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A great variety of phenomenological models has been proposed over the years

to model rate-independent hysteretic forces in structural mechanics. The

classification of such models is usually based on the type of equation that

needs to be solved to evaluate the output variable. In particular, we distinguish

among algebraic, transcendental, differential and integral models. For algebraic

(transcendental) models, an algebraic (a transcendental) equation needs to be

solved to compute the output variable; conversely, differential equations are

employed for differential models, whereas equations expressed in integral form

characterize integral models. This paper provides a mini-review of the most

adopted phenomenological rate-independent uniaxial hysteretic models. Such

models are selected in order to provide a complete overview of the four types of

previously mentioned models, currently available in the literature. In particular,

we illustrate the fundamental characteristics of each model and discuss their

peculiarities in terms of 1) number of adopted parameters and variables, 2)

physical interpretation of parameters and related calibration procedures, 3) type

of hysteresis loop shapes that can be simulated.
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1 Introduction

The mathematical modeling of hysteresis phenomena is a challenging problem

addressed during the years by different authors by means of different models. The

main aim of the various authors was to obtain accurate and computationally efficient

models based on a small number of parameters (Vaiana et al., 2019b). The model

proposed in the literature can be classified into four main categories based on the type of

equation that need to be solved to compute the output variable (Vaiana et al., 2018; Vaiana

et al., 2021b). In particular, we have: 1) algebraic, 2) transcendental, 3) differential, 4)

integral models.
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2 Algebraic models

2.1 Ramberg-Osgood model

The Ramberg-Osgood model is an algebraic model

formulated by Ramberg and Osgood (1943). In this model,

generally used for simulating the behavior of steel, the

generalized displacement u is assumed as the output variable

and is expressed as the sum of two terms:

u � ue + up, (1)

an elastic and a plastic generalized displacement indicated,

respectively, as ue and up. In particular, the generalized

displacement is evaluated in a closed-form as:

u � f

E
+ K

f

E
( )n

, (2)

where E is the elastic modulus,K and n are constants that depend on

the considered material. The first term on the right-hand side of Eq.

2 is equal to the elastic part of the generalized displacement, whereas

the second term accounts for the plastic part. The parameters K and

n describe the hardening behavior of the material. Introducing the

generalized yield force of the material fy, and defining a new

parameter α as:

α � K
f

E
( )n−1

, (3)

it is possible to rewrite the general expression as follows:

u � f

E
+ α

f

E

f

fy
( )n−1

. (4)

Since Eq. 4 defines the skeleton curve, it is necessary to adopt the

Masing rule (Masing and Mauksch, 1926) in order to simulate an

entire hysteresis loop.

2.2 Giuffrè-Menegotto-Pinto model

As reported in Carreño et al. (2020), the model was first

developed by Giuffrè (1970), and was based on the nonlinear

stress-strain relation proposed by Goldberg and Richard (1963)

and incorporates the effect of plastic deformations on the

Bauschinger effect observed in steel tested experimentally. The

formulation was further improved by Menegotto and Pinto (1973)

and subsequently used bymultiple authors due to its simplicity and

accuracy in predicting the response of reinforcing steel. Filippou

et al. (1983) later incorporated the effect of isotropic hardening

into the constitutive law. The formulation proposed by Filippou is

often preferred in the modeling of reinforced concrete systems

given the consistent response and limited failures in convergence

observed in the nonlinear analysis of large structural models. The

constitutive relation of the model is:

f � Eh + E − Eh

1 + u
uy

∣∣∣∣∣∣
∣∣∣∣∣∣r( )1

r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦u, (5)

where E is the elastic modulus, Eh is the post-elastic stiffness, uy is

the yield generalized displacement and r is a parameter which

controls the rate of variation of the tangent stiffness from E to Eh.

In particular, the expression for the evaluation of the parameter

r is:

r � r0 −
a1 u

uy

a2 + u
uy

. (6)

Since Eq. 5 defines the skeleton curve, as done for the Ramberg-

Osgoodmodel, it is necessary to adopt theMasing rule in order to

simulate an entire hysteresis loop.

2.3 Algebraic model

The model proposed by Vaiana et al. (2019a) is a uniaxial

phenomenological model which can simulate hysteresis loops

limited by two parallel straight lines or curves by adopting a set of

only five parameters easy to calibrate (Sessa et al., 2020).

