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Structural Health Monitoring (SHM) of civil structures has been constantly

evolving with novel methods, advancements in data science, and more

accessible technology to address issues related to structural safety,

operations, and resiliency. Research and development in the civil SHM field

during the last few decades have been progressive due to the increasing use of

Artificial Intelligence (AI) methods such as Machine Learning (ML) and Deep

Learning (DL). Particularly, Generative Adversarial Networks (GAN), which is a

subfamily of Deep Learning has been highly favored in the SHM community

within the last couple of years. After its release in 2014, GANs (original GAN and

other GAN variants) have been in use for a wide variety of applications in various

disciplines, and it has been one of themost popular research topics in the AI-ML

domain. While there has not been a review study on the applications of GAN in

the civil SHM field, this paper aims to fill this gap by presenting a literature review

of the studies that employed GAN specifically in civil SHM applications from

2014 to date, in a condensed format. This study intends to inform SHM

practitioners and researchers about GANs and present the highlights of the

published work on GANs in the civil SHM field.
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1 Introduction

1.1 Civil structural health monitoring

While the environmental or man-made stressors negatively impact the integrity and

consequently shorten the remaining useful lives of civil engineering structures, the old and

ageing civil structures are getting more vulnerable to such external effects as time passes

by. Therefore, there is a growing concern for the health condition of civil structures

around the world and as a result, a great deal of research and development is dedicated to

this matter.
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Currently, in practice, condition assessment of civil structures is

mostly implemented via conventional techniques such as hammer

tapping, chain dragging to identify voids, and visual inspection for

delamination in concrete and other visible items. Yet, the traditional

methods can be challenging (e.g., time-consuming, labor-intensive,

and subjective) since the conventional methods solely depend on

human effort. To overcome such challenges, Structural Health

Monitoring (SHM) has been in use [(Aktan et al., 1996; Housner

et al., 1997)]. Briefly, SHM is a methodology to examine the health

status of civil structures, mostly for large and occasionally medium-

sized civil structure systems, by collecting sensorial data with the use

of sensors e.g., accelerometers, strain gauges, potentiometers,

cameras, lasers, and Non-Destructive Technique/Evaluation

(NDT/E) (Gucunski et al., 2010; Scott et al., 2003; Stanley et al.,

1995) which use sophisticated tools such as ultrasound, ground

penetration radar, infrared camera, and electromagnetic methods to

detect local defects. The goal of SHM is to track structural responses

to determine the structural condition to support decision-making.

The decision could be for a number of purposes such as design

verification, damage detection, effective and efficient maintenance

and operations. This is achieved by means of tracking changes in

geometric or material properties of the structure based on the

analyzed sensorial data for the decision-making process. In other

words, SHM includes structural assessment, diagnosis and prognosis

processes based on the analysis and evaluation of the collected

sensorial information (Farrar and Worden, 2007). Usually, the

SHM techniques are classified by their application level such as

local and global levels (Dong and Catbas, 2021). At the local level,

SHMapplications aim to diagnose the local damages viaNDT/E and

Non-Contact Tools or NCT. Identification of the dynamic behavior

and diagnosing irregularities in the globalmovement of the complete

structure is considered SHM at the global level. Global SHM can be

implemented via fixed systems such as vibration-strain-

displacement-based sensorial data collection and possibly NCT

[(Li et al., 2016; Avci et al., 2021)]. Figure 1 describes SHM

considering their application levels including both at local and

global levels. Furthermore, NCT such as computer vision tools

including RGB and IR camera and Light Detection and Ranging

(LiDAR) has demonstrated many applications both at the local level

(e.g., crack, or spalling detection) and global level (e.g., displacement

and vibration monitoring) (Catbas and Khuc, 2018; Feng and Feng,

2018; Kaartinen et al., 2022).

The application levels of SHM could be shown from another

perspective as new tools emerge in the field, which is depicted in

Figure 2. As the focus shifted to robotic applications over time,

researchers have started to implement robot-based methods (Zhu

et al., 2012; van Nguyen et al., 2018; McLaughlin et al., 2020). In

SHM applications, robotic systems could be utilized at both global

and local levels. For instance, an unmanned ground vehicle (UGV)

can collect acceleration data to carry out modal identification (global

SHM) and at the same time implement image-based defect detection

(local SHM) via the vision sensors installed on its platform. If the

robot is only equipped with accelerometers, it can only perform

global behavior analysis (global SHM). However, since UGV

contributes to high spatial resolution in the collected data, it may

also capture the local defects in the structure (local SHM). Similarly,

an unmanned aerial vehicle (UAV) can implement image-based

defect detection applications (local SHM) or displacement

measurement (global SHM) via vision sensors installed on its

platform by tracking the specific features in the images (Ribeiro

et al., 2021). Additionally, while the NDT/E is used to perform local

SHM by examining inside of the structural component, the fixed

systems (e.g., accelerometers, strain gauges, potentiometers) may

only carry out global SHM applications. NCT, on the other hand, is

found in more widespread use in both global and local level SHM

continuum. As such, while LiDAR, RGB and IR cameras could be

FIGURE 1
Structural Health Monitoring considering their application levels.
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used on robots, they can also be used as fixed systems or as NDT

tools.

1.2 Motivation, objective, and scope

As per the discussion so far, SHM involves a great deal of

data-driven applications such as data collection, preprocessing,

and analysis. In the last decade, the research and development in

the SHM field have significantly benefited from the use of

Artificial Intelligence (AI) methods. Especially, it is observed

that researchers use AI methods such as Machine Learning (ML)

or Deep Learning (DL) to come up with novel and effective

solutions to challenging problems. Since theML and DLmethods

can help to discover and learn the complex features in data

structures, they have been a research trend for the last decade.

Particularly, DL algorithms have been the main focus of research

due to their end-to-end solving approach, without any need for

manual intervention as DL models learn and extract the features

from the data, and reveal enhanced learning performance in

complex data structures (Janiesch et al., 2021). More recently, the

domain adaptation technique has attracted great attention which

aims to build DL models to generalize the training domain to the

target domain and deal with the discrepancy between different

data distributions. Generative Adversarial Networks (GAN)

comes out as a subfamily of DL that can be used in domain

adaptation applications. As many ML and DL models have been

used in many different disciplines, GANs (original GAN and

other GAN variants) also have been highly favored since they

were first introduced by Goodfellow et al. (2014); and the SHM

community has started to implement the idea of GAN in their

applications. However, after a thorough literature review by the

authors, there has not been a published review study on the use of

GANs in civil SHM. The authors are aiming to fill this gap to

summarize the progression of GANs in the civil SHM field.

Therefore, this paper aims to present a review of civil SHM work

involving the use of GANs in an attempt to benefit both

academics and practitioners. The study also intends to inform

SHM researchers about the capability of GANs and present the

major highlights of the published work on GANs in the civil

SHM field, in a condensed format. The rest of the study follows

this order: Section 2 explains the search methodology used in this

review; Section 3 introduces the fundamentals of GANs; Section

4 presents the GAN-related studies in the civil SHM field; Section

5 provides a discussion and recommendations based on the

conducted review; Section 6 concludes the paper with

summary and conclusions.

2 Research methodology

It is pertinent to provide details on the research methodology

adopted for this review paper. The workflow for this

methodology is shown in Figure 3. In data collection, Scopus

FIGURE 2
Global and local levels of SHM from another perspective as new tools emerge in SHM.
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and Google Scholar database search engines are employed and

the keywords of “Generative Adversarial Networks AND

Structural Health Monitoring” and “GAN AND SHM” are

used. In data analysis, the obtained data from the literature

are screened and assessed for eligibility to be included in the

review paper. Subsequently, the identified studies are classified

based on their applications and their research problems. For the

selection of studies, the PRISMA flow diagram is used as

illustrated in Figure 4. A total of 155 studies (73 from Google

Scholar and 82 from Scopus) have been screened to assess the

FIGURE 3
Research methodology workflow.

FIGURE 4
The PRISMA flow diagram for records selection according to (Page et al., 2021).
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eligibility to be included in this review. The screening process

includes eliminating the studies that are not directly related to

using GANs for civil SHM purposes and applications. As such,

this paper only includes using “GAN or variants” (GANs) for

structural damage diagnosis and prognosis based on the sensorial

data (1-D and 2-D data) collected from civil structures (excluding

roadway surfaces and pavement structures). The civil SHM field

was briefly discussed in Section 1.1. In addition, the studies that

cannot be accessed due to the use of a different language other

than English or website error were also eliminated. After the

screening process, the remaining number of studies was 45. As a

result, 45 GAN-related studies published in the civil SHM field

are included in this paper. The bar chart shown in Figure 5

indicates the number of published studies per year after the data

screening process (Figure 4). It is observed that the number of

GAN studies in the civil SHM field is in an increasing trend over

the years. Although GAN was released in 2014, it has been

introduced to the civil SHM field in 2018 with a delay of 4 years.

