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As coastal populations increase every year, greater numbers of people and

buildings to support them are left vulnerable to severe hazards associated with

hurricanes, which have shown signs of increasing strength and frequency

related to climate change. Community-level decision making is essential to

adequately prepare populations for the risks associated with imminent

hurricanes and to adapt buildings to be more resilient. This creates a need

for state-of-the-art methods such as data-driven machine learning to predict

the damage that buildings will experience during hurricanes and support

decisions for community stakeholders. Previous research has attempted to

proactively forecast hurricane damage using numerical frameworks for

individual building archetypes or by incorporating a narrow spectrum of

input features. The focus of this study is a novel machine learning

framework trained on building, hazard, and geospatial data to hindcast

damage from Hurricanes Harvey, Irma, Michael, and Laura, with the

objective of forecasting expected damage from future hurricanes.

Performance of different algorithms were investigated including k-nearest

neighbors, decision tree, random forest, and gradient boosting trees

algorithms. In predicting qualitative damage states, random forest

outperforms other algorithms with 76% accuracy in the hindcast. Parametric

studies identify which features contribute the most to accurate predictions and

demonstrate that prediction accuracy increases linearly for this case study with

additional reconnaissance data to train the model. Finally, a comparison is

drawn between this model and the ability of Federal Emergency Management

Agency’s Hazus Multi-Hazard Hurricane Model to estimate building-specific

damage on the same hindcast set of buildings.
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1 Introduction

Coastal communities in the southeastern United States have

a great degree of risk from frequent hurricanes which devastate

this region each year, and that is only exacerbated by rapid

urbanization near the coasts. While global occurrences of natural

hazards and their resulting economic losses fluctuate from year to

year, Mohleji and Pielke (2014) provide comprehensive review of

such losses from 1980 to 2008 and indicate that global losses are

increasing at a rate of $3.1 billion per year, of which hurricane

hazards in North America account for 57%. Focusing on the

continental United States, where the majority of this loss has

taken place, 197 hurricanes occurred between 1900 and 2017,

resulting in 206 landfalls in the US and nearly $17 billion in

annual damage, normalized to 2018 dollar value (Weinkle et al.,

2018). The vast majority of the hurricane damage causing these

losses takes place in coastal counties, where population densities

are much greater than inland communities. From 2000 to 2016,

populations in US coastal counties along the Gulf of Mexico

increased by 24.5%, compared to a national average of 14.8%,

with some Gulf Coast counties seeing up to 35% population

increase over this period (Cohen, 2018). In fact, the only year

during this period in which such growth did not take place was

2005–2006 which saw three of the most intense hurricanes on

record: Katrina, Rita, and Wilma. This trend is only expected to

continue given rapid development rates along the Gulf Coast

where the proportion of the region’s workforce in the

construction industry is 25% greater than the US as a whole

(Cohen, 2018).

Coastal hurricane risk is not only amplified by increasing

populations and infrastructure development, but is compounded

by climate change, which literature suggests is correlated with

frequency of major hurricanes (category three and higher) and

intensity of hurricane hazards. While a major hurricane may not

make landfall each year (for example, no major hurricanes made

landfall in the US between 2006 and 2016), Levin and Murakami

(2019) analyzed hurricane data from 1900 to 2015, applied high

resolution modeling of anthropogenic global warming, and

concluded that such warming leads to higher frequency of

major hurricane landfall with shorter duration between major

hurricanes. By modeling sea level rise and hurricane climatology

change consistent with 50% probability of exceedance by the end

of the century, Marsooli et al. (2021) quantified this increased

frequency as a reduction in mean recurrence interval of a historic

1000-year event, for example, to only 280 years in parts of the

Atlantic coast. In an extensive review of current modeling of 2°C

anthropogenic global warming, Knutson et al. (2020) also

identified strong confidence in hurricanes producing greater

storm surge levels due to sea level rise, higher precipitation

rates, increased wind intensity, and a greater proportion of

category 4 and 5 hurricanes. With increased risk to coastal

communities via urbanization, population migration to the

coasts, and amplification of hurricane frequency and intensity

due to climate change, it is imperative that these communities’

stakeholders have the means to estimate vulnerability and

develop action plans before hurricane landfall.

