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New technological developments in engineering present an opportunity for

improved efficiency in structural design through optimization. High-

performance computing resources reduce the time needed for

computational calculations. Concurrently, optimization algorithms have

greatly evolved to provide the opportunity to solve complicated nonlinear

engineering problems that typically include several interrelated, and often

conflicting, objectives under a set of constraints. This research proposes a

method for the optimal design of viscous dampers in seismic applications

utilizing the multi-objective particle swarm optimization (MOPSO) algorithm.

The MOPSO, with its inherent metaheuristic approach and geographically-

based adaptive grids, effectively discovers global and diverse non-convex

solutions. To further improve the efficiency and quality of the search in the

milieu of an engineering application, we have extended MOPSO by introducing

constraints on objective functions and implementing parallel computing.

Additionally, this research provides recommendations on how to efficiently

generate reliable solution sets by proper selection of objective (cost) functions

and adequate set-up of MOPSO input parameters. These recommendations are

derived from a series of sensitivity studies. The proposed method is verified by

utilizing an engineered solution of a viscously damped moment frame. It was

found that under the same set of constraints and performance objectives,

MOPSO produces a solution set that contains outcomes that are superior to the

engineered solutions. For example, the MOPSO solution set contains outcomes

that reduce demands on dampers (force and stroke) while maintaining

engineering demand parameters, generating construction savings as a result

of the reduced manufacturing costs of dampers.
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Introduction

Moment frames with supplementary damping devices (i.e., damped moment

frames) are often used for the design of new and retrofit of existing buildings as they

are known to improve seismic performance at a reasonable cost (Terzic and Mahin,

2017; Wang and Mahin, 2018a; Del Gobbo et al., 2018). The improved performance is
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achieved by perturbing the energy balance during an

earthquake, such that the inelastic dissipation demand on

the moment frame is reduced as a result of energy dissipation

by the damping devices. Contrary to expectations, a study by

Terzic et al. (Terzic et al., 2014) (which focused on the

assessment of the seismic performance of different seismic-

force resisting systems of commercial low-rise buildings)

demonstrated that a damped moment frame designed per

minimum ASCE 7–16 requirements achieves inferior

performance than a code-compliant special moment frame.

This is a direct result of code criteria that permit high

interstory drifts (2.5% for low-rise buildings) along with a

relatively small strength (0.75% of the seismic base shear

based on strength reduction factor (R) of 8), leading to a

highly flexible and relatively weak lateral load-resisting

system. However, Terzic and Mahin (Terzic and Mahin,

2017) further showed that a relatively small investment

into larger damping devices stiffens up the frame, yielding

significant reductions in repair cost and repair time when

compared to a code-compliant special moment frame.

Interestingly, the improved (beyond the code) damped

moment frame achieves far better performance than a

special moment frame at a smaller construction cost.

Therefore, in addition to conforming to the code

requirements, damped moment frames should also conform

to the desired performance objectives set by a client.

While the current state of design practice mainly relies on

manual iterations of design until design and performance

objectives are met, modern optimization algorithms supported

by high-performance computing (HPC) resources provide an

opportunity for solving complex multi-objective non-convex

problems in a timely, accurate, and effective manner. Design

of a damped moment frame through optimization will not only

reduce the time necessary for design but will also reduce the total

system cost.

The optimization algorithms have consistently evolved

since their conception. Initially, simple single-objective

heuristic algorithms, such as the genetic algorithm proposed

by Holland in 1975 (Holland, 1975), have progressed into more

complicated single-objective metaheuristic algorithms, such as

particle swarm optimization (PSO) proposed by Kennedy and

Eberhart in 1995 (Kennedy and Eberhart, 1995). They have

further evolved into multi-objective algorithms supported by

region-based selection methods, such as the Pareto Envelope-

based Selection Algorithm (PESA) (Knowles and Corne, 2000;

Corne et al., 2001). Nowadays, the most prevalent multi-

objective evolutionary algorithms are Multi-Objective

Genetic Algorithm (Fonseca and Fleming, 1993), Non-

Dominated Sorting Genetic Algorithm (Deb and Jain, 2013),

Classic and Intelligent Portfolio Optimization (Vedarajan et al.,

1997), Multi-Objective Evolutionary Algorithm Based on

Decomposition (Zhang and Li, 2007), and Multi-Objective

Particle Swarm Optimization (MOPSO) (CoelloCoello and

Lechuga, 2002). Among the multi-objective optimization

algorithms, MOPSO has the potential to effectively solve

complex engineering problems because it utilizes a small

number of starting populations and geographically-based

adaptive grids (e.g., PESA (Corne et al., 2001)) to maintain

the diversity of solutions.

