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In this paper, the development of non-linear building isolation systems is

overviewed. The study summarizes commonly used linear building isolation

systems in two categories, which are building base isolation systems and

building inter-storey isolation systems. Typical isolators including Lead-

Rubber Bearings Friction Pendulum Bearings inter-storey viscous damper

and Tuned Mass Damper are reviewed. The analysis and design of linear

building isolation systems are also reported. After that, non-linear building

isolation systems are introduced from two aspects based on their dynamic

characteristics. They are (i) non-linear stiffness isolators including Quasi-Zero

Stiffness isolators and Non-linear Energy Sink and (ii) non-linear damping

isolators including power-law viscous dampers and magnetorheological

dampers. Practical implementations of these non-linear isolators are

introduced. Finally, the analysis and design of non-linear building isolation

systems are discussed. Traditional equivalent linearization approaches and

advanced non-linear frequency design approaches are introduced. The

promising applications of the non-linear frequency design approaches to

building isolation systems are also demonstrated in this review paper.
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1 Introduction

Severe earthquakes often result in significant damage to buildings, infrastructures, and

cause casualties. For example, the 2011 Tohoku Earthquake in Japan caused over

20,000 deaths and missing, and 190,000 buildings were damaged (Okada et al., 2011;

Takewaki et al., 2011). Protecting building structures under earthquakes is of great concern

in earthquake-prone countries (Mazzolani, 2001; Azinovic et al., 2016; Tesfamariam, 2022;

Zhang et al., 2022). To address this challenge, building isolation systems are applied to

mitigate seismic hazards (Morgan, 2007; Mohammed and Mohd, 2011; Takewaki et al.,

2013). The aim of applying building isolation is to reduce either the storey or inter-storey

vibrations transmitted from the seismic ground motions (Hu, 2014). In practice, two types

of passive building isolation systems are commonly used, which are the base isolation system
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(Jangid and Datta, 1995; Deb, 2004) and the super-structure

isolation system, including the inter-storey isolation (De

Domenico et al., 2019; Dona et al., 2022) and top floor

isolation (Thakur, and Pachpor, 2012), as illustrated in Figure 1.

In order to reduce the effects of ground motions on the whole

building structure, base isolation was applied to decouple the upper

structure from the ground (Akehashi et al., 2018; De Luca and

Guidi, 2019). In practice, Lead-Rubber Bearings (LRB) (Jangid,

2007) and Friction Pendulum Bearings (FPB) (Chen and Jia, 2021)

are commonly used to implement building base isolation systems.

Both LRB and FPB produce soft stiffness to isolate earthquakes and

mitigate transmitted seismic energy by friction effects (Cardone

et al., 2009; Deringol and Guneyisi, 2020). Friction dampers are

often applied to inter-storey isolation to mitigate the relative

displacement between two storeys of the building (Lee et al.,

2008; Zhang et al., 2017). In addition, the top floor isolation is

often implemented by a Tuned Mass Damper (TMD) to absorb

vibration energies (Chey et al., 2010; Ghaedi et al., 2017). Detailed

reviews of the existing building isolation systems are as follows.

1.1 Base isolation systems

LRB is one of themost commonly used base isolators in practice.

An LRB is composed of laminated rubber layers with reinforced steel

plates, and a central lead core providing damping to the building

structure due to the large shear deformation (Figure 2A) (Kunde and

Jangid, 2003; Zordan et al., 2014). The LRB was first invented in

New Zealand in 1975 and has been applied to many building

structures worldwide (Komuro et al., 2005; Providakis, 2008;

Komur, 2016). For example, the Shimizu Corporation Tokyo

Headquarters, one of the city’s leading office buildings in Japan,

applied 32 LRB and 10 NRB (Natural Rubber Bearings) to achieve a

structure natural period of 5.40s (Shimazaki and Nakagawa, 2015).

ChristchurchWomen’s Hospital in New Zealand was well protected

by 41 LRB base isolators in the 2010 Darfield (Canterbury)

earthquake (Gavin and Wilkinson, 2010).