From the 1960s through the 2000s, methodologies for

estimating building vulnerability to hurricane hazards relied

on insurance claim or post-event reconnaissance data, and

vulnerability was generally considered as a function of wind

speed (e.g., Berke et al., 1984; FEMA, 1992; Mitsuta, 1996). Pita

et al. (2015) discuss the details of such methods and the evolution

of vulnerability modeling over time. More robust frameworks

such as that developed by Pinelli et al. (2004) for residential

structures or the widely used Federal Emergency Management

Agency (FEMA) HazusMulti-Hazard Hurricane Model (Vickery

et al., 2006a, Vickery et al., 2006b), herein referred to as Hazus, go

beyond fitting univariate curves of wind speed versus damage,

and utilize fragility curves developed from probabilistic

component resistance and damage states consisting of one or

more damaged components to predict building damage at a given

wind speed. Masoomi et al. (2019) follow the strategy of relating

probabilistic hazard intensity to probabilistic component and

overall damage with a multi-hazard approach that considers

wind speed as well storm surge depth, which is also addressed by

Hazus. Both of these frameworks also include hurricane

modeling to generate hazard intensity parameters for

forecasting or hindcasting specific events. These methods are

all contingent upon a number of building archetypes in order to

obtain probabilistic resistance to hazard loading. Building

archetypes aim to capture common building characteristics in

a study region, but are typically highly detailed, specifying

building geometry, materials, and even fastener sizes. The

research presented in this article also attempts to predict

hurricane damage to buildings, but relying on machine

learning (ML) algorithms to classify damage, rather than

calculating fragility. This method avoids the application of

specific archetypes through a building-agnostic framework

built on data that is easily accessible from reconnaissance data

or public sources such as county property appraisers.

While ML has been applied to hurricane hazard engineering

in recent years, its application to predicting building damage is

limited. For decades, ML has been applied to wind engineering

subfields such as predicting windstorm intensity and frequency,

incorporating topographic and aerodynamic features into wind

models such as those in computational fluid dynamics, and as

surrogate models to mitigate the expense of complex

computational models (Wu and Snaiki, 2022). In recent

practice, ML is utilized in the reactive categorization of

building damage after hurricane impact by comparing pre-

and post-storm imagery (e.g., Li et al., 2019; Calton and Wei,

2022; Kaur et al., 2022) and for near real-time detection of

damage via analysis of social media posts (e.g., Hao and

Wang, 2019; Yuan and Liu, 2020). These methods can be

valuable for prioritizing emergency response allocation in the

early hours following a hurricane. However, as reactive
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approaches taking place after the damage has occurred, they do

not offer support for stakeholders assessing risk prior to

hurricane landfall.

There are a few cases of ML for damage prediction at a

regional scale. In a case study hindcasting the damage ratio

(structural impact normalized by exposure) on the census tract

level for Hurricane Maria, Szczyrba et al. (2020) utilized a

random forest (RF) regression algorithm strictly driven by

environmental and social factors with limited predictive

performance indicated by an R2 value of 0.29. Wendler-Bosco

and Nicholson (2021) also used ML regression to predict a

monetary damage ratio (ratio of the value of damage in a

county to that county’s GDP) using eight different ML

algorithms trained on 72 observations of aggregated tropical

cyclone records using only wind speed and wind radius

characteristics of the storms and obtained R2 values on the

range of 0.5–0.6. Even fewer cases of ML applications to

building-specific damage predictions exits. One such example,

which makes use of storm surge modeling and engineering

theory, is the Bayesian network of van Verseveld et al. (2015),

which was 68.4%, 95.8%, 4.4%, and 0% accurate in predicting

“affected”, “minor”, “major”, and “destroyed” damage

classifications, respectively for a hindcast of Hurricane Sandy

(2012). In another example, the proportional odds cumulative

logit model of Massarra et al. (2020) was developed using

building and hazard features to hindcast Hurricane Katrina

(2005) damage to buildings along the Mississippi coast, and

was 84% accurate in predicting a building being in or exceeding

one of three damage states.