Optimization for the design or retrofit of systems with

dampers has been of interest to engineers and researchers in

recent years. In 2014, Castaldo and De Iuliis (Castaldo and De

Iuliis, 2014) proposed an integrated optimal seismic

design procedure to achieve a design displacement by

minimizing a cost index that is a function of elastic and

viscoelastic design variables. In 2016, Pollini et al. (Pollini

et al., 2016) presented an effective method for minimizing the

retrofit costs of viscous dampers by setting a constraint on

inter-story drifts. In 2018, Altieri et al. (Altieri et al., 2018)

proposed a reliability-based approach that considered the

intensity of the seismic inputs to find the optimal solution

of the damping coefficients and the velocity exponents for

dampers located on different floors of the building while

minimizing the sum of the damper forces. Furthermore, in

2018, Wang and Mahin (Wang and Mahin, 2018b) proposed

an automated retrofit method with viscous dampers, which

utilized a single-objective function within the gradient-based

optimization algorithm available in computational software

OpenSees (McKenna and Fenves, 2004). In 2019 and 2020,

Aydin et al. (Aydin et al., 2019a; Aydin et al., 2019b; Aydin

et al., 2020) and Cetin et al. (Cetin et al., 2019) conducted a

series of studies that proposed optimal design and distribution

of dampers for shear building structures with fixed

support and with the consideration of the soil-structure

interaction.

While most of the optimization techniques for damped

moment frames used in the past are based on a single-

objective function and locally optimized solutions, the seismic

performance of buildings with dampers mostly depends on

conflicting structural responses (e.g., inter-story drifts and

floor accelerations). To find an optimal design solution that

meets desired performance objectives, it is necessary to use

multi-objective algorithms capable of finding a globally

optimal solution set. While Genetic Algorithms can be used

for multi-objective optimization, they typically require a large

population size to find the global minimum, resulting in a long

computation time. In comparison, the MOPSO algorithm is

more computationally efficient as it requires a relatively small

number of starting populations to find a global minimum while

avoiding trapping in the local optimal solutions.

This research investigates the robustness and efficiency of

the multi-objective metaheuristic optimization algorithm

MOPSO when used in the design of viscous dampers for

seismic applications. In support of the research context, an

overview of MOPSO is first presented. Subsequently, the

research proposes two extensions of MOPSO for use in
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complex engineering problems. The extensions include two

new environments for 1) introduction of different types of

constraints on objective (cost) functions and 2) implementation

of parallel computing to improve the efficiency and quality of

the solution set. Additionally, the research provides

recommendations on how to efficiently generate reliable

solution sets by proper selection of objective (cost) functions

and adequate set-up of MOPSO input parameters. These

recommendations are derived from a series of sensitivity

studies. Finally, the proposed strategy for utilizing MOPSO

in seismic design applications is verified by utilizing an

engineered solution of a viscously damped moment frame.

Overview of MOPSO

The original particle swarm optimization (PSO) (Kennedy

and Eberhart, 1995), inspired by the choreography of the flocking

of birds, is successfully used for solving single-objective

optimization problems. To find an optimal solution, the

algorithm performs a multidimensional search, where the

behavior of each individual (i.e., particle) is affected by either

the best local or best global individual. The approach allows

individuals to benefit from their experience and introduces the

use of flying potential solutions through hyperspace to accelerate

convergence. Coello and Lechuga (CoelloCoello and Lechuga,

2002) have proposed an extension of PSO to allow for multi-

objective optimization and named it “multi-objective particle

swarm optimization” (MOPSO). Their approach uses the

concept of Pareto dominance to determine the flight direction

of a particle and establishes a global repository (an external

memory) to deposit previously found non-dominated position

vectors, which will be used by other particles in the next flying

cycle (i.e. iteration) to guide their flight. Additionally, the updates

to the repository are performed considering geographically-

based adaptive grids to preserve the diversity of solutions

(i.e., diversity of objective function values associated with each

particle).