Thus, it can be argued that the applications of GANs are still in

the growing phase in the civil SHM field.

3 Generative adversarial networks

It is pertinent to provide the fundamentals of Generative

Adversarial Networks before discussing their applications of it in

the civil SHM field. In 2014, Ian Goodfellow and his colleagues

introduced a generative-based DL model, Generative Adversarial

Networks (Goodfellow et al., 2014). The model is a combination

of a generative network (Gθ) and a discriminative network (Dφ)

where Gθ takes a random noise data z and then maximizes the

likelihood that the data it generates Gθ(z) or ~x is as similar as

possible to the real data x. Subsequently, ~x is fed to the

discriminative network (Dφ) and also the real data sample x

is fed toDφ. Then, based on the scores ofDφ on ~x, in other words

Dφ(Gθ(z)), Gθ updates its weights via backpropagation.

Additionally, based on the differences in scores of Dφ on, in

other words Dφ(x), and Dφ(Gθ(z)), Dφ updates its weights. In

this respect, GAN is thought of as a two-player game where each

player tries to deceive the other player. Then, each player learns

from the other’s outputs and tries to be better at each turn. The

introduced objective function to train GAN in the original paper

is shown in Eq. 1. Additionally, the illustration of the GAN as to

the data flow mechanism through the generator and

discriminator is shown in Figure 6.

minθmax φ V(Gθ, Dφ) � Ex~pdata(x)[logDφ(x)]
+ Ez~pz(z)[log(1 −Dφ(Gθ(z)))]

(1)
The authors in Goodfellow et al. (2014) showed that the

introduced GAN model demonstrates impressive image

generation performance such that the generator was able to

generate pictures (~x) that are very similar to the ground truth

images (x). After the introduction of GAN, it has been

considered a major success in AI and has become one of the

main focuses of researchers. Most of the succeeding studies

focused on the difficulties of training GAN due to its complex

objective function than the typical deep learning networks.

Training GAN means finding a unique solution to Nash

equilibrium (the balance between generator and

discriminator), which may be very difficult to do so. Thus,

often the GAN model never converges. As a result, the

training suffers from large oscillation in loss values of the

generator and discriminator which makes the training highly

unstable. One of the most famous problems of training GAN is

FIGURE 5
The number of papers included in this study published on GAN-based SHM after the PRISMA flow diagram presented in Figure 4.
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“mode collapse”. This happens when the generator finds a way to

generate data that would look very similar to what the

discriminator knows about the real data. In this way, the

generator keeps producing the same output to trick the

discriminator during the training as this is an unwanted

performance from the generator since it reduces the creativity

and diversity of the generator. Additionally, at the beginning of

the training, the discriminator performs better since it can easily

guess the real data from the synthetic data, thus rejecting all the

outputs the generator produces. At this point, training could not

be successful due to vanishing gradients as the generator does not

learn gradients from the discriminator. To overcome or alleviate

these types of problems that are faced during the training,

researchers proposed some tips (or so-called hacks)

[(Goodfellow, 2016; Salimans et al., 2016)].

After the successful adoption of convolutional neural

networks in the computer vision field, in one study (Radford

et al., 2015), authors proposed using a deeper network built on

convolutions for GAN which they named Deep Convolutional

GAN (DCGAN). The authors of that study noted that using deep

convolutions helped the model to learn the domain features

better and also observed that convolutions alleviated the effects of

unstable training. The authors also observed that with simple

arithmetic operations on the noise vector given to the generator,

they can obtain the desired image results. Figure 7A below shows

the generated images with DCGAN after five epochs of training

with bedroom pictures and Figure 7B shows the generated

images with DCGAN after arithmetic operations with noise

vector.

Moreover, in another study (Arjovsky et al., 2017), the

authors addressed the difficulty of training GAN. The authors

suggested a radical solution that utilizes Wasserstein distance as

the distance metric between the real and the generated data. In

previous GAN models, binary cross entropy was used as a

distance function. However, Wasserstein distance is a distance

metric that measures the distance between probability

distributions in metric space. Thereby, it provides more

meaningful loss values than the loss functions of the original

GAN. Consequently, the authors removed the sigmoid function

from the discriminator, thus the discriminator gives a scalar

value rather than a probability. For each output scalar value, the

discriminator yields, the mean of how much the synthetic data is

FIGURE 6
Data flow in GAN (Google, 2022).

FIGURE 7
(A) Generated images with DCGAN after five epochs of training with bedroom pictures, (B) generated images after arithmetic operations with
noise vector (Radford et al., 2015).
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similar to the real data. As a result, the authors converted the

name of the discriminator to “critic”, and they named the model

Wasserstein GAN (WGAN). The authors observed that using

Wasserstein distance stabilizes the training with smoother

gradients flow and assists the critic (discriminator) and

generator to provide more accurate outputs. They also

observed that Wasserstein distance diminished the exploding

gradient problem. In order to compute the Wasserstein distance,

the 1-Lipschitz function needs to be defined. For that, the authors

implemented a simple weight clipping to restrict weights within a

particular range that is controlled by a parameter. The authors of

that study also mentioned that weight clipping is a “terrible way”

to enforce the Lipschitz function because it may cause the model

to lower its learning capacity as the user may not predict the

limits of the function (Arjovsky et al., 2017). Additionally, the

authors noticed that the model is very sensitive to its parameters

such as when the weight clipping parameter is picked high, the

training time increases significantly or if it is picked small, the

vanishing gradients problem occurs. To tackle this problem, in a

succeeding study (Gulrajani et al., 2017), the authors proposed to

use gradient penalty in the critic’s loss function rather than

weight clipping. Furthermore, the authors also demonstrated that

batch normalization negatively affects the gradient penalty,

therefore instance normalization is used. The study showed

that using gradient penalty in critic helped the training more

stable and generated higher quality images. The authors named

the model WGAN using Gradient Penalty (WGAN-GP).

While WGAN and WGAN-GP attempted to overcome the

challenges of training GAN, there have been various kinds of GAN

models proposed over the years which each have advantages and

disadvantages depending on the use case. Some of the famous GAN

variants and the ones that were used in the civil SHM field are

discussed in this paragraph. After the release of the first GAN

(Goodfellow et al., 2014), the authors in one work (Mirza and

Osindero, 2014), introduced a conditional version of GAN which

they named CGAN. In CGAN, the generator generates data based

on the conditioned instance. In another study (Chen et al., 2016), the

authors proposed a GAN that is able to learn disentangled

representations in the data domain where the model maximizes

the information between the latent variables and the observation.

The authors named the model InfoGAN. In a different work (Ledig

et al., 2017), the authors aimed at recovering the finer texture of

images when they are upscaled. In other words, they upscaled the

images with super-resolution texture detail and they named the

model super-resolution GAN (SRGAN). In another study (Mao

et al., 2016), the authors proposed using least squares (LS) in the loss

function for the discriminator and they named the model LSGAN.

In that study, the authors observed that using the LS function helps

the GAN model generate higher-quality images than regular GAN.

The authors in Isola et al. (2016) proposed a condition-based GAN

model that may be the first to implement image-to-image

translation. They demonstrated the model in various types of

image translation cases successfully and named the model

Pix2Pix. In Reed et al. (2016), one of the first kinds of AI-based

text-to-image synthesis is proposed and the model is named

StackGAN. Essentially, the model in this study can generate

plausible images of text descriptions automatically. In another

work (Kim et al., 2017), the authors studied a model that learns

to discover relations between different domains to overcome the

challenge of unpaired data. The proposed model, DiscoGAN, is able

to transfer style from one domain to another. In a succeeding study

(Zhu et al., 2017), the authors presented CycleGAN (Cycle-

consistent GAN) to learn the mapping between two different

domains to overcome the challenge of the inability of having the

paired instance for training. In Karras et al. (2017), the authors

proposed the model ProGAN where they similarly aimed at

generating higher resolution images but by taking a different

approach. The authors demonstrated that this approach expedites

and stabilizes the training and produces unprecedented quality. The

authors in Akcay et al. (2018) demonstrated a model that identifies

anomalies, which is named GANomaly. The model is based on

CGANwhich learns the generation of image space and the inference

of latent space. In another work (Wang et al., 2018), the authors

improved the previously introduced SRGAN model which they

named Enhanced-SRGAN or ESRGAN. The authors achieved

better visual quality in the produced images after improvements

to the network architecture and loss functions. In one study (Zhang

et al., 2018a), the authors proposed semantic segmentation with

GAN—SegGAN in which a deep semantic segmentation network is

integrated into GAN for image segmentation tasks. In Karras et al.