The ML framework presented here is distinguished from

prior methodologies in several key attributes. It is a multi-hazard

framework that considers hurricane wind and storm surge

inundation; it is building-agnostic, meaning no assumptions

of a building archetype are made; it is a proactive forecasting

approach in contrast to reactive post-event damage classification;

it accounts for engineering factors, the basis for fragility-based

damage models like Hazus, by incorporating many of the same

engineered components as input features; and it takes into

account geospatial data. This article presents the formulation

of an ML framework for damage predictions, identification of the

most applicable ML algorithm, hindcast evaluation of the

framework on multiple hurricane data, parametric studies of

input features, and a comparison to Hazus damage predictions.

2 Problem statement

The study presented here is part of ongoing work to predict

damage to structures, particularly buildings, in a hurricane

impact area. Damage predictions will be facilitated by the ML

framework discussed herein, which maps building features (e.g.,

materials and geometry), hazard features (wind speeds and water

inundation), and geospatial features (e.g., distance and shielding

from peak hazard intensities at the coastline) to categorical

damage states on a building-by-building basis throughout an

impact area. This mapping can be represented by Eq. 1:

DS u( ) � fML
x,y( ) u( ) (1)

where DS is the predicted categorical damage state of a building

(e.g., DS-0 representing No Damage), fML
(x,y) represents the

operations of an ML algorithm rather than a single function

(e.g., decision rules of an RF algorithm) which is fit to a training

set entailing a matrix x collecting observations in the rows and

their respective feature values (i.e., building, hazard, and

geospatial features) in the columns and a vector y containing

associated damage states, while u is a vector collecting input

features of a testing sample (i.e., a building of interest).

The damage prediction framework is developed so that it can

be used for real time damage forecasting as hurricanes form in

the Atlantic basin. As tropical cyclones begin to form (e.g., 5 days

before landfall), hazard parameters modeled by various other

organizations and researchers can be used in collaboration with

the damage prediction model of this study as hazard input

features. In the same duration, geospatial and building data

can be obtained for buildings within an expected impact area.

The ML framework developed here will then incorporate input

features (hurricane hazard parameters, geospatial, and building

characteristics) from various sources to forecast building damage.

This proactive framework will allow for region- and event-

specific damage predictions on a building-by-building basis to

convey risk and inform individuals’ and community-level

decisions for evacuation, preparation, and mitigation.

3 Overview of machine learning
algorithms

To begin with, the task at hand is one of classification, as

opposed to regression, in which input features are mapped to

categorical targets, or classes, rather than continuous target

values. When selecting an ML classification algorithm for a

particular dataset, a typical first step is to determine linearity

between the dataset’s features and target. By plotting building,

hazard, and geospatial features from sample reconnaissance data

published by the National Science Foundation (NSF) funded

Structural Extreme Events Reconnaissance (StEER) and other

sources (described in detail in Section 4) against observed

damage states and examining target class distribution, it was

determined that the majority of features were not linearly

correlated. Those features that exhibited some linearity (e.g.,

peak wind gust and age) contained many outliers which did not

follow the linear trends, and a nonlinear model was determined

appropriate. Next, available reconnaissance datasets were found

to contain fewer than 1,000 observations for each hurricane, and

were not deemed to warrant a neural network, which is common
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in current ML applications with many thousands of observations.

Algorithms that were considered and tested in this work include

k-nearest neighbors (KNN), decision tree (DT), random forest

(RF), and a tree-based gradient boosted classifier (GBC). Of

these, the RF, an ensemble of DTs, was selected for further

analysis due to its robustness to high-dimensional data and its

interpretability, both of which are discussed in the following

algorithm description, as well as favorable performance

presented in the results of Section 5.

3.1 Decision tree

When creating anMLmodel, a subset of available data, called the

training set, is used to train or “fit” the model. The remaining data is

called the testing (sometimes validation) set, and is retained to

determine performance of the final model as a means of

estimating the model’s accuracy in classifying new data where the

target would be unknown. Fitting involves the algorithm “learning”

by defining rules or parameters for classifying new data, and the

process varies by algorithm. In the case of DT, fitting involves

defining decision rules to separate observations with different

classes according to the procedure in this subsection, which

follows the original DT formulation of Breiman et al. (1984),

algorithm overview by James et al. (2013), and application by

Pedregosa et al. (2011) to the Python programming language. In

a DT, the feature space of the data is subjected to recursive binary

splitting such that the result of the splitting clusters observations with

the same target class (Breiman et al., 1984). The feature space is

simply an assembly of vectors containing the feature values for all

observations in the dataset as in Eq. 2:

xi ∈ Rn, i � 1, . . . , l (2)

where xi is a vector of feature values for an observation, i

represents one of l observations, and Rn is the coordinate

space of real numbers in n dimensions for n features.