Pareto dominance is a concept implemented in

optimization practices to determine whether a certain

condition or set of conditions is more desirable in the

current iteration than in the previous one. If the current set

of conditions does not worsen any of the outcomes and also

improves at least one of the outcomes, then it is said to

dominate the previous conditions. This same process leads

to the creation of a Pareto front, a set of solutions to an

optimization problem where no individual solution is

entirely better than any other of the solutions in the set

(Reyes-Sierra and CoelloCoello, 2006). In MOPSO,

nondominated outcomes of each iteration are stored in the

repository and are compared to subsequent iterations’

outcomes (CoelloCoello and Lechuga, 2002). Because

MOPSO is a process meant to optimize several interrelated,

and often conflicting, variables, the concept of Pareto

dominance is very important.

Although there are many ways to adapt MOPSO (Reyes-

Sierra and CoelloCoello, 2006), the logic of the algorithm

typically includes the following elements:

Problem definition

1) Define decision variables.

2) Define the size of the search space (upper and lower bounds

for the decision variables).

3) Define objective (cost) functions; costs must be the function

of decision variables.

MOPSO input parameters selection

1) Set the number of particles in the swarm (i.e., population

size), nPop.

2) Define the repository size (i.e., number of nondominated

particles that can be stored), nRep.

3) Set the maximum number of flying cycles (i.e., number of

iterations), nIter.

4) Set parameters that define the criteria for the selection of the

new position. These include: inertia weight (w), which keeps

particles from traveling too far from one iteration to the next;

personal learning coefficient (c1), which determines how each

particle’s velocity will be affected by its position; and global

learning coefficient (c2), which determines how each particle’s

velocity will be affected by the position of the leader.

Problem initialization

1) Initialize the population by arranging the particles randomly

within a search space. The particle i is defined with a position

vector xi � (xi1, xi2, . . . , xiD), where the dimension,D, of the

position vector represents the total number of decision

variables.

2) Initialize the speed of each particle by setting it to zero, vi �
(vi1, vi2, . . . , viD) � 0.

3) Evaluate the costs (objective function values) for each of the

particles in the swarm.

4) Initialize the repository and store the positions of particles

that represent nondominated vector solutions in the

repository.

5) Generate hypercubes (or grids) of the search space and locate

particles using these hypercubes as a coordinate system where

each particle’s coordinates are defined based on their costs

(objective function values).

6) For each particle initialize the best personal position, Pbesti,

by assigning the current position, xi, to it (i.e., Pbesti � xi).
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This info will be stored in the repository and used to guide the

travel of particles through the search space.

MOPSO main loop

For each iteration (i.e., flying cycle) and each particle in the

swarm do the following:

1) Use roulette wheel selection to choose the leader among

nondominated particles.Position of the leader is designated

as the global best position, Gbest.

2) For iteration n, compute the speed of a particle i for a decision

variable j (where j goes from 1 through D) using Eq. 1:

vnij � w · vn−1ij + c1 · rn1,ij · (Pbestn−1ij − xn−1
ij )

+ c2 · rn2,ij · (Gbestn−1j − xn−1
ij )

(2)

where rn1,ij & rn2,ij are random numbers uniformly distributed

between 0 and 1.

3) Compute the new positions of the particles by adding new

speed to the position of the last cycle using Eq. 2:

xn
ij� xn−1

ij + v
n

ij
(2)

4) Maintain particles in the search space in case they go beyond

the boundaries.

5) Evaluate objective functions for each of the particles in the

swarm.

6) Update the contents of repository (positions of

nondominated particles) together with the geographical

representation of the particles within the hypercubes (or

grids).

7) Use Pareto dominance to decide whether the current position

of the particle is better than the personal best from the

previous cycle. If the personal best position from the

previous cycle is dominated by the new position, the

personal best position is updated using Eq. 3, and stored

in the repository. Otherwise, the repository keeps the old

value.

Pbestnij� xn
ij (3)

Note that the relationship structure between particles

(i.e., neighborhood topology) presented here is one of

many possible topologies that can be used within MOPSO.