On the other hand, a similar type of base isolators known as

the FPB was developed as shown in Figure 2B to improve the

restoring capacity and durability of base isolation systems (Wang,

2002). An FPB is composed of two curved sliding surfaces

providing horizontal restoring force and a hemispherical slider

between the two sliding surfaces (Peng et al., 2022). The FPB base

isolation systems are widely applied to solve the difficulties in

isolating large displacements using LRB (Drozdov et al., 2007;

Kravchuk et al., 2008; Chen and Xiong, 2022). For example, the

world’s largest FPB with a 4 m diameter was installed on the

Benicia Martinez Bridge in United States (Kravchuk et al., 2008).

The international airport of San Francisco where 267 FPB base

isolators have been in operation can bear earthquakes of up to

eight Richter scale (Drozdov et al., 2007).

Both the LRB and FPB isolators have the same type of bi-

linear force-displacement characteristics as illustrated in

Figure 2C, where ke is the initial bearing elastic stiffness; kd is

the post-yield stiffness,; keff is the effective stiffness; Fy;Dy are the

yield strength and yield deformation of the bearing, respectively;

Fm;Dm are the maximum force and displacement of the bearing,

respectively (Ozdemir, 2015).

In practice, the stiffness and damping of the LRB and FPB are

often linearized, so that linear system theories can be applied to

the analysis and design of bearing-based building base isolation

systems (Syed, 2011; Ye et al., 2019; De Domenico et al., 2020).

For example, linear static analysis and linear response spectrum

analysis were applied to the design of multi-storey buildings in

Banglades (Syed, 2011). Ye et al. (2019) proposed a direct-

FIGURE 1
Building isolation systems (A) Base isolation system, (B)
Super-structure isolation system.

FIGURE 2
Building base isolation systems (A) LRB, (B) FPB, (C) The force-displacement relation.
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displacement based design procedure for the LRB base isolation

systems based on the equivalent linearization of base-isolated

building structures. De Domenico et al. (2020) applied tuned

fluid inerters to structures with friction pendulum isolators based

on system linearization approaches. Other bearing base isolation

systems including High Damping Rubber Bearing (HDRB)

(Dezfuli and Alam, 2016), Sliding LRB (Zheng et al., 2020)

were developed based on the LRB and FPB to improve the

building isolation performance under earthquakes.

1.2 Super-structure isolation systems

Reducing inter-storey displacements during earthquakes is

important to prevent large deformations of buildings (Valente

and Milani, 2018). This is often resolved by applying energy

dissipation or vibration absorption devices to building storeys

(Symans et al., 2008). A common practice is to use inter-storey

isolators. For example, Ryan and Earl (2010) applied LRB to

conduct inter-storey isolations as shown in Figure 3A De

Domenico et al. (2019) introduced various inter-storey

isolation systems based on Fluid Viscous Dampers (FVD) in

Figure 3B. Palacios-Quinonero et al. (2019) applied multiple

TMD to inter-storey isolation and adjacent building isolations as

illustrated in Figure 3C. Viscous dampers are also applied to

adjacent building isolations in Figure 3D by Kasagi et al. (2016),

Fukumoto and Takewaki (2017), Hayashi et al. (2018), Makita

et al. (2018), Kawai et al. (2020, 2021), Nakamura et al. (2021).

The design and arrangement of inter-storey dampers were

studied including the optimization of the values, numbers, and

position of the dampers (Singh and Moreschi, 2001; Fujita et al.,

2010; Uemura et al., 2021; Akehashi and Takewaki, 2022a). The

design optimization problem can be formulated as (De Domenico

et al., 2019)
min
cj

J cj( ) subject tog cj( )≤ �g

where J(cj) is the objective function depends on damping

coefficients cj, j ∈ Z+ and g(cj) is a constraint.

In general, there are various options to determine the

objective function for system design. These may include the

maximum top floor or inter-storey displacement (Constantinou

and Tadjbakhsh, 1983), the total mechanical energy of the system

(Gorgoze and Muller, 1992), transfer function amplitudes

(Takewaki, 1997), life-cycle costs (Gidaris and Taflanidis,

2015), and damper costs (De Domenico and Hajirasouliha,

2021), etc. Evolutionary approaches and Pareto front were

applied to solve the optimization problem, as well as

determine the optimal placement of the inter-storey isolators

based on a single bay model (Lavan and Dargush, 2009).