Figure 1 depicts a partial DT created from a sample of

hurricane reconnaissance data and serves as a guide,

referenced throughout the following equations. In this figure,

nodes (θm) are represented by boxes and numbered at the top, the

feature (j) and threshold (tjm) for a node are given at the second

line in each node, “gini” is the Gini impurity index (H) of a node,

“samples” refers to the number of observations (qm) contained in

a node, “value” is a vector which represents the number of those

observations belonging to three different classes (s), and “class”

refers to the most frequently occurring class in the node (DS in

terminal nodes). No Damage, Non-Structural Damage, and

FIGURE 1
Partial decision tree for a random sample of hurricane reconnaissance data.
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Structural Damage are the three classes considered here. These

terms will be defined throughout the theory overview of this

section. The sample partial decision tree of Figure 1 serves only as

a demonstration and is not representative of the model developed

in this study for damage predictions.

The feature space is split at specific values of individual features,

creating what are called nodes, and the final groupings of

observations when no further splits are made are called terminal

nodes or leaves (James et al., 2013). The DT is fitted by making such

splits to separate observations in the training data by class. A potential

node can be parameterized by the feature, j (one of n features), that

will be used to split the data, and the threshold, tjm, or value where the

split will be made, and is defined as θm in Eq. 3.

θm � j, tjm( ) (3)

where the subscript m is used to refer to a single node in the DT.

Looking at Node 0 (topmost box) in Figure 1, this node uses a

threshold, tjm, of 0.599 for the feature, j, of Inundation Depth to

separate observations based on their Inundation Depth value.

The result of a split at such a node is a collection of

observations whose value of feature j fall below the threshold

tjm to the left of the node, and a collection of observations whose

value for j exceed the threshold to the right following Eqs. 4, 5.

Qleft
m θm( ) � xi, yi( ) | xi,j ≤ tjm{ }, i � 1, . . . , l (4)

Qright
m θm( ) � Qm\Q

left
m θm( ){ } (5)

where Qm is a set of observations (features and targets) entering

node m, the term (xi, yi) represents a single observation (the

vector of its feature values, xi, and target value, yi), xi,j is the value

of feature j in observation i,Qleft
m is the subset ofQmwhose values

for feature j fall below tjm and are passed to the left of nodem, and

Qright
m is the subset whose values for j exceed tjm and are passed to

the right of node m.

Keeping with Node 0 in Figure 1, Qm represents the set of (x,

y) pairs for 2,044 observations in Node 0. Qleft
m are the

1,346 observations whose Inundation Depth was below the

threshold of 0.599 passed to Node 1 on the left, and Qright
m are

the 698 observations whose Inundation Depth exceeded the

threshold of 0.599 passed to Node 754 on the right.

Nodes are selected such that they reduce the downstream

impurity to the left and right side of the node. A pure set of

observations (impurity equal to zero) is the ideal case, in which

all observations in the set have the same target class. Impurity

then increases when a set contains observations with varying

target classes. The selected node’s parameters, written as θm* , are

chosen to minimize the total impurity,G, downstream of the split

using the argument in Eq. 6.

θpm � argmin
θm

Gm Qm, θm( ) (6)

where Gm is the total impurity of node m, or the sum of the

Gini index (defined in Eq. 8) on each side of the split weighted

by the number of observations passed to each side, according

to Eq. 7.

Gm Qm, θm( ) � qleftm

qm
Hleft

m Qleft
m θm( )( ) + qrightm

qm
Hright

m Qright
m θm( )( )

(7)
where qm is the number of observations entering node m, qleftm is

the number of observations in Qleft
m , qrightm is the number of

observations in Qright
m , andH is the Gini index, the typical default

impurity measure for DT algorithms.

In each node of Figure 1, the feature and threshold represent

θm* , not any arbitrary θm, since only the selected nodes that satisfy

Eq. 6 are shown in the DT output. For Node 0 in Figure 1, qm is

2,044 (this differs from Qm in that qm is simply a count of

observations, while Qm is a set containing the observations’

features and targets). Node 1 contains qleftm and Hleft
m (Qleft

m )
as 1,346 and 0.468, respectively. Similarly, Node 754 contains

qrightm and Hright
m (Qright

m ) as 698 and 0.647, respectively.