Other possible adoptions include but are not limited to:

specifying bounds for the velocity of a particle; establishing

constraints for objective functions; use of constriction

coefficients (Clerc and Kennedy, 2002) to calculate the

search parameters. Given its flexibility and robustness,

MOPSO can be expanded to allow the tackling of new

types of optimization problems.

Adoption of MOPSO for the optimal
design of dampers

The focal point of the research is the evaluation and adoption

of the MOPSO algorithm for use in finding an optimal design

solution set for dampers in the seismic application. A three-story

building with viscously damped moment frames (VDMFs)

located at the building perimeter was utilized in support of

this study. The moment frames of VDMFs conform to the

strength requirements of ASCE 7–16; they were designed for

0.75% of the seismic base shear, which was based on the strength

reduction factor (R) of 8. In this optimization problem, damping

coefficients of dampers are selected to be the only design

(i.e., decision) variables to provide an initial insight into the

usability of MOPSO in seismic applications (see VDMF

Configuration and Modeling Section for more details). The

other damper’s properties, stiffness and velocity exponent, are

adopted from the engineered design solution (Terzic and Mahin,

2017) and take values of 2000 kips/in. and 0.5, respectively. The

main objective of this optimization problem is the selection of

damping coefficients that will yield benefits in terms of seismic

performance and/or construction cost. The main objective

functions include dampers’ forces and global structural

responses that are directly tied to performance (interstory

drifts, floor accelerations, and residual drifts; typically referred

to as engineering demand parameters, EDPs).

VDMF configuration and modeling

VDMFs of a three-story steel office building had six bays with

a spacing of 30 ft, a typical story height of 15 ft, and a first story

height of 17 ft (Figure 1). The site soil class was D, with shear

wave velocity of 180–360 m/s. The building was located in Los

Angeles at a site characterized by spectral accelerations of Ss =

2.2 g (for short period) and S1 = 0.74 g (for a period of 1s). The

building was modeled in OpenSees (McKenna and Fenves, 2004)

by Terzic and Mahin (Terzic and Mahin, 2017) with viscous

dampers modeled utilizing Maxwell model (linear spring and

nonlinear dashpot in series). It is to be noted that dampers of

VDMF were originally designed by Miyamoto International, Inc.

with the design objective to limit the interstory drifts at the design

level earthquake to 1%. To meet the imposed requirement,

dampers had viscous damping of 135 kip/(in./sec)0.5 at the

first two stories (designated as C12) and 35 kip/(in./sec)0.5 at

the third story (designated as C3). It is known that damping

coefficients of dampers have a significant effect on structural

response (Terzic and Mahin, 2017) and are therefore selected as

design (decision) variables in this optimization study. The search

space is defined as follows: C12 range is set to 120–160 kip/(in./

sec)0.5 and the C3 range is set to 20–60 kip/(in./sec)0.5. Note that

the selected ranges of damping coefficients include the design

solution.
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FIGURE 1
Configuration of the VDMF.

FIGURE 2
Flowchart of the proposed adoption of MOPSO.
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Optimization method

As a starting point, the research utilizes Yarpiz’s adoption

of MOPSO (Yarpiz), with its implementation in MATLAB.

This adoption incorporates the Pareto Envelope and the grid-

making technique to find nondominated solutions and

select the leader. New input parameters include: density of

the search space (nGrid), which affects selection of the leader;

inflation rate (α), which helps expend the search space;

leader selection pressure (β), which helps roulette wheel

selection of the leader; deletion selection pressure (γ),

which helps roulette wheel selection of particles to be

deleted from the repository; and mutation rate (μ), which

slightly alters position to push particles further towards an

optimized solution.