(2018), the authors presented a style-based generator, named

StyleGAN where it achieves to learn high-level attributes of the

data domain and enables to interpolate of these attributes to generate

desired realistic outputs. The model demonstrates that it is able to

generate style-specific outputs based on the selected parameters. The

authors in Zhang et al. (2018b) proposed using a self-attention

mechanism in GAN which they named SAGAN. Lastly, in another

follow-up study (Karras et al., 2019) by the authors of StyleGAN,

they modified the model architecture and training methods such as

normalizing and regularizing the generator and improving the

progressive growing method. The authors observed significant

improvements in image generation. Some of the proposed

notable GAN models and the ones employed in the civil SHM

field are given in Table 1 (the dates state the initial submission dates

of the studies on arXiv and online publishing dates on journals and

conferences).

4 Generative adversarial networks in
civil structural health monitoring

As shown in the previous section, GAN and its variants are

mostly studied in computer vision applications where the

researchers demonstrated many successful GAN studies on

image data (2-D data). However, it has been also shown that

across many other disciplines, GANs can be employed on 1-D
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data (e.g., signals) (Guo et al., 2020; Kuo et al., 2020; Luo et al.,

2020). It is also observed that in the civil SHM field, there are

more studies of GANwith 1-D data (26) than 2-D data (19) based

on the included studies in this paper (Figure 8). Since the civil

SHM field consists of a large number of multidisciplinary

activities, numerous amounts of signal and image -based

applications can be seen for approaching different SHM

problems. Thus, it is observed that the GAN studies included

in this paper (45 studies are included as shown in Figure 3) work

with different types of GAN models on 1-D and 2-D data.

TABLE 1 Notable GAN models over the years and the ones employed in the civil SHM field.

Model Brief description of
the application

Online publication date Civil SHM field

GAN Image generation 10-Jun-2014 Used

DCGAN Image generation using convolutions in GAN 19-Nov-2015 Used

CGAN Image generation based on a given condition 6-Nov-2014 Used

InfoGAN Image generation with learned disentangled representations 12-Jun-2016 Used

SRGAN Image generation from low-resolution to high-resolution 15-Sep-2016 Used

LSGAN Enhanced image generation with LS loss distance 13-Nov-2016 Used

Pix2Pix Condition-based Image-to-image translation 21-Nov-2016 Not used

StackGAN Text-to-image generation 10-Dec-2016 Not used

WGAN Improved Image generation and training with Wasserstein loss distance 26-Jan-2017 Used

DiscoGAN Style transfer in image-to-image translation 15-Mar-2017 Not used

CycleGAN Unpaired image-to-image translation 30-Mar-2017 Used

WGAN-GP Improved WGAN with gradient penalization in critic 31-Mar-2017 Used

ProGAN Progressively increasing image resolution during the training 27-Oct-2017 Used

GANomaly GAN-based anomaly detector 17-May-2018 Used

ESRGAN Enhanced SRGAN for better visual quality 15-Sep-2018 Not used

SegGAN GAN-based image segmentation 21-Oct-2018 Used

StyleGAN Image generation with interpolation of high-level attributes 12-Dec-2018 Not used

SAGAN Self-attention-based GAN 14-Jun-2019 Used

StyleGAN2 Improved StyleGAN 3-Dec-2019 Used

FIGURE 8
The number of papers per year included in this study (GAN-based SHM studies on 1-D and 2-D data).
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In this section, studies are explained and discussed in two

categories: GANs worked on 1-D and 2-D data. Although this

study categorized the GAN studies into two according to the type

of data work with, the difference between working with 1-D and

2-D data for GAN or any other deep learning model is very

minimal. Essentially the main difference in the implementation is

that while all the computations (apart from linear operations) for

2-D data are based on 2-D convolution, the computations for 1-D

data are based on the 1-D convolution process. In addition,

depending on the application, the computations in preprocessing

may change for 1-D and 2-D data kinds. Lastly, it is important to

consider that working with a DL model on 2-D data is

computationally costlier than working on 1-D data since the

increase in the number of parameters enlarges the computation

load significantly. Note that the studies presented in Sections 4.1

and 4.2 are introduced according to the order of their initial

online publication (or initial shared on arXiv) date starting from

2018 to 2022.

Based on the literature review performed on GANs in the

civil SHM field, several common research problems and solutions

are identified. There are also other research statements that

address different problems and introduce novel solutions. To

identify and clarify the position of GANs in the civil SHM field, in

terms of the type of GAN applications studied by the researchers,

an illustrative figure is made (Figure 9) which shows the

classification of the applications of GANs in civil SHM and

the corresponding studies with the GAN models used in each

study. As the main concept of GAN is to learn data domain and

data generation, some studies solely studied data generation

[(Kanghyeok and do Hyoung, 2019; Xiong and Chen, 2019;

Zhang and Wang, 2019; Tsialiamanis et al., 2020; Xu et al.,

2021; Yu et al., 2021; Tsialiamanis et al., 2022a; Heesch et al.,

2021; Colombera et al., 2021; Luleci et al., 2022b; Luleci et al.,

2023)] (a total of 11 studies) by using original GAN or other

GAN variants. Thus, the data generation category is separated

from other categories. But also, the data generation category can

be the main category that consists of other application types since

other applications are in essence based on the data generation

concept. The core research problem of data generation

applications points out the data scarcity issue in civil SHM

problems. Accordingly, the researchers aimed at using GAN

to learn the scarce domain and generate additional and

similar data samples to tackle the data scarcity issue.

Lost data reconstruction [(Lei et al., 2021; Fan et al., 2021;

Jiang et al., 2022; Zhuang et al., 2022; Hou et al., 2022)] (a total of

five studies) is another type of GAN application observed in the

literature. The research problem of this application is missing

data caused by malfunctions in data acquisition systems such as

errors in sensors or transmission. Because of the missing data

problem, the data analysis process could lead to misinformative

results. Therefore, it is important to estimate and reconstruct (or

impute) the lost data to complete the original data. As a result,

FIGURE 9
Classification of the applications of GANs in the civil SHM field.
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researchers demonstrated in several studies that using GAN to

overcome the missing data problem is feasible and can be

beneficial in civil SHM. Among the included studies, the lost

data reconstruction application only experiments with 1-D data.

Data augmentation [(Soleimani-Babakamali et al., 2022a;

Luleci et al., 2022a; Li et al., 2020; Yao et al., 2020; Gao et al.,

2021; Shin et al., 2021; Chen et al., 2022; Ali and Cha, 2022)] (a

total of eight studies) is one of the most encountered application

types in the literature. The researchers, herein, address the

problem of data imbalance caused by the data scarcity

phenomenon. Essentially, the data imbalance problem is

having fewer samples in one labeled data class than the other

class in the training dataset of an AI model. This issue degrades

the model’s detection performance badly. Thereby, researchers

aimed at increasing (augmenting) the number of samples in the

class that has fewer samples by using GANs. Many studies

showed that data augmentation via GANs is an appropriate

and beneficial method to balance the imbalanced data class in

order to improve the performance of the data-driven AI model.

Among the included studies, data augmentation is applied to

both 1-D and 2-D data types.

Data domain translation [(Tsialiamanis et al., 2022b; Luleci et al.,

2022c; Zhang et al., 2020; Yasuno et al., 2020; Bianchi et al., 2021)] (a

total of five studies) is seen less frequently than the other applications

in the literature but could be very promising and advantageous to

many other problems in civil SHM. The core research problem of

domain translation applications is learning the distinct mapping

between the data domains. However, there are also other research

problems that can be forked into it. Among the included studies in

this paper, one of the most common research problems is the

difficulty of having access to the paired data in the training

dataset of an AI model. This challenge is solved by using

CycleGAN which learns the domain mapping and then generates

the cross-domain pair of the annotated data. The other common

research problem investigated by the researchers in the literature is

undamaged-to-damaged domain translation which enables to have

access to the damaged pair (e.g., damaged acceleration data or

concrete crack picture) while having the undamaged pair. This

research problem aims to assist in SHM applications and at the

same time reduce the data collection effort from the structures.