The Gini index, H, is a value that quantifies class impurity

among a set of observations contained in a node, and is related to

the proportion of each class represented in that node. Lower

impurity aids correct predictions by demonstrating that the

decision rules leading to that node sufficiently isolate a

particular class. This value is calculated for Qm in each node

following Eq. 8.

Hm Qm( ) � 1 −∑
S

s�1
p2
m,s (8)

where pm,s is the proportion of observations in nodem belonging

to class s as determined by Eq. 9.

pm,s � 1
qm

∑
y∈Qm

1 y � s( ) (9)

where 1 is the indicator function yielding one if the argument is

true and zero otherwise.

The pm,s values for all S classes at any nodem can be collected

into a single vector, pm, as in Eq. (10).

pm � pm,1, pm,2, . . . , pm,S[ ]T (10)

From Figure 1, an example of pm,s considering Node 1 and s =

1 would be 221 observations belonging to class 1 (first element in

the “value” vector), divided by qm = 1, 346 total observations in

that node.

This process repeats for the subsets Qleft
m (θm* ) and

Qright
m (θm* ) contained on either side of the split until a user-

defined maximum number of nodes have been created or until

fewer observations remain than the user-defined number

required for a new node to be created. Both of these stopping

criteria are tunable hyperparameters, adjustable parameters

which control the algorithm, and can be adjusted by the

modeler. The probability of an observation belonging to a

given target class is then the proportion of samples of that
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same class contained in its terminal node. The predicted class of

an observation is determined as the class with the greatest

probability as in Eq. 11.

DS � s | pM,s � max pM( )( ) (11)

where DS is the predicted damage state of an observation, and

pM,s is a component of vector pM which is determined following

Eq. 10 at the observation’s terminal node M.

After fitting the DT to training data, new (testing) data are

sorted via the decision rules at the nodes in the DT, and their

predicted classes determined according to Eq. 12.

DS u( ) � fDT(x,y) u( ) (12)

where fDT
(x,y) represents the decision rules of the DT defined by

the parameters of all of its nodes (θ*) and fitted according to Eqs.

4 through 9, and outputs the predicted damage state of a testing

observation following Eqs. 10, 11.

As an example of classifying new data with the DT, consider a

testing observation with Inundation Depth = 0.25 and Distance

to Coast = 15,000. Also assume that Figure 1 represents a

complete DT instead of a partial one. This new data

observation would start at Node 0 and be passed to the left to

Node 1 since Inundation Depth of 0.25 is less than the threshold

of 0.599. Next, since Distance to Coast of 15,000 exceeds the

Node 1 threshold of 11,747.981, the observation would be passed

to the right to Node 375. Assuming this is a complete DT, Node

375 would be a terminal node, and the observation would be

classified as Non-Structural, determined by the majority of

training observations in this node during fitting belonging to

that class. The DT is desirable for its interpretability by simply

examining feature and threshold values at each node and

discerning whether an observation meets those thresholds.

3.2 Random forest

The RF model consists of an ensemble of DTs created as

described in the previous section. Following RF formulation

by Breiman (2001) and applications in Pedregosa et al.

(2011), each DT in the RF ensemble is fit using a

bootstrap, or subset, of training observations and

considering only a subset of features when creating nodes

in the DT. Fitting the underlying DTs in an RF on bootstraps

of different observations and decorrelating those DTs by

building them from differing sets of features reduce

variance, or fluctuation in predictive accuracy given

different testing data, thus making it robust to high

dimensional data (Breiman, 2001). For a given testing

observation, an RF algorithm sorts that observation

through each DT in the RF, and averages the probabilistic

class predictions from the output of the DTs to create a final

FIGURE 2
Flowchart of random forest procedure: training data is used in all steps to fit the model, then new (testing) data is classified using the steps
indicated by the dashed box.
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prediction for that observation as the class with the highest

probability. Figure 2 contains a flowchart depicting an

ensemble of an arbitrary number r DTs being created from

bootstraps of observations and subsets of input features, then

testing data being input into those fitted DTs as indicated by

the dashed box. While not as interpretable as a single DT, the

RF is not a so-called “black box” algorithm since one could

feasibly examine an observation’s path through each DT in

the ensemble to analyze how the final prediction is made

(James et al., 2013).