Yarpiz’s adoption of MOPSO is further expanded by

introducing constraints on objective functions and by

allowing parallel computing. Figure 2 displays the general

flowchart used for the proposed optimization method. The

design optimization process starts by setting the design

constraints, MOPSO input parameters, objective functions,

design (i.e., decision) variables, and the search space. To

achieve the desired performance, the constraints are assigned

to three main EDPs: interstory drifts, floor accelerations, and

residual drifts. In the next step, a set of design individuals

(i.e., particles) is randomly generated within the feasible range

of design variables (i.e., the search space). Then, for each design

alternative, a nonlinear analytical model is created in the finite

element software OpenSees (McKenna and Fenves, 2004) and

the response analysis is performed on the model. In the present

study, time history analysis is used to evaluate the EDPs. Upon

evaluating the structural responses, the predefined constraints

on EDPs are checked. For each design alternative, if the

constraints are not met, a new design alternative is

generated, and the evaluation of structural response is

repeated. When the design constraints for all alternatives are

met, the stopping criteria of the optimization algorithm are

checked. If the stopping conditions are not met, a new set of

design individuals is generated using the operators of the

MOPSO algorithm, and the response analysis is repeated for

each new design individual. In this study, the stopping

condition is defined with the maximum number of

iterations. The optimization process continues until the

number of iterations reaches the predefined maximum value.

In our adoption of MOPSO, MATLAB was used as an

interface to facilitate workflow between OpenSees and

MOPSO. To be computationally efficient, simulations are

performed utilizing parallel computing options in MATLAB,

allowing for simultaneous objective function evaluations for all

design individuals in one iteration (i.e., flaying cycle). The codes

that facilitate our adaptation of MOPSO are publicly available

(Baei, 2019).

Sensitivity study

To properly adopt the MOPSO algorithm for use in

complex engineering problems, this research explores the

sensitivity of an optimal solution set to: 1) definition of

objective (i.e., cost): functions and 2) choice of three major

MOPSO input parameters: density of the search space

(nGrid), population size (nPop), and the number of

iterations (nIter) (identified by Thomas (Thomas, 2018)).

All other MOPSO input parameters are adopted from

Thomas (Thomas, 2018), where the recommendation about

the choice of input parameters is derived from a sensitivity

study that explores the effect of all MOPSO input parameters

for the case of an elastic single-degree-of-freedom (SDOF)

system subjected to an earthquake. As recommended, the

following MOPSO parameters are maintained constant with

the following values: w � 0.05, c1 � 1.9, c2 � 1.9, α � 0.01,

β � 1.0, γ � 3.0, μ � 0.1.

To provide content to the study, the sensitivity tests are

conducted considering a strong ground motion representative of

an earthquake with 2% probability of exceedance in 50 years

under the following constraints: “maximum” interstory drift

(mISD) limit of 2%, “maximum” floor acceleration (mFA)

limit of 0.85g, and “maximum” residual interstory drift

(mRISD) limit of 0.5%. Within the context of this study, the

“maximum” response represents the maximum of peak

responses across all building floors/stories attained during an

earthquake. Similarly, the “average” response will refer to the

average of the peak responses.

The ground motion utilized for the sensitivity study is El

Centro ground motion (NGA record number 6 within PEER

ground motion database (Pacific Earthquake Engineering

Research Center, 2013)), scaled 3.63 times to represent very

high seismic hazard for the considered site; it is representative

of an earthquake with 2% probability of exceedance in 50 years.

The acceleration time history of the scaled ground motion is

displayed in Figure 3.

Effect of cost functions on the diversity of
the solution set

This section explores the effect of the selected cost (objective)

function on the quality of the solution set, under the selected set

of constraints. In this sensitivity test, the three major MOPSO

input parameters are maintained constant with the following

values: nPop � 30, nGrid � 7, nIter � 5. Initially, a total of nine

different sets of cost functions were explored and presented by

Baei (Baei, 2019). This paper focuses on the results of three most

insightful sets of cost functions:

Set 1: combination of “maximum” global structural responses

(mISD, mFA, mRISD),
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Set 2: combination of “maximum” global structural responses

and dampers’ forces (evaluated indirectly by considering

damping coefficients) (mISD, mFA, mRISD, C12, C3), and.

Set 3: Set 2 expended with a linear combination of dampers’

forces (mISD, mFA, mRISD, C12, C3, C12 + C3).