Distribution of isolators among different bays was also

investigated by researchers (Mezzi, 2010; Whittle et al., 2012;

Takewaki and Akehashi, 2021). For example, Mezzi (2010)

investigated seven different configurations of energy-

dissipating braces for an 18-storey reinforced concrete frame,

showing that random distributions of isolators in Figure 4A can

offer better isolation performance than conventional regular

distributions as illustrated in Figure 4B. However, the

optimization of such complex decision problems is still

challenging.

Existing analysis and design of building isolation systems are

often based on the linear or bi-linear characteristics of isolators,

which often have limited performance in isolating near-fault

earthquakes compared with far-fault long-period earthquakes

(Providakis, 2009; Gur et al., 2014; Ozuygur and Noroozinejad

Farsangi, 2021; Akehashi and Takewaki, 2022b). Near-fault

earthquakes often contain extensive pulses and high-frequency

vibrations can be amplified to the super-structures by linear base

isolation systems as illustrated in Figure 5 (Ho et al., 2018).

Developing non-linear base isolation systems can solve these

challenges and deal with both near and far-fault earthquakes. For

example, the optimal acceleration transmissibility shown in

Figure 5 can be achieved by applying power-law non-linear

damping based building base isolation system (Ho et al.,

2018). Non-linear dampers applied to inter-storey isolation

systems also have better performance in reducing inter-storey

drifts than linear dampers (Fujita et al., 2014).

FIGURE 3
Inter-storey building isolation systems.
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Therefore, developing non-linear building isolation systems,

as well as systematic analysis and design approaches, is necessary

for the development of the next-generation’s building isolation

systems. Current research on the development of non-linear

building isolation systems will be reviewed in the following

sections.

2 Non-linear stiffness for building
isolation

2.1 The quasi-zero stiffness isolator

The QZS isolator enables an isolation system to achieve low

resonance in vibration while keep a high supporting capacity in

static scenarios, which has demonstrated great advantages

especially in solving low-frequency vibration isolation

problems (Niu et al., 2013; Li et al., 2020; Yan et al., 2022).

The QZS is a non-linear mount composed of a negative stiffness

component and a positive stiffness component as shown in

Figure 6A, where kv; kh are the vertical and horizontal

stiffness, respectively; lv; lh are the length of the vertical and

horizontal spring under the load f. The force-displacement

(F −D) characteristic of a QZS is illustrated in Figure 6B,

showing the high static (kv) low dynamic (kd) stiffness property.

In practice, there are many ways to realize a QZS isolation

system. For example, a QZS can be simply achieved by using a

disk spring shown in Figure 7A (Zhou et al., 2022). Dai et al.

(2018) and Chai et al. (2022) developed a series of bio-inspired

QZS isolators as illustrated in Figure 7B, which have been applied

to solve vibration isolation problems in vehicle suspensions

(Feng and Jing, 2019) and hand-held jackhammers (Jing et al.,

2019). A convex ball-roller mechanism was developed to enable

QZS isolation for rotor systems in Figure 7C (Zhang et al., 2020).

Buckled beams can naturally produce negative stiffness in

Figure 7D (Liu et al., 2013), and U-shape beam structures

were developed and applied to building base isolation systems

as demonstrated in Figure 7E (Ene et al., 2016).

In building isolation systems, the QZS isolators are often

applied to isolate vertical vibrations that are frequently observed

in near-fault seismic events (Liu et al., 2018). Zhou et al. (2019)

FIGURE 4
Distribution of inter-storey building isolators: (A) Random distribution, (B) Regular distribution.

FIGURE 5
Acceleration transmissibility from ground motion to the
isolation layer of the 10-storeys Sosokan building in Japan, where
the linear damping c1 (solid) < c2 (dashed) < c3 (dotted) < c4 (dot-
dashed). The optimal transmissibility line is notated by the
thick pale blue line.