Among the included studies in this paper, data domain translation is

applied to both 1-D and 2-D data types.

Anomaly and novelty detection [(Soleimani-Babakamali

et al., 2022b; Soleimani-Babakamali et al., 2022c; Mao et al.,

2021; Tilon et al., 2020a; Tilon et al., 2020b; Liu et al., 2022)] (a

total of six studies) is another GAN application type that is

observed in the literature on civil SHM. Essentially, the main

research aim is to detect novelties or anomalies in the observed

data. While in novelty detection the outliers in the data are

eliminated before training and the inference of the model is made

to detect the anomalies in new observations, in outlier (or

anomaly) detection, the training data contains outliers, and

the model is trying to fit in the observed data while ignoring

the deviant observations. Anomaly and novelty detection is

found very useful for damage detection in the literature using

GANomaly or DCGAN in which the discriminator network

plays a critical role in detecting the anomalies or novelties.

Among the included studies, anomaly and novelty detection is

applied to both 1-D and 2-D data types.

In the civil SHM literature, there are also others [(Wang et al.,

2019; Rastin et al., 2021; Yuan et al., 2021; Yang et al., 2022;

Huang et al., 2020; Liu and Yeoh, 2020; Sathya et al., 2020; Liu

et al., 2020; Sun et al., 2022; Dunphy et al., 2022)] (a total of

10 studies) who are observed that do not fit a category and

address different problems. It is observed that the subject of

“damage detection after increased resolution” has one study

(Sathya et al., 2020) in the literature where the researchers use

SRGAN to increase the resolution of the images to improve the

performance of the damage classifier. On the other hand, SRGAN

is also used for another study where the researchers measure the

displacement of a structure on RGB images after they increase the

resolution of the pictures (Sun et al., 2022). There are three

studies on the topic of “data denoising, deblurring, and repair”

for which the aim is to denoise the signal data, deblur the image,

and repair the data after the identification of anomalies by using

GANs [(Wang et al., 2019); (Liu et al., 2020); (Yang et al., 2022)].

There is one study on the topic of “track irregularity estimation”

on acceleration data (Yuan et al., 2021), one study on the topic of

“damage identification” via acceleration data (Rastin et al., 2021),

and three studies on the topic of “Annotation reduction via

transfer learning” [(Huang et al., 2020); (Liu and Yeoh, 2020;

Dunphy et al., 2022)] which aim to reduce the need of annotating

data through transfer-learning are other instances of GAN

applications in civil SHM.

4.1 GANs on 1-D data

4.1.1 Studies published in 2018 (1 paper)
One of the very first published papers about GAN presented

the application of improved LSGAN for crack detection in

railways on Acoustic Emissions (AE) data (Wang et al., 2019)

authors of this study aimed at solving the problem of noise

interference of wheel-rail mechanical interaction and they

employed an improved version of LSGAN where the authors

included Mean Squared Error (MSE) to the generator loss as a

regularization. The proposed model was tested in two

experiments: Gaussian noise and mechanical noise that is

obtained from an actual railway. The authors demonstrated

that the presented method effectively denoised both the

statistical noise and mechanical noise while preserving the

details of the crack features in the signal.

4.1.2 Studies published in 2019 (3 papers)
In this study (Kanghyeok and do Hyoung, 2019), the authors

addressed the problem of the data imbalance phenomenon for
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training the DL-based models for damage detection applications.

The authors pointed out that the amount of damaged data before

and after the damage is rare. Thus, they used GAN for generating

damaged acceleration data and then the authors demonstrated

that the synthetic data has a very similar pattern to the real data.

As a result, they concluded that generating acceleration data with

GAN might be used to tackle the data imbalance problem in

damage detection applications.

Xiong and Chen (2019) introduced a study where they

addressed the challenge of including different structural load

models that consider individual human activities for the design

process of slender structures such as footbridge and cantilever

stand structures. As such, to build a loadmodel, the main features

e.g., periodicity and stationarity of data records are first extracted

and mathematically modelled. For that, the authors proposed a

unified approach that uses CGAN built on Wasserstein distance

with gradient penalty to be able to learn these features, which are

high-dimensional variables. In the paper, the CGAN model is

used to generate individual walking, jumping, and bouncing

loads trained. The authors validated the accuracy of the

proposed approach by comparing the spectral densities and

single degree of freedom system’s responses of the synthetic

samples with real samples. As a result, the authors concluded that

the approach can be used to simulate various human-induced

loads without extracting features artificially.

In another study (Zhang and Wang, 2019), the authors

presented a study of deep learning algorithms for structural

condition identification with limited monitoring data where

they used a Convolutional Neural Network (CNN) for

damage detection on the acceleration data collected from a

laboratory truss bridge under different damage scenarios. The

authors demonstrated that, as expected, when the data is scarce,

the accuracy of CNN degrades for damage detection. They

concluded the study by proposing to use GAN (as a future

study) to supply synthetic data for complementing the

missing data in the training dataset which is expected to

increase the accuracy of the damage detection model.

4.1.3 Studies published in 2020 (2 papers)
The authors in one study (Tsialiamanis et al., 2020)

investigated an application of InfoGAN in SHM where they

demonstrated that InfoGAN can capture the damage

acceleration responses in a simulated mass-spring application.

They induced different extents of stiffness reductions as damage

to the system. Then used InfoGAN to learn the different data

distributions (damage scenarios). The authors observed that

InfoGAN was successfully able to capture the latent variables

in the data distributions. The authors concluded that InfoGAN

could be used to classify damage classes and at the same time

generate synthetic data for the desired class.

A paper in Lei et al. (2021) studies the lost data

reconstruction for SHM using DCGAN. The authors

addressed the problem of lost data due to sensor fault or

transmission failure that could degrade the analysis results

(e.g., modal analysis). They trained DCGAN with missing

acceleration and strain datasets separately and then tested on

a bridge data. The authors were able to reconstruct entire datasets

along with the missing parts. The authors also verified the

reconstruction of the acceleration data with modal analysis as

illustrated in Figure 10.

4.1.4 Studies published in 2021 (12 papers)
Another paper (Xu et al., 2021) studies deep-learning-based

cable-bridge condition assessment by reconstructing the

probability density distribution (PDF) of girder vertical

deflection (GVD) and cable tension (CT) using an

unsupervised image transformation model where the model

consists of convolutional variational autoencoders and GANs.

After training the model with PDFs of GVD and CT, the authors

observed that the model could generate very similar synthetic

PDFs of GVD and CT to their real counterparts.

The authors in Yu et al. (2021) studied a probabilistic weight

estimation using physics-constrained GAN where they address

the issue of existing bridge weight-in-motion (BWIM)

approaches that seldom account for the uncertainty of vehicle

weight in terms of the probabilistic distribution of vehicles. The

used GAN model, which is constrained by the known physics

knowledge, is trained to learn the distributions of vehicle weights

from the observed bridge response under the traffic loading.

Then, the model is tested on highway bridges. The authors

observed that GAN can successfully capture the uncertainty in

vehicle weights and can provide a probabilistic meaning of the

anticipated vehicle weight.

Another study (Fan et al., 2021) pointed out the importance

of lost responses during an SHM application. The authors in this

paper employed SegGAN to conduct dynamic response

(acceleration) reconstruction. The model is trained on the

acceleration dataset with missing parts and then used to

reconstruct the whole response. The authors evaluated the

model’s generative performance by performing numerical

analysis on a steel frame structure to assess the accuracy and

noise immunity of SegGAN. The model was also compared with

other networks, and it is observed that SegGAN demonstrated

outstanding lost response reconstruction results in both time and

frequency domains.

In one another study (Tsialiamanis et al., 2022a), the authors

pointed out the data scarcity issue and they used CGAN to tackle

the challenge. The authors mention that environmental

conditions have significant effects on the structure, and it is

not possible to know their impacts on the structural parameters.

Thus, the authors trained CGAN with different ranges of

temperature and humidity parameters to learn the

relationship between the environmental conditions and

structural parameters e.g., stiffness and damping. The authors

succeeded in generating temperature and humidity data based on

the parametrized structural parameters.
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FIGURE 10
Comparison between the mode shapes extracted from the real and reconstructed signals (Lei et al., 2021).

FIGURE 11
The completed strain data after reconstruction with GAN (Jiang et al., 2022).
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The authors in this paper (Jiang et al., 2022) study the

continuous missing data imputation for the incomplete

dataset by completing with GAN. They address missing data

problems due to sensor failure or signal transmission which

creates a huge challenge for SHM applications. In the study, the

authors used GAN for lost strain data generation based on

training with the (missing) observed data. The proposed

method was tested on a real concrete bridge and

demonstrated an excellent performance for lost strain data

generation. One of the sensor’s strain data after reconstruction

with GAN is shown in Figure 11.