For the established cost function sets, Figure 4 compares

different design variable outcomes. Runtimes for the three sets

were similar and ranged from 4.06 h (for set 1) to 4.52 h (for set

3). The presented results show that cost functions that only

consider global structural responses (left figure) provide a set of

design variables (repositories of MOPSO) that are concentrated

at the upper-right corner of the search space (higher end of the

range of damping coefficients). Attained solutions may yield

non-optimal design of dampers as there are possible deviant

values in relation to other cost functions not considered in this

initial cost function set. This was a motivation for exploring

additional cost function sets. It was found that consideration of

dampers’ forces (i.e., damping coefficients) as cost functions in

addition to the global structural responses (shown in the middle

figure) diversifies the solution set. Furthermore, adding a linear

combination of dampers’ forces to the previous set of cost

functions (shown in the right figure) provides an additional

benefit, as it further improves the diversity of the solution set

by evening up the optimization benefits across the building

height. Due to its superiority, this final cost function set (Set

3) is selected for further use in sensitivity studies that follow.

Presented results also exemplify that cost functions typically used

by the research community, which include only drift, only

damping coefficients, or combination of drift and acceleration,

would not generate optimized solutions utilizing MOPSO.

Finally, it is to be noted that while significant improvement in

the diversity of the solution outcomes is achieved through the

selection of the cost function, there is a potential for further

improvements by altering the three major MOPSO parameters.

FIGURE 3
Acceleration time history of the selected ground motion (scaled).

FIGURE 4
Effect of selected cost functions on the design variable sets (nPop � 30; nGrid � 7; nIter � 5).

Frontiers in Built Environment frontiersin.org07

Baei and Terzic 10.3389/fbuil.2022.1040129

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1040129


Effect of major MOPSO input parameters
on the diversity of the solution set

Previously, Thomas (Thomas, 2018) investigated the effect of

different MOPSO input parameters on the quality of solution

outcomes of an SDOF system subjected to an earthquake. It was

reported that population size, the density of the search space, and

the number of iterations had a particularly significant impact on

solutions. Therefore, these MOPSO parameters will be altered to

highlight their effect on solution outcomes in the case of

nonlinear structural behavior. Cost function Set 3 (introduced

in Effect of Cost Functions on the Diversity of the Solution Set

Section) will be used in support of this sensitivity study. It is to be

noted that in this adoption of the MOPSO, number of iterations

is the only MOPSO parameter that has a significant effect on

computation time.

The effect of density of the search space, nGrid, on the design

variable outcomes is explored by considering the following values

of nGrid: 7, 10, and 15. In this sensitivity test, population size

(nPop) was set to 30 and the total number of iterations (nIter)
was set to 5. The results presented in Figure 5 demonstrate the

great impact of nGrid parameter on the results of optimization. It

is apparent that higher values of nGrid generate more diverse

design variable outcomes. In this research, nGrid of 15 provides

sufficient diversity and is therefore selected as a benchmark value

for all further sensitivity tests.

The effect of population (swarm) size, nPop, on the design

variable outcomes is next explored by considering the following

values of nPop: 10, 20, and 30. In this sensitivity test, the density

of the search space (nGrid) was set to 15 and the total number of

iterations (nIter) was set to 5. The results presented in Figure 6

show that design variable outcomes dramatically improve with

the increase in population size from 10 to 30. These results

accentuate the importance of population size on the optimization

results. In this study, nPop of 30 generated sufficient diversity of

design variable outcomes and is used as a benchmark value for all

subsequent tests. Finally, it is important to note that if HPC

resources that support parallel computing are available, an

increase in population size should not have an impact on the

MOPSO runtime.

The last MOPSO parameter explored herein is the number of

iterations (i.e., flying cycles), nIter. It is altered to take the following

FIGURE 5
Effect of density of search space, nGrid, on the design variable outcomes (nPop � 30; nIter � 5).

FIGURE 6
Effect of the number of particles in population, nPop, on the design variable outcomes (nGrid � 15; nIter � 5).
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values: 1, 3, and 5. This test uses knowledge from the two prior tests;

therefore nGrid is set to 15 and nPop is set to 30. Figure 7 shows that

each explored case provides a diverse design variable outcome.

However, as the cost functions get optimized with each iteration,

the results show the migration of non-dominated particles in

repositories towards the upper-right corner of the search space. In

this study, 5 iterations achieved satisfactory MOPSO solutions and

are used in the subsequent sections of this paper.