Furthermore, the model allows one to evaluate the output

variable by means of a closed form expression having an

algebraic nature.

In particular, the generalized force f, during the generic

loading phase ( _u> 0), can be evaluated as:

f u, u+
j( ) � c+ u, u+

j( ) if u< u+
j

cu u( ) if u> u+
j ,

{ (7)

whereas, during the generic unloading phase ( _u< 0), it can be

computed as:

f u, u−
j( ) � c− u, u−

j( ) if u> u−
j

cl u( ) if u< u−
j .

{ (8)

In Eqs. 7 and 8, c+ and c− represent, respectively, the generic

loading and unloading curves whose expressions are:

c+ u, u+
j( ) � β1u

3 + β2u
5 + kbu + f0

+ ka − kb
1 − α

1 + u − u+
j + 2u0( )1−α − 1 + 2u0( )1−α[ ],

(9)
c− u, u−

j( ) � β1u
3 + β2u

5 + kbu − f0

+ ka − kb
α − 1

1 − u + u−
j + 2u0( )1−α − 1 + 2u0( )1−α[ ],

(10)
whereas cu and cl are, respectively, the upper and lower limiting

curves having expressions:

cu u( ) � β1u
3 + β2u

5 + kbu + f0, (11)
cl u( ) � β1u

3 + β2u
5 + kbu − f0. (12)
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The internal variable u+j (u−j ), characterizing the generic loading
(unloading) phase, is given by:

u+
j � 1 + uP + 2u0 − { 1 − α

ka − kb
[fP − β1u

3
P − β2u

5
P − kbuP − f0

+ ka − kb( ) 1 + 2u0( )1−α
1 − α

]} 1
1−α
, (13)

u−
j � −1 + uP − 2u0 + { α − 1

ka − kb
[fP − β1u

3
P − β2u

5
P − kbuP + f0

+ ka − kb( ) 1 + 2u0( )1−α
α − 1

]} 1
1−α
, (14)

where uP and fP are the coordinates of the initial point of c
+ (c−).

The internal model parameters u0 and f0 can be expressed in

terms of the parameters ka, kb, and α as follows:

u0 � 1
2

ka − kb
δk

( )
1
α

− 1⎡⎢⎣ ⎤⎥⎦, (15)

f0 � ka − kb
2 1 − α( ) 1 + 2u0( )1−α − 1[ ], (16)

where δk is the difference between the two different values

assumed by the transverse tangent stiffness at u+j (u−j ).
However, the authors suggests, based on the results of several

numerical tests (Vaiana et al., 2020; Vaiana et al., 2021a;

Pellecchia et al., 2022), to set δk = 10–20.

3 Transcendental models

3.1 Kikuchi-Aiken model

The transcendental model proposed by Kikuchi and Aiken

(1997) was formulated with the purpose of accurately predicting

the response of elastomeric bearings (Losanno et al., 2019; Losanno

et al., 2022a; Losanno et al., 2022b; Losanno et al., 2022c).

The generalized force f is expressed as the sum of two terms:

f u( ) � f1 u( ) + f2 u( ), (17)
where

f1 u( ) � 1
2

1 − fu

fm
( )fm u + sgn u( )|u|n[ ], (18)

and

f2 u( ) �
fu 1 − 2e−a 1+ u

um( ) + b 1 + u

um
( )e−c 1+ u

um( ){ } if _u> 0

−fu 1 − 2e−a 1− u
um( ) + b 1 − u

um
( )e−c 1− u

um( ){ } if _u< 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(19)

In particular, fu is the generalized force at zero generalized

displacements, fm is the generalized peak force on the skeleton

curve, um is the generalized peak displacement on the skeleton

curve and the parameter n specifies the stiffening phenomenon.

The model parameters a, b, and c are obtained by imposing the

following expressions:

1 − e−2a

a
� 1 − πheqfm

2fu
, (20)

b � c2
πheqfm

fu
− 2 + 2

a
e−2a − 1( )[ ]{ }, (21)

where heq is the equivalent viscous damping ratio, evaluated

from an empirical formula as a function of the generalized

force, which is determined from the results of tests performed

on individual bearings. Both Eqs. 20 and 21 are derived

assuming that the analytical hysteresis loop area matches

the experimental one.