In context of this study, each DT in the RF ensemble maps

observations’ features to class probabilities following Eq. 10 at

terminal nodes. Then, the probabilities obtained from all DTs are

averaged using Eq. 13.

�p � 1
R
∑
R

r�1
pM,r (13)

where �p is the average class probability vector, and pM,r is

calculated by Eq. 10 for the terminal nodes, M, where an

observation is sorted in each of R DTs in the RF ensemble.

Finally, an observation’s predicted damage state can be taken

as the class with the greatest average probability as in Eq. 14.

DS � s | �ps � max �p( )( ) (14)

After all the DTs in the RF ensemble are fitted, a new (testing)

observation can be classified by sorting it through each DT and

averaging the resulting class probabilities, thus solving the

problem statement of Eq. 1 by Eq. 15.

DS u( ) � fRF
x,y( ) u( ) (15)

where fRF
(x,y) represents the RF ensemble of DTs fitted according

to Eqs. 4 through 9 and outputs the predicted damage state of the

testing observation following Eqs. 10, 13 and 14.

3.3 Additional algorithms investigated in
this study

3.3.1 K-nearest neighbors
In addition to the RF and DT algorithms, KNN and GBC

were also selected for investigation given their applicability to the

dataset size, objective of classification, and nonlinear prediction

mechanisms. The KNN algorithm is relatively simple compared

to other nonlinear classification algorithms (Goldberger et al.,

2004). The following algorithm overview was adapted from

Pedregosa et al. (2011) which provides a common

contemporary application of the KNN algorithm formulated

by Fix and Hodges Jr (1951) and Altman (1992). A KNN

model is fitted by simply plotting training data onto an n-

dimensional coordinate system for n features, as presented in

Figure 3 for an arbitrary two-feature example. When the training

data are plotted, the target classes, shown as damage states, are

known as represented by the symbology in Figure 3. Next, the

testing data are similarly plotted, but without a known target

class. A user-defined number, k, training observations, or

neighbors, nearest a testing observation are used to predict

the class for that testing observation, as identified in the

FIGURE 3
Example of k-nearest neighbors procedure using arbitrary data with two features and k = 5.
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figure. An observation’s predicted class is then determined by

either a simple vote of the neighbors’ classes or a vote of the

neighbors’ classes weighted by the inverse of their distance from

the testing observation. Selecting the value for k typically involves

an automated, iterative process of fitting the KNN with k values

ranging from one through
�
n

√
, as a rule of thumb, and selecting

the value that yields the greatest accuracy (Hassanat et al., 2014).

A weighting scheme is also typically selected in a similar manner.

For target classes representing damage states as in Figure 3, the

problem statement of Eq. 1 is satisfied by Eq. 16.

DS u( ) � fKNN
x,y( ) u( ) � s | ks � max k u, x, y( )( )( ) (16)

where fKNN
(x,y) (u) represents the operations of the KNN algorithm

fitted to (x, y) to classify new data u, k (u, x, y) is a vector of length

S for s = 1, . . . , S classes in the data where each element represents

the count of k-neighbors belonging to each class (unweighted

voting) or the sum of the k-neighbors belonging to each class

multiplied by the inverses of their respective distances to u

(distance-weighted voting).

3.3.2 Gradient boosting classifier
Like an RF, a GBC is comprised of an ensemble of DTs to

make predictions. In contrast to RF, GBC is built using

regresssion DTs rather than classification DTs and instead of

averaging the ensemble’s output, GBC uses sequential DTs, with

each DT in the model fit to minimize a loss function of the

ensemble’s output (Friedman, 2001). The following overview is

adapted from GBC formulation by Friedman (2001, 2002) with

applications specific to the multi-class (more than two target

classes present in the data) GBC from Pedregosa et al. (2011).