FIGURE 6
The mechanism of the QZS (A) The QZS structure; (B) The
force-displacement relation of the QZS.
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studied the base isolation of a 3-dimensional 7-storey frame

concrete building by using both the disk spring with QZS and the

equivalent linear spring. The results demonstrate a significant

acceleration reduction of the building structure at the expense of

a slight increase in displacement response compared to a fixed

seismic isolation system in Figure 8.

Chen et al. (2022) developed an integrated QZS system

composed of horizontal spring and LRB damper to isolate

horizontal seismic input to buildings (Figure 9A). The

schemes of QZS based vertical and horizontal isolation

systems are shown in Figure 9B. In addition, Liu et al. (2020)

developed a novel 3-dimensional seismic isolator combining the

QZS system to prevent the vertical and rotational vibration of

buildings. Valeev et al. (2019) reported a two-component

material with the QZS property for building vibration

isolation (Figure 9C).

2.2 Non-linear energy sink

The TMD has been used as a vibration absorber in high-rise

buildings and landscape towers such as Shanghai Tower (632 m

high) (Zhou et al., 2018), Taipei 101 Tower (508 m high), New

York Citicorp Center (279 m high), Boston John Hancock Tower

(457 m high), and Sydney Tower (305 m high) (Chung et al.,

2013). However, a TMD only works for a particular modal

FIGURE 7
Different types of QZS isolation systems (A) The disk spring; (B) The bio-inspired QZS; (C) The torsional QZS; (D) The buckled beams; (E) The U
shape QZS.

FIGURE 8
The acceleration reduction and displacement responses of a 7-storey building system (A) The accelerations of the fourth and the top floor; (B)
The floor displacements and drifts.
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frequency of the building over a narrow frequency band (Saidi

et al., 2006). The tuning strategy of a TMD is vitally important

but usually complex due to the complexity of building structures

(Ferreira et al., 2018).

To address the issues in linear TMD isolation systems, a

series of non-linear TMD systems were developed (Alexander

and Schilder, 2009). One of the most commonly studied non-

linear TMD is the NES (Gomez et al., 2021). A typical NES is

shown in Figure 10A, which integrates the TMD and QZS to

achieve wider damping frequency and better robustness without

increasing the resonance peak (Ding and Chen, 2020). Gourdon

et al. (2007) compared the vibration isolation performance of a 2-

Degree of Freedom (2DoF) system by using NES and TMD and

the results indicate the NES has much better isolation

performance than linear TMD as shown in Figure 10B. If the

vertical damper of the NES is replaced by a linear spring, the

system becomes a KDamping isolation system as shown in

Figure 10C, which has been applied to energy absorption of

vehicle vibrations (Papaioannou et al., 2019) and seismic

isolation of bridges (Sapountzakis et al., 2016).

Recently, Wang et al. (2020) applied a track NES to the top of

a 32-storey high-rise building, showing that a track NES is robust

against changes in structural stiffness and maintains high energy

absorption efficiency of building isolation systems. Luo et al.

(2014) and Wierschem et al. (2014) conducted experiments on

large-scale model building structures with multiple NES devices.

In their studies, three historic earthquake ground motions were

scaled down and implemented by a large-scale shake table,

proving the efficiency of the NES based vibration mitigation

in earthquakes. The design of NES isolation systems is often

conducted by using non-linear dynamic analysis approaches

such as the Harmonic Balance Method (HBM) (Luongo and

FIGURE 9
The QZS based building isolation systems (A) The horizontal QZS isolation system; (B) The vertical QZS isolation system; (C) The QZS material.

FIGURE 10
The NES isolation system and KDamper (A) The NES structure; (B) Comparison of the NES and the TMD; (C) The KDamper.
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Zulli, 2012) and the Non-linear Normal Modes (NNM) approach

(Ahmadabadi and Khadem, 2012). But these approaches are

often difficult to be applied to complex building isolation systems

(Li et al., 2021).