Comparison of solution outcomes when
“maximum” or “average” of an EDP is used
in a cost function

Building on the results of sensitivity studies presented in

Effect of Cost Functions on the Diversity of the Solution Set

Section and Effect of Major MOPSO Input Parameters on the

Diversity of the Solution Set, this section shows the effect of the

choice of response measure (“maximum” or “average”) in the

cost function on the MOPSO solution set. Meanings of

“maximum” and “average” responses are next explained with

an example. For instance, “maximum” ISD is the maximum of

peak ISDs from all stories, where peak ISD of one story

represents maximum ISD (in the absolute sense) attained at

that story during the considered earthquake. Similarly,

“average” ISD is the average of peak ISDs.

Figure 8 shows design variable outcomes across the search

space for the two considered choices of response measure in the

cost function, “maximum” (left figure) and “average” (right

figure). In both cases, the design variable outcomes fall within

the same area of the search space following a similar pattern;

however, the outcomes associated with “maximum” response

FIGURE 7
MOPSO design variable outcomes for different number of considered iterations, nIter (nPop � 30; nGrid � 15).

FIGURE 8
MOPSO design variable outcomes when: (A) “maximum” of an EDP is used as the cost function, (B) “average” of an EDP is used as the cost
function.
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measures are less dense. Furthermore, Figure 9 compares Pareto

fronts of FAs and ISDs for the two choices of response measures

by illustrating “minimum”, “average”, and “maximum”

responses for each particle in the repository. Both choices

result in the same pattern of Pareto fronts, where the choice

of the “maximum” response measure in cost function generates a

wider range of solutions as a result of a higher diversity of design

variable outcomes.

The sensitivity study presented in this section provides

recommendations on how to implement MOPSO for the

optimal design of dampers in a VDMF. It demonstrates the

importance of the proper selection of cost functions, the density

of the search space, population size, and the number of

iterations. It further shows that in the case of a 3-story

building, the MOPSO solution set is not very sensitive to the

choice of “maximum” or “average” EDP in the cost function.

While this paper presents MOPSO results where design variable

ranges are somewhat narrow, Baei (Baei, 2019) shows that

MOPSO provides an equally good solution set for much

wider ranges of design variables. However, it is noted that

the required computation time increases with the increase in

the size of the search space.

Verification of the proposed MOPSO
framework for VDMF

The benefits of the proposed optimization framework are

presented through a verification study that is based on comparing

the MOPSO solution set with the engineered design solution

(described in Sensitivity Study Section). Both, MOPSO and an

engineered solution are derived considering the set of three

spectrally matched ground motions. The pseudo-acceleration

response spectra of the considered ground motions along with

the designed spectrum are shown in Figure 10. Response history

analysis of engineered VDMF subjected to three selected ground

motions generated the maximum interstory drift of 0.99%,

maximum floor acceleration of 0.48g, and maximum residual

interstory drift of 0.18%. To assure optimal design solution with

MOPSO, the following constraints were utilized: 1.2% for

interstory drifts, 0.5 g for floor accelerations, and 0.2% for

residual interstory drifts.

The MOPSO parameters utilized for finding the set of

optimal solutions stem from sensitivity studies presented in

FIGURE 9
Pareto fronts of minima, averages, and maxima of peak responses (i.e., floor accelerations and interstory drifts) across all building floors/stories
for the cases where: (A) “maximum” of an EDP is used in cost function, (B) “average” of an EDP is used in cost function.

FIGURE 10
The design spectra, and ground motions selected for the
designed VDMF.
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Sensitivity Study Section and take the following values:

nPop � 30, nGrid � 15, nIter � 5. Given that the

manufacturing cost of a damper depends on its force and

stroke capacity, the objective functions recommended in Effect

of Cost Functions on the Diversity of the Solution Set Section are

altered to replace ISD with the damper’s stroke, and damping

coefficients with the dampers’ forces. This alteration shall not

affect the quality of the MOPSO solution set (Baei, 2019).

Therefore, objective functions used in this verification study

include “maximum” values of the following structural

responses: dampers’ stroke, FA, RISD, damper force for

dampers of the first two stories (F12), damper force for

dampers of the third story (F3), and a linear combination of

dampers’ forces (F12 + F3). Design variables are still damping

coefficients C12 and C3, but in this case, the search space is

selected assuming that prior engineering knowledge is not

available. The same range is assigned to both C12 and C3

(0–300 kip/(in./sec)0.5), but is much broader than the space

used in the sensitivity studies.