In this work (Soleimani-Babakamali et al., 2022a), the

authors studied on data imbalance problem resulting from

low-sampled data and employed GAN to overcome this

challenge. Essentially, they used Recurrent Neural Networks

(RNN) as a novelty classifier of high-dimensional features.

The authors, then, employed GAN to augment the

imbalanced dataset to improve the classification result of

RNN. They tested the proposed methodology on acceleration

datasets of two different test setups and significant improvement

was observed in the classification results after the data

augmentation.

The authors in this paper (Heesch et al., 2021) addressed the

importance of needing data when building a data-driven model

for SHM applications. For that, the authors employed a

generative model built on the StyleGAN2 model architecture

to learn the data distribution of ultrasound wave data and

eventually generate similar data points to the original dataset.

They tested the model on a composite plate and observed that the

generated data is very similar to the original pair. The authors

also observed that they canmanipulate the outputs by controlling

the parameters of StyleGAN2.

In another work, Tsialiamanis et al. (2022b) presented a

study on nonlinear modal analysis using CycleGAN. The study

proposed to use CycleGAN for one-to-one mapping or domain

translation from a latent modal space to the natural coordinate

space. In doing so, the orthogonality of mode shapes is preserved,

which is achieved by a stack of neural networks. The study that

was proposed is tested on data from an experimental system that

has three degrees of freedom and simulated systems where both

datasets (acceleration signals) are incorporated with

nonlinearities. The authors concluded that the introduced

method demonstrated success in separating the modes as well

as good accuracy in providing a nonlinear superposition

function.

In another study (Colombera et al., 2021) by the authors, a

GAN-based autoencoder for SHM is proposed where DCGAN is

used to train on damaged and undamaged acceleration data of a

multistory building. Then, the authors concluded that the model

was able to generate reasonable data for different damaged and

undamaged states of the building.

Rastin et al. (2021) introduced an approach of unsupervised

SHM and damage identification. Essentially, the methodology

introduced a two-stage damage identification process where the

first phase is based on using DCGAN to detect and quantify the

damages in the structure, then, in the second phase, the detected

damages are localized using CGAN on the acceleration signals.

The methodology introduced in this paper is tested on three

different datasets and the authors concluded that GANs can

successful be employed for damage quantification and

localization.

In another work (Yuan et al., 2021), the authors studied a

real-time track irregularity estimation using simulated vehicle

acceleration responses. They pointed out the importance of

accurate and timely estimation of track irregularities in

railway maintenance. Therefore, the authors used WGAN-GP

for capturing the correlation between the vehicle’s axle box

acceleration signal track irregularities to be able to estimate

the track irregularities. The authors validated the proposed

methodology with two numerical examples successfully.

Luleci et al., in 2021 (Luleci et al., 2022a) addressed the

problem of data scarcity in the SHM field which leads to the

problem of data imbalance for AI-based data-driven applications

in SHM. Thus, they employed theWDCGAN-GPmodel (or deep

convolutional WGAN-GP) to learn the damaged domain (bolt-

loosening) of an acceleration dataset collected from a steel

grandstand structure. Then, after the successful generation of

similar damaged acceleration datasets, the authors used the

generated datasets to augment the imbalanced datasets of the

damage detection classifier (Deep Convolutional Neural

Network—DCNN) where the augmentation ratios vary for

different damage detection scenarios. They concluded that it is

applicable to augment the training dataset of DCNN with

synthetic data as the output of DCNN significantly remains

similar in all different augmentation scenarios. In addition,

the authors also proposed a concept where this framework

could be used on the bridge structures where they presented

as GAN-augmented vibration-based damage detection via the

DL model (Figure 12).

4.1.5 Studies published in 2022 (8 papers)
Yang et al. (2022) published a study which emphasizes the

importance of data repair after anomaly identification for

improving data quality. Therefore, the authors proposed a

two-stage approach where it first identifies the data anomalies

using Long Short-Term Memory (LSTM), and then CGAN is

employed to construct the data by excluding the anomaly data

segments with the assist of the LSTM (through the anomaly

identification results). The approach that is proposed in this

study is tested on experimental data of a bridge Global

Positioning System (GPS) monitoring data. The authors

concluded that the data cleansing method can accurately

identify and repair GPS anomalies.

The authors in Soleimani-Babakamali et al. (2022b) worked

with a DCGAN model where the LSTM and DCNN are used as

discriminators to do novelty detection. The entire model is
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trained with Fourier transformation of acceleration data from

two different benchmark datasets. During the training, while the

generator produces the data, the discriminator tunes the

threshold based on the generator’s output, thus the

discriminator can classify novel and normal data. The authors

identified more than 95% of the novelties in the studied datasets

with the proposed approach.

In another study (Zhuang et al., 2022), the authors addressed

the issue of sensor or data transmission errors in bridge weigh-

on-motion (WIM) systems where the data loss in WIM degrades

the following bridge condition assessment applications. In the

paper, the authors trained DCGAN with existing complete WIM

data and then tested on missing WIM data of a bridge structure

to observe the DCGAN model’s reconstructive ability. The

authors concluded that the reconstructed data is in good

agreement with the actual dataset.

Luleci et al. (2022b) pointed out the problem of data scarcity

in SHM and employed the WDCGAN-GP (or Deep

Convolutional WGAN-GP) model to tackle the challenge. In

that study, they first trained the model with acceleration data

whose domain is damaged (bolt-loosening). Then, the authors

implemented a damage detection application using DCNN as a

classifier. Basically, DCNN was trained on the real undamaged

and damaged acceleration datasets and tested for two cases where

the first case consists of real undamaged and damaged datasets;

the second case consists of real undamaged and synthetic

damaged datasets. Results showed that DCNN made very

similar prediction results when it is used for both cases which

showed that WDCGAN-GP produced very similar damaged

acceleration data to the original data.

In another study, the same authors of the previous studies

introduced another concept (Luleci et al., 2022c). In that study,

the authors used CycleGAN, which is built on convolutions, and

adopted the WGAN-GP model. They named the model

CycleWDCGAN-GP. The authors used the model to attempt

to translate the undamaged acceleration data domain to the

damaged acceleration data domain and vice versa. Although

they observed successful domain translation at joint 1, which

was its training data (Figure 13), the translation of the test data

was not satisfactory. The authors concluded that while the study

was not fully successful, undamaged-to-damaged domain

translation and similar applications could be very

advantageous approaches in SHM such as having the

damaged acceleration data of a structure while it is in pristine

condition or having the undamaged acceleration data while the

structure is in damaged condition.

The same authors of (Soleimani-Babakamali et al., 2022b)

demonstrated a similar framework in this paper (Soleimani-

Babakamali et al., 2022c) by incorporating a system reliability

approach. The end goal of the study was to implement

unsupervised real-time SHM problems without prior

information. The generator of DCGAN used in this study was

used for tunning the threshold of a discriminator for novelty

detection by the discriminator which holds the major success of

the study. The authors tested the proposed real-time

unsupervised novelty detection application on two different

acceleration datasets successfully with few false novelty

estimations.

The authors of this study (Hou et al., 2022) addressed the

significance of missing data problems due to sensor or data

transmission errors in SHM systems which can lower the quality

of SHM applications. Therefore, they proposed to use of DCGAN

to reconstruct the missing data in displacement and strain

datasets. The authors also compared the accuracy of

conducting the lost data reconstruction via DCGAN and

other conventional methods. They observed that DCGAN

stood out as the most successful model for reconstructing the

missing data.

FIGURE 12
GAN augmented vibration-based damage detection via DL model on bridge structures (Luleci et al., 2022a).
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The last work (Luleci et al., 2023) of 2022 experimented with

a study of GAN for labelled acceleration data generation where

the authors employed WGAN that is built on a deep

convolutional network (WDCGAN) to produce similar

vibration datasets to the original domain. According to the

comparison metric results, the authors observed significant

similarities between the generated acceleration dataset and the

ground truth.

4.2 GANs on 2-D data

4.2.1 Studies published in 2019 (1 paper)
One of the first works of GAN on image data (Sathya et al.,

2020) presented an approach of super-resolution for concrete

crack prediction via DL models. The authors in that study

addressed the challenge of low-resolution and blurry concrete

crack pictures in the available crack datasets. Thus, they proposed

to use SRGAN with a pre-trained model of VGG19 to increase

the resolution of images and then followed by a crack detection

procedure via ResNet50. The authors obtained 98.2% of crack

detection accuracy and concluded that this approach could be

used for image-based concrete crack detection.