3 Non-linear damping for seismic
isolation

3.1 Non-linear viscous damper

In order to improve the seismic isolation performance of

traditional linear building isolation systems, non-linear viscous

damping has been applied to both the base and super-structure

isolation of buildings. In general, the force-velocity relationship

for a non-linear viscous damper can be written as (Milanchian

and Hosseini, 2019).

fd � cαsgn vd( ) vd| |α

where fd is the damping force, cα is the damping coefficient, vd is

the velocity, and α is the velocity exponent.

Many studies on non-linear damping-based building

isolation systems have been carried out by researchers. The

non-linearly damped inter-storey isolation system is illustrated

in Figure 11A (Dong et al., 2016). Martinez-Rodrigo and Romero

(Martinez-Rodrigo and Romero, 2003) found that by applying

non-linear inter-storey viscous dampers, the forces in the

dampers can be reduced by more than 35% while having a

structural performance similar to that with using linear

dampers. Since large damper forces have important

implications on the overall retrofitting cost, manufacturers

generally strive for achieving such a non-linear behaviour in

their products (De Domenico and Hajirasouliha, 2021). Kangda

and Bakre (2018) studied the seismic isolation of adjacent

buildings, observing that at low damping ratio, non-linear

dampers perform better than linear dampers in reducing

absolute accelerations. The optimal placement of non-linear

dampers for building structures was investigated by Fujita

et al. (2014, 2021), showing that the velocity exponent α plays

a key role in vibration suppression under low level seismic input.

Moreover, a non-linear damper is much more effective than a

linear damper under very rare earthquakes having seismic

intensities larger than the design earthquakes.

Additional non-linear damping to building base isolation

systems can bring significant benefit to seismic isolations.

Deringol and Guneyisi (2021) investigated the effectiveness of

non-linear fluid viscous dampers in seismic isolation with LRB

shown in Figure 11B. The study found that the non-linear

damper can significantly mitigate long-period seismic

vibrations (T > 4s) with optimized velocity exponents α and

positions. Menga et al. (2021) found that non-linear damped base

isolation can provide desired isolation performance over a wider

range of excitation spectra than a linear damper. Lang et al.

(2009) theoretically proved that a power-law non-linear damping

can produce desired vibration isolation performance over both

resonant and non-resonant frequency ranges. This property has

been applied to the development of non-linear building isolation

systems. For example, Lang et al. (2013) studied the design of

power-law non-linear viscous damping for high-rise building

base isolation systems under both long-period sinusoidal and

random ground motions, where the energy transmissibility is

applied as the objective function for non-linear damping design.

The prominent advantages of non-linear damping in high-

frequency seismic isolation have been proven by Ho et al.

(2018), Guo et al. (2012), and Zhu et al. (2020), which can

profoundly improve the building isolation performance under

both far-fault and near-fault earthquakes.

3.2 Implementation of non-linear
damping

In general, a desired non-linear damping characteristic

cannot be achieved naturally by materials and pure

mechanical design. Specific mechanical structures and

materials only produce limited non-linear properties. For

FIGURE 11
The non-linearly damped inter-storey and base isolation systems (A) The inter-storey isolation system; (B) The base isolation system.
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example, Ilbeigi et al. (2012) developed a non-linear

displacement-dependent damper by introducing a varying

cross-section piston guide in a damper as shown in

Figure 12A. Bian and Jing (2019) applied a horizontal damper

to an X shape isolator to achieve non-linear damping as shown in

Figure 12B. Tang and Brennan (2013) found that a horizontal

damper attached to a vibration isolator in Figure 12C can be

represented by an unplugged Van der Pol equation.

In order to achieve desired non-linear damping properties,

magnetorheological (MR) damper and semi-active control

approaches were employed (Yao et al., 2002). The structure of

MR dampers is shown in Figure 13A, where by controlling the

external magnetic field, the MR fluid can produce various

damping coefficients (Li et al., 2019). A novel semi-active

control of MR dampers was developed in Laalej et al. (2012)

as illustrated in Figure 13B, where f( _x) is the desired non-linear

force to be achieved; i(t); V(t) are the MR damper control

current and MR damper power amplifier input voltage,

respectively. The semi-active control strategy was verified by

experiments in Ho et al. (2013) as shown in Figure 13C.