Eq. 19 are derived for application to steady-state hysteresis

behaviors for elastomeric bearings. Masing rule is applied to fully

define the generalized force under a randomly-varying

displacement, and Eq. 19 are replaced by:

f2 u( ) �
f2i + fu 2 − 2e−a

u−ui
um( ) + b

u − ui

um
( )e−c u−ui

um( ){ } if _u> 0

f2i − fu 2 − 2ea
u−ui
um( ) − b

u − ui

um
( )ec u−ui

um( ){ } if _u< 0,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(22)

where

f2i � fi − f1, (23)

and (ui, fi) is the most recent point of load reversal.

3.2 Vaiana-Rosati model

The model proposed by Vaiana and Rosati (2023) is a new

uniaxial phenomenological model which can simulate a great

number of rate-independent hysteretic responses

characterized by symmetric, asymmetric, pinched,

S-shaped, flag-shaped hysteresis loops or by a combination

of them. The model is based on two sets of eight parameters

controlling the loading and unloading phase in a separate way.

Furthermore, the model allows one to evaluate the output

variable by means of a closed form expression having an

exponential nature.

In particular, the generalized force f, during the generic

loading phase ( _u> 0), can be evaluated as:

f u, u+
j( ) � c+ u, u+

j( ) if u< u+
j

cu u( ) if u> u+
j ,

{ (24)

whereas, during the generic unloading phase ( _u< 0), it can be

computed as:

f u, u−
j( ) � c− u, u−

j( ) if u> u−
j

cl u( ) if u< u−
j .

{ (25)
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In Eqs. 24 and 25, c+ and c− represent, respectively, the generic

loading and unloading curves whose expressions are:

c+ u, u+
j( ) � β+1 e

β+2 u − β+1 +
4γ+1

1 + e−γ
+
2 u−γ+3( ) − 2γ+1 + k+b u + f+

0

− 1
α+

e
−α+ +u−u+j +�u+( ) − e−α

+ �u+[ ], (26)

c− u, u−
j( ) � β−1 e

β−2 u − β−1 +
4γ−1

1 + e−γ
−
2 u−γ−3( ) − 2γ−1 + k−b u − f−

0

+ 1
α−

e−α
− −u+u−j +�u−( ) − e−α

− �u−[ ], (27)

whereas cu and cl are, respectively, the upper and lower limiting

curves having expressions:

cu u( ) � β+1 e
β+2 u − β+1 +

4γ+1
1 + e−γ

+
2 u−γ+3( ) − 2γ+1 + k+b u + f+

0 , (28)

cl u( ) � β−1 e
β−2 u − β−1 +

4γ−1
1 + e−γ

−
2 u−γ−3( ) − 2γ−1 + k−b u − f−

0 . (29)

The internal variable u+j (u−j ), characterizing the generic loading
(unloading) phase, is given by:

u+
j � uP + �u+ + 1

α+
ln{ + α+[β+1 eβ+2 uP − β+1 +

4γ+1
1 + e−γ

+
2 uP−γ+3( ) − 2γ+1

+k+buP + f+
0 +

1
α+

e−α
+ �u+ − fP]}, (30)

u−
j � uP − �u− − 1

α−
ln{ − α−[β−1 eβ−2 uP − β−1 +

4γ−1
1 + e−γ

−
2 uP−γ−3( ) − 2γ−1

+k−buP − f−
0 −

1
α−

e−α
− �u− − fP]}, (31)

where uP and fP are the coordinates of the initial point of c
+ (c−).

4 Differential models

4.1 Bouc-Wen model

The Bouc-Wen model is a uniaxial rate-independent

hysteretic model, having a differential nature, that has been

originally formulated by Bouc (1967) and subsequently

extended by Wen (1976). The model is capable of simulating

symmetric generalized force-displacement hysteresis loops

(Visintin, 2013; Carboni et al., 2018). In the formulation of

the model proposed by Wen (1980), the differential equation

that defines the model and that needs to be solved is:

_f � −β _u f
∣∣∣∣ ∣∣∣∣n − γ _u| | f∣∣∣∣ ∣∣∣∣n−1f + A _u, (32)

where β, γ, A and n influence the generalized force-displacement

hysteresis loop shape. In particular, parameters γ and β control the

shape of the hysteresis loop, A the restoring force amplitude, and n the

rate of variation between the initial and the asymptotic tangent stiffness,

a large value of n corresponds to an almost bilinear hysteresis loop.