4.2.2 Studies published in 2020 (10 papers)
Huang et al. (2020) addressed the difficulty of

implementation of the Compressive Sensing (CS) method in

image-based SHM applications. CS is a signal processing

technique that is used to recover a signal from a sampling

rate much smaller than the limit of the Nyquist sampling. The

authors introduced a new approach for CS by using a DCGAN

model to capture the latent space of the target images. The study

FIGURE 13
(A) Frequency domains of real and synthetic (translated from damaged) undamaged acceleration response signal at joint 1, (B) Frequency
domains of real and synthetic (translated from undamaged) damaged acceleration response signal at Joint 1 (Luleci et al., 2022c).
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employed a DCGAN model to recover (or reconstruct) the

compressed crack images for the subsequent automatic crack

segmentation application which uses transfer learning. The

training outline of DCGAN with crack images is shown in

Figure 14. The authors compared the performance of the

introduced DCGAN-based recovery framework with three

other CS techniques. The results demonstrated that the

introduced method has a better performance than the well-

established CS methods. The authors also showed that the

introduced framework can be applied for motion blurring and

occlusion removal applications.

Liu and Yeoh (2020) highlighted the challenges of current

DL-based defect recognition applications which are relied on a

fully supervised manner that requires a large, annotated dataset

for training. Thus, the authors proposed to use of a semi-

supervised framework to mitigate the challenge. First, they

trained DCGAN as a classifier with crack and non-crack

images. Then, the weights and biases of the trained DCGAN

are transferred to a CNN model. The study results demonstrated

that the semi-supervised method achieved a similar accuracy

performance of 98% with the usage of 62.5% annotated images

compared to using the supervised method (only CNN).

The authors in this paper (Zhang et al., 2020) presented an

image-based crack detection approach using CycleGAN. The

study pointed out the challenge of having access to the paired

dataset for DL model training. Thus, they first trained the

CycleGAN model with two different image domains (crack

and no crack images) and then tested it on four crack

datasets. The authors successfully translated the no-crack-

images to the crack-images and vice versa.

Li et al. (2020) introduced a study where it addresses the

inability of obtaining large amounts of labeled samples for ML-

based classification applications for post-disaster damage

assessments. Thus, the authors introduced an Unsupervised

Self-attention Domain Adaptation (USADA) which consists of

a GAN, a classifier, and a self-attention module. In this

USADA module, GAN is responsible for the generation of

the source domain, which is the damaged building pictures, the

self-attention model maintains the foreground of the generated

outputs of the GAN for better sample quality, and the classifier

makes damage classification of the generated damaged

building images. The classifier is trained with synthetic

images along with the original images. The authors

concluded that the data augmentation achieved

improvement in classification results when the classifier is

trained with augmented data over when it is trained with

fewer data points.

In this work (Mao et al., 2021), the authors introduced a

methodology for anomaly detection using DCGAN and

Autoencoders for SHM in which they tackle the challenge of

class imbalance and incompleteness of anomalous patterns in the

training dataset. The authors tested the methodology on two

SHM datasets (where the acceleration data is converted to

Gramian Angular Field images) from a bridge structure

including normal and anomalous data. They observed that the

proposed method can be trained with no labeled data and class

imbalance and incompleteness of anomalous patterns of the

training dataset can be avoided. The authors also concluded

that the methodology can be a very effective approach to

extracting anomalies from SHM data.

In another work (Liu et al., 2020), the authors pointed out the

building façade inspection challenges. Although the UAV may

provide good visual data for the image-based inspection process,

some images could still suffer from quality due to motion blur

from excessive vibrations of the UAV. Thus, the authors used

DCGAN consisting of residual blocks and skip connections to

FIGURE 14
Training process of DCGAN for crack images (Huang et al., 2020).
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deblur the images. The proposed model is benchmarked with

other models, and they observed that the proposed model is able

to achieve significant improvements in deblurring the crack

images (Figure 15).

In this study (Tilon et al., 2020a), the authors addressed

the significance of infrastructure degradation and post-

disaster damage detection. They proposed to use the

GANomaly model (trained only with healthy labeled

images) to detect anomalies from aerial images. The model

aims to detect potholes and cracks in road infrastructures as

well as building damage in aerial images. They observed that

the model can detect damages in urban scenes at a satisfactory

level but failed on asphalt roads which will be investigated in

the next study.

The authors in this paper (Yasuno et al., 2020), addressed the

difficulty of having paired and annotated images for supervised

classification applications in SHM. In this work, the authors

proposed to use CycleGAN to generate undamaged concrete

images from damaged concrete images. In addition, by using this

methodology, they also detected the early damages in concrete

using the distance of distributions between two separate domains

(damaged and undamaged).

In another work (Yao et al., 2020), the authors studied the

data imbalance problem in railway fastener fault diagnosis

applications. They proposed to use GAN to learn the

distribution of rail fastener failure data (damage data). After

the successful generation of damage data, the data is utilized to

augment the training dataset of the Resnet-based image classifier

for damage detection application. The authors concluded that the

augmentation improved the fault detection accuracy

significantly.

In the last study of 2020 (Tilon et al., 2020b), the authors

worked on post-disaster building damage detection from earth

observation imagery using the skip connection-based GANomaly

model. Essentially, the model employed in this study is trained

with images of post-event (after earthquake) imagery of buildings

in their damaged state where the images are both taken with

satellite and UAV. After the model is tested on the unseen

images, the results of anomaly detection are compared with

other models and the authors concluded the results as

encouraging. In Figure 16, the model is tested on the satellite

image of the Santa-Rosa wildfire showing multiple damaged

buildings and burnt surroundings overlaid with anomaly

scores (polygon shapes represent buildings). As seen, the high

anomaly scores are around the buildings where all the greenery is

burnt.

4.2.3 Studies published in 2021 (3 papers)
One of the first studies conducted in 2021 (Gao et al., 2021)

pointed out the class imbalance issue in vision-based SHM

applications. The authors introduced Balanced semi-

supervised (BSS-GAN) to overcome the imbalanced class

problem. The authors compared the image generation and

detection capabilities of BSS-GAN to other models and

FIGURE 15
Sample results of deblurring on complex backgrounds (Liu et al., 2020).
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concluded that BSS-GAN is able to achieve better detection

performance over conventional models.

In this study (Bianchi et al., 2021), the authors studied the

image-based application of forecasting infrastructure

deterioration with inverse GANs. Basically, they employed the

StyleGAN2model to learn the semantic boundaries in the images

e.g., corrosion and no-corrosion in the steel structures. Then, the

model is tested on the dataset obtained from the Virginia

Department of Transportation to generate pictures in the

spectrum of corrosion to non-corrosion e.g., translating non-

corrosion steel picture to corrosion steel picture. The authors

concluded that the introduced method could be very useful for

inspectors, engineers, and owners regarding the damage

progress. Figure 17 shows the example images of semantic

deterioration forecasting where the first image on the left is

the real image and the following images are the gradually

translated version of the real image to the image that has

corresponding corrosion.

Shin et al. (Shin et al., 2021) addressed the need for a large

dataset for building a DL-based damage recognition model for

automatic damage recognition in building structures, which is a

challenge to collect a sufficient amount of data from degrading

building structures. Therefore, the authors developed a data

augmentation methodology using DCGAN. The authors

experimented with two different scenarios where in the first

scenario, a damage recognition classifier is trained on a small

FIGURE 16
Post-wildfire satellite imagery from the Santa-Rosa wildfire (USA) showing multiple damaged buildings overlaid with anomaly scores and
building polygon. The classification, classification threshold and anomaly scores are indicated (TP, True positive) (Tilon et al., 2020b).

FIGURE 17
Examples of semantic deterioration forecasting where the first image on the left is the real image, and the following images are the gradually
translated version of the real image (Bianchi et al., 2021).
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dataset; in the second scenario, the classifier is trained on the

DCGAN-augmented dataset. The test results demonstrated that

when the classifier is trained on the augmented dataset, the

average performance of the classifier was increased by 0.16.

The authors concluded that the methodology introduced in

this study could be a reliable alternative for image recognition

applications.

4.2.4 Studies published in 2022 (5 papers)
In this study (Liu et al., 2022), the authors addressed the

importance of anomalies in SHM systems during the data

collection which can degrade the structural analysis and

evaluation of the collected data. Therefore, the authors

introduced GANomaly and CNN -based data anomaly

detection and classification from the 2-D Gramian angular

field and also on acceleration data. The authors obtained very

high anomaly detection and classification results.