In a multi-class GBC, separate DTs are created for each of S

target classes in the data at a user-defined number, R, instances,

so that the completed ensemble contains S × R DTs (Pedregosa

et al., 2011). In the DT created for each class, training

observations are assigned a “true label” of 1 if the observation

belongs to that class and 0 otherwise. Each DT is then fitted to

estimate these true labels, resulting in predicted labels which are

the estimated probability that an observation belongs to the class

the DT represents. A vector of predicted labels for training

observations, pr,s(x), is determined via Eq. 9 at the

observations’ respective terminal nodes, M, in instance r for

y ∈ {0, 1} respective to the class, s, represented by the DT.

Fitting in this manner creates decision rules in the DTs to

minimize the total loss in the ensemble of predicted relative to

true labels at each instance following Eq. 17.

hr,s x, y( ) � argmin
h

Lr,s ys,Fr,s x( )( ) (17)

where hr,s (x, y) represents the DT for class s in instance r, Lr,s is

the loss function for the class s ensemble through instance r, ys is

a vector containing observations’ binary true labels respective of

class s, Fr,s(x) is the sum of all DT outputs pr,s(x) for the class s

ensemble through instance r. While a variety of differentiable loss

functions have been proposed (Friedman, 2001, 2002), Eq. 18,

which presents the log-loss, is a typical loss function for multi-

class GBC (Friedman, 2001; Pedregosa et al., 2011).

Lr,s ys, Fr,s x( )( ) � 1
l
∑
l

i�1
ys,i log Fr,s xi( )( ) + 1 − ys,i( )log 1 − Fr,s xi( )( )( )( )

(18)

where ys,i and Fr,s (xi) are elements of vectors ys and Fr,s(x),

respectively, representing values for observation i. To minimize

the loss function efficiently, Eq. 17 can be solved as a single

parameter optimization where Eq. 18 is approximated via a first-

order Taylor approximation (Friedman, 2001).

Additional DTs are fitted to the training data and added to

the ensemble until a user-defined number, R, instances have been

added to the ensemble, resulting in S separate solutions

FR,s(x) � ∑R
r�1pr,s(x). The separate solutions are combined

into a single matrix, FR(x) containing FR,s(x) in the columns.

Each row in this matrix representing an observation is then

normalized via the softmax function, σ, defined in Eq. 19, to yield

the probability that the observation belonging to each class.

σ xi( ) � eFR xi( )

∑S
s�1eFR,s xi( ) (19)

The predicted class for an observation is identified as that

corresponding to the maximum probability, or highest value in

the observation’s respective softmax vector σ(xi). Thus, the

problem statement of Eq. 1 can be solved in the context of a

GBC by introducing new (testing) data into the GBC ensemble,

sorting the data through each DT in the ensemble according to

their feature values, u, and identifying the most probable class

determined by the softmax function, as summarized in Eq. 20.

DS u( ) � fGBC
x,y( ) u( ) � s | σs � max σ u( )( )( ) (20)

where fGBC
(x,y) represents the decision rules of the GBC ensemble

fitted to (x, y) and gives the predicted damage state of the testing

observation as the class following Eqs. 17 through 20.

3.4 Performance metrics

Both accuracy and average f1-score were used as metrics to

evaluate performance of the ML models, which are ubiquitous

metrics in multi-class ML (e.g., Jeni et al., 2013; Grandini et al.,

2020; Tharwat, 2020). Accuracy is a simple measure of overall

correct predictions as in Eq. 21.

Accuracy � number of correct predictions
total number of predictions

(21)

Average f1-score relies on two components - precision and

recall - and gives a closer look at multi-class performance where

one or more classes may be predicted more accurately than the

others. A confusion matrix which plots true class labels against
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predicted class labels is a useful visual aid in interpreting these

metrics. Precision and recall are both calculated for each class

independently using the count of True Positives (TP), False

Positives (FP), and False Negatives (FN) as depicted in the

example confusion matrix in Figure 4 for the No Damage

class. Using the example of the No Damage class, precision

can be described as the rate of correct No Damage predictions

out of all predictions of No Damage. Precision is evaluated using

Eq. 22, written for any class s.

Precisions � TPs

TPs + FPs
(22)

Still using the No Damage class as an example, recall is

described as the rate of correct No Damage predictions out of all

observations whose true label is No Damage. Recall is calculated

with Eq. 23, written for any class.