In addition, Ho et al. (2018) and Zhu et al. (2020) developed

an open-loop semi-active control strategy based on a viscous

damper with four linear damping coefficients for the base

isolation of the Sosokan building (Japan) model. Ma et al.

(2020) obtained desired non-linear damping force by

controlling an electromagnetic shunt damping device.

4 Analysis and design of non-linear
seismic isolation systems

4.1 Building isolation system analyses

In order to study the dynamic properties of building isolation

systems, a building structure is often simplified as a Multiple-

Degree-of-Freedom (MDoF) mass-spring-damper system

(Figure 14A) (Silva-Navarro and Abundis-Fong, 2017). For

example, Yamamoto et al. (2011) studied the input energy

and energy input rate to a base-isolated building during an

earthquake based on an MDoF N-storey shear building model.

Liu et al. (2018) investigated the effectiveness of FVDs in building

inter-storey isolation based on a 7DoF building model. The

N-storey building model was also applied to the analysis and

design of LRB base isolation systems (Kodakkal et al., 2019),

FIGURE 12
Different mechanisms of non-linear damping (A) The displacement-dependent damper; (B) The X shape isolator with additional damper; (C)
The horizontal damper.

FIGURE 13
The MR damper and the semi-active control strategy (A) The MR damper; (B) The semi-active control strategy; (C) The implementation of the
non-linear damping.
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TMD isolation systems (Giaralis and Taflanidis, 2018), as well as

many non-linear and adjacent building isolation systems

(Milanchian and Hosseini, 2019).

In general, an MDoF system can be easily simulated by using

Runge-Kutta method (Soni et al., 2011), but it is often with low

fidelity and only be used for conceptual studies of building

isolation systems. To address this issue, more complex truss

frame structures were considered in building isolation analyses

(Figure 14B) (Takewaki, 2000), where structure mechanics

approaches can be applied to compute the building responses

under seismic input. For example, Eltahawy and Ryan (2020)

studied the application of a 3-dimensional isolation system to the

reduction of non-structural component damage caused by vertical

excitations based on a frame building model. Takewaki (2000)

proposed a systematic procedure by using the transfer function, in

order to find the optimal damper positioning to minimize the

dynamic compliance of a planar building frame. High fidelity

Finite Element (FE)models are also used in the analysis of building

isolation systems (Figure 14C), but they are often complex and

with high computational costs in practical use (Wang et al., 2021).

4.2 Linearization approaches

In order to study the effects of non-linear building isolation

systems, non-linear isolators are usually linearized as an equivalent

linear isolator, so that the linear system theories can be applied for

system analysis. For example, effective stiffness and damping of LRB

are often evaluated for the analysis and design of LRB building

isolation systems (Hwang and Chiou, 1996). In general, the

linearization of the building isolation system is to find equivalent

linear stiffness or damping, so that the output displacement of the

linearized isolated building is equal to that of the non-linearly

isolated building (Liu et al., 2014). In practice, the most

commonly used linearization method was proposed by

Rosenblueth and Herrera (1964) and has been adopted by many

seismic codes (Eurocode eight; AASHTO; NTC). For example, Ma

et al. (2013) applied the equivalent linearization method to the

analysis and design of base-isolated buildings with many hysteretic

devices. Zhang et al. (2020) studied the linearization of a flag-shaped

isolation system, based on which the inter-storey brace isolation

systems were optimized. Zordan et al. (2014) derived the equivalent

damping ratio of an LRB isolated building model based on over

12 ground motions. Shinozuka et al. (2015) applied the stochastic

linearization method investigate the LRB based building base

isolation under random ground motions.

For the design of non-linear isolators, the equivalent

linearization is often conducted based on the equivalent force

or energy of the isolator. The equivalent linearization is therefore

to solve the optimization problem (Zhu et al., 2022):

minE fnon t( ) − feq t( )[ ]2{ }

where fnon(t) and feq(t) are the non-linear and equivalent

linear force of the isolator, respectively; E .{ } represents the

mean value. To solve equivalent linear damping problems,

Elliott et al. (2015) studied the equivalent linear damping of

power-law non-linear damping under both harmonic and

random excitations. Bajric and Hogsberg (2018) derived

equivalent linear damping of a hysteretic system under both

low and high levels of excitation amplitudes. Zhu et al. (2022)

developed a novel data-driven modelling approach for building

isolation systems based on the mobility analysis method, where

the design of non-linear isolation damping was conducted based

on the equivalent linearization method.