In the next paper (Chen et al., 2022), a methodology of crack

detection based on DCGAN, and DL is proposed. The authors

first used DCGAN to generate crack images and then augmented

the training dataset of the damage classifier (resnet18). Then,

DeepLabv3 is used for the pixel-level segmentation procedure.

The authors observed that the damage detection performance

improved significantly.

In this work (Ali and Cha, 2022), the authors introduced a

methodology named self-attention-based GAN with internal

damage segmentation on infrared images. The authors

pointed out the challenge of data collection; especially

obtaining data for internal damage. To tackle this challenge,

SAGAN (incorporating Wasserstein loss, with and without

gradient penalty, and convolutions) is employed to generate

synthetic infrared images to augment the training dataset of

the internal damage segmentation network (IDSNet). The

authors observed that the augmentation improved the

performance of the IDSNet model significantly which helped

the model to achieve state-of-the-art accuracy.

In this study (Sun et al., 2022), the authors took a different

approach to using GANs where they studied the vision-based

structural displacement problem. In SHM, monitoring the

displacement response of structures is very important for the

serviceability of the structure. Therefore, the authors in this study

used SRGAN to improve the resolution of the image frames

extracted from a video sequence. Then, on the high-resolution

frames, the authors utilized SIFT method to track the features on

the frames to calculate the displacement of the structure.

Figure 18 below shows the results of the SIFT feature point

detection and matching after increasing the resolution of images

with ORI, BIC, and GAN. The left images on the left half are the

source images, and the right images on the right half are the

destination images. The authors observed significant

improvement in the displacement calculation after the

increased resolution of the images as increased resolution with

GAN enables more feature points to be detected.

Dunphy et al. (Dunphy et al., 2022) discussed the importance

of a large amount of annotated data points to train the DL

networks, which is not readily available in real life. The study

investigated the multiclass crack identification of concrete

structures utilizing sparse amounts of annotated images. The

DCGAN is trained with the unlabeled concrete crack images.

Following the training, the weights and biases of the

discriminator part of the DCGAN model were transferred to a

CNN model for the damage identification procedure. The

authors demonstrated that the methodology introduced in this

paper helps a 0%–30% of reduction in the amount of annotated

data used for damage identification applications.

5 Discussion: Strengths, limitations,
recommendations, opportunities,
and current trends for GANs in
civil SHM

Most applications in the civil SHM field rely on data-driven

methods. Thus, data collection from the civil structures, then analysis

and evaluation, and providing supportive information about the

health status of the structure to the engineers, owners or stakeholders

is critical (decision-making phase). Based on the literature reviewed

in this paper that uses GANs for SHM purposes and applications,

they can address and assist in the data collection, data analysis, and

evaluation phases. The main application of GANs is data domain

learning and accordingly, data generation, which is important for the

civil SHM field since one of the major problems in the field is data

scarcity. Thereby, GANs could play a very critical role in the data

scarcity problem,which is also demonstrated by the studies discussed

in Section 4. From the studies reviewed in this paper, the summary of

the challenges and their corresponding solution approaches using

GANs in civil SHM are illustrated in Figure 19. It is important to

note that, apart from the specific problems such as data domain

translation or data repair, the core issue the applications mostly

address is the data scarcity which involves generating the desired

data for a particular problem. Furthermore, the application types of

GANs shown in Figure 9 address important problems in civil SHM;

and with additional research, validation, and development, those

applications can be potentially used in practice in the future.

5.1 Strengths and limitations

As GANs are notably difficult to train, establishing a training

mechanism for a GAN model could be difficult as vanishing

gradients, mode collapse, and failure of convergence are some of

the major challenges of GANs. Although GANs can tackle the data

scarcity problem, still substantial amount of data is necessary for the

training procedure, which is mostly not possible to provide that

amount of data to the GAN model. On the other hand, thanks to

their superior generative skills, GANs can be employed in
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discovering hidden feature representations in complex data

structures. As such, they can be efficiently used to learn high-

dimensional data like Variational Autoencoders (VAE) and with

better generative quality. Further improvements can be taken to

increase the performance of GANs for learning complex data

structures and stabilizing the training process. As such, using

novel activation functions such as Mish (Misra, 2019), Gated

Linear Units (GLU), Wasserstein Distance (Arjovsky et al., 2017;

Gulrajani et al., 2017) as the adversarial loss metric, and Residual

Layers (skip-connections) like applied in CycleGAN are found to be

beneficial for vanishing gradients, mode collapse, and failure of

convergence problems. Moreover, incorporating different structures

of neural networks in GANs such as Fully Connected Neural

Networks (FCNN), CNN, LSTM, and/or Transformers

(attention-based models) showed to work well in GAN

architecture. Especially, when working on image-based data (2-

D), convolution operations (such as the operations in CNN or

DCNN) are more beneficial as it provides information to the model

about the vicinity of the pixel that is interested (advantageous for

image recognition applications). Contrastingly, linear

transformation operations (such as the operations in FCNN or

Deep FCNN—DFCNN) are found more useful for learning the

signal-based data (1-D) as it gives information about broader

features in the data (signal type data are mostly consisting of

periodic structures) (Luleci et al., 2022d).

In this literature review, the studies that are reviewed

employed GANs to address different problems in civil SHM

(discussed in Section 4.1 and Section 4.2), yet eventually the core

of all the problems points out the data scarcity issue in the civil

SHM field. As such, lost data reconstruction, data augmentation,

data translation between cross domains, anomaly and novelty

detection, increasing the resolution of images or increasing the

sample rate of signal data, and data denoising, deblurring, and

repair for anomaly-contained data application types benefitted

the usage of GANs in civil SHM. As mentioned throughout this

paper, data scarcity is a common issue in civil SHM. Thus,

learning sparse and complex data structures using GANs can be

challenging. In addition to applying the techniques discussed in

the previous paragraph, some other techniques can be considered

to tackle the issue of learning sparse and complex data structures

using GANs. Building a deeper network is beneficial for learning

the domain-invariant representations in complex data structures;

however, this increases the chance of the model getting stuck in

local minima. Also, a deeper network increases the parameters

that are involved which in turn increases the training time due to

longer computational requirements. On the other hand, building

a shallower network reduces the chance of overfitting in the data,

which is a common problem for the deep network; however,

shallower networks will not have the similar learning capacity as

the deep networks since they will have more general knowledge

about the data structure. Therefore, it is important to find a good

balance between deep and shallow networks. Adjusting the

learning rate of the network is also a very typical way to find

the good balance in addition to finding the balance between deep

and shallow networks. When the learning rate is increased, the

training time typically decreases and causes the model to make

large gradient updates which cause the model to have an overall

knowledge about the data domain. When the learning rate is

decreased, the training time typically increases and causes the

model to make very small gradient updates which increases the

training time and may cause the model to get stuck at local

minima. ADAM and ADAMW (with weight decay

regularization) [(Kingma and Ba, 2014); (Loshchilov and

Hutter, 2017)] optimizers can be used in the model as they

make the model less sensitive to learning parameters.

5.2 Recommendations, opportunities, and
current trends

Civil engineering structures can have very complex

mechanisms. Accordingly, the dynamic response data

FIGURE 18
Results of the SIFT feature point detection and matching after increasing the resolution of images with ORI, BIC, and GAN. The left images on
the left half are the source images, and the right images on the right half are the destination images (Sun et al., 2022).
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collected from these structures could have very complex data

domain representations. Employment of other types of

generative DL models such as VAEs and especially DMs in

collaboration with GANs and Transformers showed

remarkable results in the AI field recently. In the coming

years, it is expected that there will be more research on their

usage in SHM applications. The authors envision that more

research and investigation of using GANs, Transformers, and

particularly DMs will open the door for estimating (or

generating) dynamic responses of civil structures based on the

domain knowledge of a different civil structure. It is of authors’

