the longer span, and the damper dissipated the
vibration. Therefore, the fifth mode that is dominant in the shorter
span was difficult to excite. Moreover, the acceleration responses
were only measured at the longer span. For these reasons, the fifth
mode was not generated, or could not be detected because its
amplitude was too small.

In the cases wherein the damper was installed near the edge
(L1/L is 0.04, 0.07, and 1.0), the modal order wherein the vibration
of the shorter span was dominant was higher than the seventh
mode. For this reason, the estimation accuracy of Methods 0F and
1F was as high as that of Method 2F in these cases.

5.3 Tension Estimation Results After Fixing
Modal Order
The modal order of cases No. 5, 9, 13, 18, 22, and 26 was fixed, as
presented in Table 9. Then, the tension was estimated again using
Methods 0F and 1F. The results are shown in Figure 8. Only the
results for cases No. 5, 9, 13, 18, 22, and 26 for Methods 0F and 1F
are replaced with those in Figure 7.

The vertical axis was between 0.993 and 1.06 for Method 0F,
between 0.987 and 1.052 for Method 1F, and between 0.993 and
1.069 for Method 2F. The maximum estimation error was 6.0% for
Method 0F, 5.2% for Method 1F, and 6.9% for Method 2F. If the
modal order was correctly assigned, Method 1F had the highest
accuracy because the high-damping rubber damper instead of the
viscous shear damper was used in the experiment. In practical
cases, however, it is not always possible to fix the modal order
because it is typically difficult to obtain the design values of tension

TABLE 9 | Comparison between measured and theoretical natural frequencies (Hz).

No Measured/Theoretical 1st 2nd 3rd 4th 5th 6th 7th 8th

5 Measured value 1.97 3.95 5.94 7.95 − 10.03 11.96 13.94
Theoretical value 1.82 3.62 5.36 6.97 8.48 10.04 11.70 13.42

9 Measured value 1.99 3.96 5.96 7.94 − 9.95 11.93 13.93
Theoretical value 1.86 3.72 5.54 7.24 8.63 10.01 11.64 13.40

13 Measured value 1.92 3.85 5.79 7.75 − 9.72 11.65 13.60
Theoretical value 1.85 3.69 5.52 7.28 8.64 9.82 11.39 13.14

18 Measured value 2.93 5.67 8.64 11.57 − 14.80 17.32 20.03
Theoretical value 2.55 5.06 7.49 9.84 12.14 14.48 16.88 19.33

22 Measured value 2.86 5.75 8.64 11.53 − 14.51 17.33 20.21
Theoretical value 2.62 5.21 7.71 10.04 12.23 14.47 16.86 19.33

26 Measured value 2.86 5.75 8.64 11.56 − 14.48 17.36 20.25
Theoretical value 2.67 5.31 7.87 10.23 12.33 14.50 16.88 19.38

FIGURE 8 | Tension estimation results after fixing modal order.
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and bending stiffness, and the damper parameters of the actual
structures in advance. Therefore, Method 2F is considered to be an
efficient method that does not limit the target structures.

In future work, the authors will improve Method 2F to achieve
an estimation error within 5%.

6 CONCLUSION

This study improved a previously proposed method for estimating
the tension of a cable with a damper. The previously proposed
method (Method 0F) estimates the cable’s tension, cable’s bending
stiffness, and damper parameters based on the natural frequencies
and their modal order. In Method 0F, there are two points of
improvement. First, Method 0F partially ignores the imaginary
part of complex natural frequencies. Second, Method 0F needs
both the natural frequencies and their modal order as a set. In this
study, Methods 1F and 2F are proposed to improve the above-
mentioned points. Method 1F improves the first point, while
Method 2F improves both points.

First, the validity of the proposed methods was numerically
verified. Two damper types, namely, a high-damping rubber
damper and a viscous shear damper, were considered. Ninety
numerical models were established with ten cable models and
nine damper models for each damper type.

The cable tension was estimated with high accuracy. However,
the other parameters, namely, the bending stiffness of the cable, the
two damper parameters, and the imaginary part to the real part
ratio of the complex natural frequencies, were difficult to estimate
with high accuracy.

In most models, the tension estimation error was within 5%
regardless of the method used. However, when a cable with high
natural frequencies and a viscous shear damper with a large damping
coefficient were used, the tension estimation accuracy ofMethods 0F
and 1F was low owing to the second point of improvement. Method
2F is the only method that accurately estimated the cable tension,
and its estimation error was less than 5% in all cases.

The effect of the measurement error on the tension estimation
accuracy was also investigated. Method 2F had the smallest
estimation error (maximum error and RMSER), particularly
when the viscos shear damper was used.

Next, the validity of the proposed methods was experimentally
verified using a cable with a length of 61.8 m. A high-damping
rubber damper was installed. A total of 26 cases were prepared by
changing the cable tension, damper models, and damper position.
The modal order of the natural frequencies was specified in an
ascending order.

Among the three methods, the accuracy of Method 2F was the
highest, and the maximum estimation error was 6.9%. The tension
estimation error of Methods 0F and 1F became larger than 40%

when the distance between the damper position and the nearest
cable end was 0.15 times equal to the cable length. The fifth
mode, whose vibration is dominant in the cable’s shorter span,
was not detected, and the modal order of the observed natural
frequencies was erroneously assigned. The accuracy degradation
caused by the second point of improvement occurred in
Methods 0F and 1F. By fixing the modal order, the tension
could be estimated with high accuracy by Methods 0F and 1F.
However, it is not always possible to fix the modal order in
practice. Therefore, Method 2F is an efficient method that does
not limit the target structures.

The numerical and experimental verifications clearly
demonstrate the superiority of Method 2F, and it is possible to
estimate the cable tension without detaching the damper. The fact
that the cable does not have to be detached is a great advantage in
terms of work efficiency.

In the engineering practice, there is a problem that the
natural frequencies of the higher modes are occasionally
difficult to measure because the higher-mode vibration is
rapidly dissipated by the dampers. Based on the authors’
previous experience on measuring the natural frequencies of a
cable with a damper in a real cable-stayed bridge, there are cases
wherein the natural frequencies can be measured only up to the
seventh mode (Furukawa et al., 2021b). Therefore, the natural
frequencies of the first seven modes were used in this study.
Since the proposed methods only require four natural
frequencies, which are smaller than the seven natural frequencies,
they are applicable to the actual engineering problems. In the
engineering practice, measurement error is also a problem since
it decreases the estimation accuracy. The development of a highly
accurate estimation method for the natural frequencies is also a
necessary research issue.

In future work, the authors will improve the tension
estimation accuracy. Furthermore, verification will be carried
out using measurement data obtained for actual bridges.
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