Figure 11A shows Pareto front in terms of “maximum”

damper stroke and “maximum” floor acceleration. Under the

given set of constraints, floor accelerations almost linearly

decrease with the increase of the stroke. To accommodate the

constraints (1.2% on interstory drifts and 0.5 g on floor

accelerations), maximum stroke ranges from 1.45 in. to 2.1 in.

while maximum floor acceleration ranges from 0.42 g to 0.49 g.

FIGURE 11
(A) Pareto front (“maximum” damper stroke vs.“maximum” floor acceleration) and (B) dampers’ forces.

FIGURE 12
Dampers’ forces and strokes for MOPSO (original VDMF design - black dashed line; repository 3—thick black line; repository 8 - tick red line).
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Furthermore, Figure 11B shows that the maximum force of

dampers located on the first two stories is generally greater

than that of the third story. This implies larger damping

coefficients for the bottom two stories than for the third story.

The profiles of maximum forces and strokes of dampers are

shown in Figure 12 for all particles in the repository, along with

the profiles of the engineered solution (black dashed line). By

investigating MOPSO solutions, it was found that particle #3

(black solid line in Figure 12), generates slightly smaller ISDs,

FAs, and RISDs (up to 3%) than the engineered solution while

producing smaller demands on dampers; it has about 20%

smaller damper force demand and about 10% smaller stroke

demand. Damping coefficients associated with particle #3 are

134.5 kip/(in./sec)0.5 and 42.39 kip/(in./sec)0.5 for C12 and C3,

respectively. While C12 is approximately the same as the

engineered solution (135 kip/(in./sec)0.5), C3 is 20% higher

than the engineered solution (35 kip/(in./sec)0.5). To conclude,

it is to be stressed that achieved reduction in damper demands,

while maintaining EDP responses, translates into construction

savings as a result of reduced manufacturing cost of dampers.

Furthermore, particle #8 (red solid line in Figure 12) with C12 of

131 kip/(in./sec)0.5 and C3 of 43 kip/(in./sec)0.5, produces similar

demands on dampers as the engineered solution, while reducing

“maximum” ISDs by 15%. This implies better seismic

performance at the same construction cost. These examples

clearly demonstrate the power, robustness, and efficiency of

MOPSO in seismic applications.

Summary and conclusion

This research focuses on the optimization of viscous dampers

for seismic applications utilizing the multi-objective particle

swarm optimization (MOPSO) algorithm. MOPSO with its

inherent metaheuristic approach and geographically-based

adaptive grids avoids trapping in the local optimal solutions

and is effective in discovering diverse non-convex solutions. To

further improve the efficiency of the search considering an

engineering application, MOPSO is extended by applying

constraints on objective functions and by allowing for parallel

computing.

The research provides recommendations on how to

adequately use MOPSO to generate a reliable solution set in

seismic applications. Special emphasis is placed on the

definition of objective functions, set up of MOPSO input

parameters, and parallel computing utilizing high-

performance computing resources. The presented study

reveals that cost functions that only contain EDPs generate

locally optimized solutions, while consideration of EDPs along

with dampers’ forces and their linear combination improves the

solution set. Furthermore, the study highlights the importance

of proper setup of MOPSO parameters (density of the search

space, population size, and the number of iterations) and

demonstrates their effect on the solution outcomes through

sensitivity studies. The proposed MOPSO adoption for the

design of dampers in the seismic application is verified

through a comparison of the MOPSO solution set with an

engineered design solution. It was found that the MOPSO

solution set contains outcomes that reduce damper demands

(force and stroke) by 10–20% relative to the engineered solution

while maintaining comparable EDP responses. This translates

into construction savings as a result of the reduced

manufacturing cost of dampers. Additionally, the MOPSO

solution set contains the outcomes that reduce “maximum”

ISDs by 15%, while generating similar demands on dampers as

the engineered solution. This implies better seismic

performance at the same construction cost, demonstrating

the power and efficiency of MOPSO in seismic applications.
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