4.3 Non-linearity frequency design
approaches

Basically, both linear and linearization approaches only work

in a narrow region around the working point of the system as

FIGURE 14
Building models for the analysis and design of isolation systems (A) The N-storey building model; (B) The frame model; (C) The FE model.
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illustrated in Figure 15A (Zhu et al., 2021). In practice, a large

class of non-linear systems can be represented by Volterra series,

which enables the analysis of non-linear systems over a much

wider range of operations around a working point. The Volterra

series is an extension of Taylor expansion to non-linear dynamic

relationships, based on which the non-linear frequency response

functions, such as the Generalized Frequency Response

Functions (GFRFs) (George, 1959), the Non-linear Output

Frequency Response Functions (NOFRFs) (Lang and Billings,

2005), the Output Frequency Response Fucntions (OFRF) (Lang

et al., 2007) and the Associated OFRF (AOFRF) (Zhu and Lang,

2018), were developed for non-linear system frequency analysis

and design.

Among these non-linear frequency response functions, the

OFRF and AOFRF are one-dimensional functions, and have been

applied to the design of non-linear dynamical systems. The

concept of the OFRF was first developed by Lang et al.

(2007), using which the system output frequency response can

be written as a polynomial function of non-linear characteristic

parameters:

Y jω( ) � ∑
j1 ,/,jS( )∈J

λ j1 ,/,jS( ) jω( )ξ1j1/ξS
jS

where Y(jω) is the system output frequency response;

λ(j1 ,/,jS)(jω) are the functions of frequency variable ω and are

dependent on the linear characteristic parameters of the system;

ξ1, . . . , ξS are system non-linear design parameters; J denotes

integer vectors. Figure 15B shows an example of OFRF (Zhu and

Lang, 2017), the spectrum of the output force of a non-linear

system is represented by a polynomial function of c3 and k3
which are two non-linear design parameters of system non-

linearity.

Based on the concept of OFRF, Peng and Lang (2008)

proposed the least squares based evaluation of the OFRF

representation. Guo et al. (2012) and Ho et al. (2018)

conducted the OFRF based design of non-linearly damped

building base isolation systems by minimizing the energy

transmissibility of the buildings. Fujita et al. (2014)

investigated the optimal placement of inter-storey non-linear

damper using the OFRF design approach. Considering that the

OFRF only considers the relationship between system output

frequency responses and non-linear design parameters,

recently, Zhu and Lang. (2018) developed a novel AOFRF

concept to deal with the non-linear system design by

determining both the system’s linear and non-linear

characteristic parameters.

5 Conclusion

This paper has reviewed the development of the analysis and

design of passive non-linear building isolation systems. The

building isolation systems are divided into two categories,

which are the base isolation systems and the super-structure

isolation systems. The current analysis and design of typical LRB

and FPB base isolation systems, viscous damping inter-storey

isolation systems, and TMD top floor isolation systems have been

overviewed. Moreover, commonly used non-linear isolators for

base and super-structure isolation systems, including the QZS,

NES, and non-linear viscous damper, as well as their

implementations, have been summarized. It can be concluded

that these non-linear isolation systems are promising solutions to

both near-fault and far-fault seismic isolations.

Finally, the analysis and design approaches of non-linear

building isolation systems have been introduced. These

approaches include the linearization approaches and the non-

linear frequency design approaches. The increasing applications

of these approaches demonstrate a systematic analysis and design

of non-linear building isolation systems are really needed in

engineering practice. The solutions include but are not limited to

the investigation of effective modelling and simulation

approaches for non-linear building isolation systems, the

development of systematic non-linear analysis approaches, the

specification of effective design objectives in both the frequency

FIGURE 15
The Volterra series representation and the OFRF based design of non-linear systems.
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and time domain, as well as the development of non-linear

system design approaches.
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