4.2 Ozdemir model

The model was proposed by Ozdemir (1976) and illustrated in

more detail in Graesser and Cozzarelli (1991). The model proposed

by Ozdemir is a modified form of the Bouc-Wenmodel. This model

is general enough to include a variety of different types of hysteretic

behavior. In addition, the material model is linked to experimental

studies of the properties of a nickel-titanium shape-memory alloy

(SMA). The equations that describe the model are:

_f � E _u − _u| | f − β

Y
( )n[ ]

_β � αE _u| | f − β

Y
( )n

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(33)

TABLE 1 Uniaxial phenomenological models.

type model n° of parameters internal variables loops shapes

Algebraic Ramberg-Osgood 4 3 (A)

Giuffrè-Menegotto-Pinto 6 3 (A)

Algebraic 5 4 (A), (E)

Transcendental Kikuchi-Aiken 5 5 (A), (C), (E)

Vaiana-Rosati 16 4 (A)–(H)

Differential Bouc-Wen 4 - (A)

Ozdemir 4 1 (A), (G)

Integral Preisach μ(α, β) - (I)
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where f is the generalized force, u is the generalized displacement, β

is the generalized back-force, E is the elastic modulus, Y is the

generalized force correspondent to the point obtained as the

intersection of the upper limiting straight line and the tangent

line to the origin, n is a constant parameter controlling the rate

of variation of the tangent stiffness fromE to the asymptotic valueEy,

and α is a constant controlling the tangent stiffness of the hysteresis

loop and is given by:

α � Ey

E − Ey
. (34)

5 Integral models

5.1 Preisach model

The Preisach model, first derived in Preisach (1935) and than

described in Kuczmann (2010) and Mayergoyz (1986), is an

integral model given by:

f t( ) � ∫∫
α≥β

μ α, β( ) γ α, β, u t( )( )dαdβ. (35)

FIGURE 1
Hysteresis loops shapes.

Frontiers in Built Environment frontiersin.org05

Capuano et al. 10.3389/fbuil.2022.1048533

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1048533


The model is obtained considering an infinite set of simplest

hysteresis operators γ. These operators can be represented by

rectangular loops on the input-output plane. Numbers α and β

correspond to up and down switching values of input. The outputs

of these operators may assume only two values, + 1 and −1.

Along with the set of operators γ, the model considers an

arbitrary weight function μ(α, β). To determine μ(α, β), the set of

first order reversal curves should be experimentally found. This

can be done by bringing first the input to such a value that outputs

of all operators γ are equal to −1. Now if we gradually increase the

input value, then we will follow along a limiting ascending branch.

The notation fα will be used for the output value on this branch

corresponding to the input u = α. The notation fαβ will be used for

the output value on the transition curve attached to the limiting

ascending branch at the point fα. This output value corresponds to

the input u = β. At this point we can define the function:

F α, β( ) � fα − fαβ

2
. (36)

Finally it can be proved that:

μ α, β( ) � z2F α, β( )
zαzβ

. (37)

6 Discussion

In this review, we made an overview of some celebrated and

recently formulated models to illustrate their fundamental

characteristics with particular attention to the number of

parameters that need to be set (Table 1) and, if present, their

physical interpretation. We also show the different kinds of

hysteresis loop shapes, shown in Figure 1, that can be

simulated by using the different models.

In particular, from Table 1 it can be noted that:

• differential models require a small number of parameters

but can simulate only simple hysteresis loops shape;

• models such as the algebraic Ramberg-Osgood, the

Giuffrè-Menegotto-Pinto, and the transcendental

Kikuchi-Aiken, define only the skeleton curve of a

loop. Therefore, it is necessary to use the Masing rule to

simulate an entire hysteresis loop, which involves the

addition of a series of internal variables;

• the Vaiana-Rosati model, despite the number of

parameters, allows for the simulation of the vast

majority of hysteresis loop shapes through closed-form

expressions;

• the hysteresis loop shape in Figure 1I, typical of the

magnetic hysteresis, can be simulated only by the

Preisach model, which presents significant difficulties in

the evaluation of the output variable.
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