opinion that estimating the structural conditions of civil

structures where there is a minimal-to-no amount of data,

holds significant importance as the comprehensive, high

spatial resolution data collection process is a major challenge

in the civil SHM field. As such, having acceleration,

displacement, or strain response data from one structure, and

estimating the response of other similar structures or even

different structures could be immensely beneficial for civil

SHM as it would optimize the data collection effort. To

achieve that, domain adaptation techniques incorporating

zero-shot, one-shot, or few-shot learning and/or adopting the

mechanism of text-to-image synthesis by using GAN and/or

Transformer (Vaswani et al., 2017) and/or Diffusion Model

(DM) [(Dhariwal and Nichol, 2021); (Ho et al., 2020)] could

be very useful. For instance, learning the high-level data structure

of acceleration response domains from a civil structure using a

model that leverages GAN, Transformer, and DM, and

subsequently predicting the response of other structures based

on supplied auxiliary information of those structures (e.g.,

structural parameters: damping, mode shapes, geometric

properties etc.) fed to the model can make the response

estimation achievable. The fact that GANs perform better at

continuous data (e.g., signal, image) and transformers are better

at learning discrete data (e.g., texts) make the concept more

feasible to realize. Especially, recent studies showed that DMs can

be superior to GANs [(Dhariwal and Nichol, 2021); (Ho et al.,

2020)]. Since civil structures can have a very complex

mechanism, it is important for the AI model to be able to

intake and learn different data types to gain every possible

useful information about the structure. For that reason, a high

level of collaboration with the AI field is critically important. For

the last several years, the focus has been on Natural Language

Processing (NLP) applications such as text-to-image synthesis

where DMs play a major role. Accordingly, many models have

been developed over the years such as models from Google: Bert

(Devlin et al., 2018), Imagen (Saharia et al., 2022), Imagen-video

(Ho et al., 2022); from DeepMind: WaveNet (van den Oord et al.,

2016), Gopher (Rae et al., 2021); from OpenAI: GPT-3 (Brown

et al., 2020), DALL-E (Ramesh et al., 2021), GLIDE (Nichol et al.,

2021), from Meta AI: Make-A-Video (Singer et al., 2022).

Throughout the development of these models, a

multidisciplinary collaboration may not be needed, at least not

as much as the development of model Alphafold (Jumper et al.,

2021) and Alphafold2 (Cheng et al., 2022) (which aims to predict

the formation of complex protein structures—in the

Bioinformatics field) proposed by DeepMind. Nevertheless,

most civil engineering structures have a very complex

mechanism, accordingly, the response data collected from

them can have a very complex domain structure. Thus, the

ability to estimate response data of different multiple civil

structures even at nodes with no data collection depends on

high-level multidisciplinary research activity between AI and

SHM. This multidisciplinary collaboration can be similar to the

case of “how the researchers had to understand the formation of

protein structures throughout the development of the AlphaFold

FIGURE 19
Summary of challenges and corresponding solution approaches using GANs in civil SHM.
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series”. Systematic collaboration between the field of SHM or

structural engineering and the AI field might also lead to the

emergence of a new discipline just as the discipline of Civionics

(combination of Civil Engineering and Electronics Engineering)

or Bioinformatics (combination of Biology and Computer

Science).

Currently, Variational Autoencoders (VAE) and GAN are

the most used generative DL models to learn the distribution

of the data in to generate new data. Figure 20 summarizes the

pros and cons of VAEs, GANs, and DMs. While VAEs are

good at producing diverse samples at a faster rate considering

their training and inference processes, the quality of generated

outputs is not satisfactory (e.g., blurry) compared to the

performance of GANs. On the other hand, GANs can

produce high-quality outputs through adversarial training

mechanisms but are mostly difficult and timely to train

(e.g., mode collapse, vanishing gradients, failure of model

convergence). DMs tackle the aforementioned challenges of

VAEs and GANs and have demonstrated great success

[(Dhariwal and Nichol, 2021; Ho et al., 2020)] in text-

guided image generation such as Imagen [(Saharia et al.,

2022; Ho et al., 2022)], DALL-E (Ramesh et al., 2021),

GLIDE (Nichol et al., 2021), and Make-A-Video (Singer

et al., 2022). Briefly, DMs learn the data distribution by

destroying training data through the successive addition of

Gaussian noise and then, recovering the input from the noise

in a backward propagation (denoising), which is also called

Markov-Chain since it is a sequence of stochastic events where

each time step depends on the previous time step. One of the

special properties of DMs is latent space has the same

dimensionality as the input space. The generation of new

data is implemented via a backward process where denoising

is implemented. While there are multiple studies of VAEs and

GANs in the SHM field and several studies use Transformers,

there is no study that uses DM for SHM applications which

could be very advantageous using for SHM applications

considering the remarkable performance of recently

released DM models [(Saharia et al., 2022); (Nichol et al.,

2021; Ramesh et al., 2021; Singer et al., 2022)].

6 Summary and conclusion

6.1 Summary

Deteriorated and rapidly ageing civil engineering structures

have been a concern for the safety of civil society. SHM utilizes

continuous, periodic or intermittent data collection (via sensorial

systems) from civil structures along with advanced analysis

methods to improve conventional condition assessment

methods (Figure 1 and Figure 2). On the other hand, ML and

DL methods have been found to be advantageous in data-driven

applications in the civil SHM field. Since its release in 2014, GANs

have been used in a wide variety of applications in various

disciplines, and it has been one of the most popular research

topics in the AI-ML domain. Especially, GANs have been quite

favored by researchers lately for civil SHM applications.

Nonetheless, it is observed by the authors of this study that

while there are several studies about GANs in civil SHM, no

literature review study is available, which is very important for the

advancement of GANs in the field. Thereby, this study aimed to

fulfill this gap by presenting a comprehensive literature review of

the studies conducted via GANs in the civil SHM field. It is of

authors’ opinion that this paper contributes to the civil SHM field

by providing essential information for researchers about GANs

and their applications in the field.

7 Conclusion

This paper presents a literature review of the studies utilizing

GANs in the civil SHM field with its initial release in 2014 to date.

The conclusions of this paper can be listed in the following.

• Based on the literature review conducted in this paper,

45 studies using GANs in the civil SHM field are identified.

Among the 45 studies, 19 of them worked on 2-D and 26 of

them worked on 1-D data. The studies are also classified

based on the use of GANs as follows: “Data Generation

(only)”, “Lost Data Reconstruction”, “Data

Augmentation”, “Data Domain Translation”, “Anomaly

and Novelty Detection”, and “Others”: “Data denoising,

deblurring, and repair”, “Displacement measurement and

crack detection after increased resolution”, “Track

FIGURE 20
Generative learning trilemma (Vahdat and Kreis, 2022).
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irregularity estimation”, “Damage identification”, and

“Annotation reduction via transfer learning”.

• It is observed in the studies that are reviewed that most of them

addressed the data scarcity problem. Therefore, they usedGAN

or its variant (GANs) to overcome the data scarcity challenge.

Some of the other studies, on the other hand, utilized GAN or

its variant for only novelty or anomaly or track irregularity

detection. Although the remaining studies did not directly

address the data scarcity problem (such as one of the studies

measure structural displacement on the image frames after

increased resolution of the images), those studies indirectly

point out the data scarcity issue by generating the desired data.

• The very first study using GAN in the civil SHM field is

observed in the year 2018 as per an online publication

(Wang et al., 2019). Since then, the number of studies per

year tends to increase gradually. It is safe to assume that

GANs are at the beginning stage of research and

development in the civil SHM field. Thus, it is expected

to observe more studies in the following years.

• The GAN-based models proposed in the studies reviewed

must be extensively tested on real civil structures for further

validation and to investigate their applicability in real-life cases.

• Having acceleration, displacement, or strain response data from

one civil structure and estimating the response of other similar

structures or even different structures could be very beneficial

for the civil SHM field as it would minimize or eliminate the

data collection effort. To achieve such a concept, domain

adaptation techniques incorporating zero-shot, one-shot, or

few-shot learning and/or adopting the mechanism of text-to-

image synthesis such as using GAN in collaboration with

Transformer and/or Diffusion Models could be very

advantageous.

• Many remarkable studies have been presented in the AI

field lately [(Dhariwal and Nichol, 2021; Ho et al., 2020;

Devlin et al., 2018; Saharia et al., 2022; Ho et al., 2022; van

den Oord et al., 2016; Rae et al., 2021; Brown et al., 2020;

Ramesh et al., 2021; Nichol et al., 2021; Jumper et al., 2021;

Cheng et al., 2022; Vahdat and Kreis, 2022)]. As some of

them required interdisciplinary collaboration, some of

them did not. Most civil engineering structures have a

very complex mechanism, accordingly, the collected

response data from them can have a very complex

domain structure. Thus, the ability to estimate response

data of different civil structures at locations with no

data (new data generation) depends on a high-level

systematic multidisciplinary research activity between

SHM and AI fields. This multidisciplinary collaboration

should be at least at the level of “how the researchers had to

understand the formation of protein structures throughout

the development of the AlphaFold series (Cheng et al.,

2022)”.
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