Recalls � TPs

TPs + FNs
(23)

The f1-score combines these two metrics as the harmonic

mean of precision and recall, and is also calculated for each class

independently following Eq. 24.

f1 − scores � 2 ×
Precisions × Recalls
Precisions + Recalls

(24)

The average f1-score, f1, used as a metric in this study, is the

mean of the f1-scores for all classes, calculated in Eq. 25.

f1 � 1
S
∑
S

s�1
f1 − scores (25)

4 Case study

The objective of this study’s ML framework is the ability

to forecast building damage throughout an impact area on a

building-by-building basis. The end user of such a model

could be anyone from a homeowner to a regional or state

entity with region-wide building data, investigating the risk

of that region for an imminent or hypothetical hurricane.

Before such a model can be used for forecasting, however, its

performance needs to be tested on existing data as in a

hindcast. In this case, input features consist of building

characteristics, wind and surge hazard parameters, and

geospatial data for buildings impacted by Hurricanes

Harvey (2017), Irma (2017), Michael (2018), and Laura

(2020). The target class for each observation is the damage

state observed during reconnaissance efforts for each

hurricane. These input and target variables, listed with

FIGURE 4
Sample confusion matrix depicting True Positives in the dashed box and False Positives and False negatives in the left column and top row,
respectively, excluding the dashed box, for the No Damage class.
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their sources in Table 1, will be discussed in detail in the

following subsections.

4.1 Building data

Since it is known that buildings of different age, materials,

and geometry will perform differently when subjected to the

same loading, it is imperative that these parameters are

considered when predicting building damage. State-of-the-art

models such as Hazus (FEMA, 2021a,b; Vickery et al., 2006a,b)

use detailed building characteristics, each with experimentally

derived load resistance, when developing building archetypes

which are then subjected to loads calculated using hurricane

intensity parameters. It is noted by Wu and Snaiki (2022) that

“knowledge-enhanced machine learning,” which attempts to

capture such underlying physics in a data-driven ML model,

assists in efficiency and accuracy of ML models in wind

engineering. Despite ML algorithms not directly calculating

loading and resistance for building components, incorporating

these building characteristics as variables aims to maintain the

engineering factors at play when buildings are damaged by

hurricane hazards. Thus, reconnaissance datasets containing

building characteristics and their post-event damage states

were examined. Hurricanes Harvey, Irma, Michael, and Laura

were selected based on the availability of such extensive datasets

published by the NSF-funded StEER and Geotechnical Extreme

Events Reconnaissance (GEER) networks (Kijewski-Correa et al.,

2018a; Kijewski-Correa et al., 2018b; Roueche et al., 2018, 2020,

2021). Combining these reconnaissance datasets resulted in

3,796 buildings, or observations, each with 11 building input

features and the target damage state. Where “primary” and

“secondary” are used in feature names in Table 1, for example

with wall cladding, “primary” indicates the cladding material

found on the majority of the building, while “secondary” refers to

additional cladding materials on the building, if any.

The target here is a qualitative damage state that can take on

one of three distinct classes for an observation: No Damage, Non-

Structural Damage, and Structural Damage. These damage states

were adapted from those of Vickery et al. (2006a), used in the

original reconnaissance data and in Hazus, by combining the

Minor and Moderate damage states into the Non-Structural

Damage class, and combining Severe and Destruction into the

Structural Damage class. These class descriptors are consistent

with the types of damage associated with them as shown in

Table 2. If any listed component of a building experienced a

criterion of a higher damage state, the higher damage state was

applied to that building. The 3,796 buildings’ locations and

damage states are shown in the map of Figure 5. Buildings

which contained insufficient data for ML analysis (see Section

4.3.1) are also identified in this map.

4.2 Hazard and geospatial data

Hurricane hazard features were obtained for each

observation in the reconnaissance datasets. Peak 3-s wind gust

at 10 m height was obtained from National Institute of Standards

TABLE 1 List of all features considered in this study and their sources.

Feature Source Feature Source

Number of
Stories

Kijewski-Correa et al. (2018a), Kijewski-Correa et al.
(2018b); Roueche et al. (2018), Roueche et al., (2020),
Roueche et al., (2021)

Design Wind Exceedance NIST and ARA (2017a), NIST and ARA (2017b), NIST
and ARA, (2018), NIST and ARA, (2020); ASCE (2017);
ATC (2022)Age

Primary Roof
Shape

Secondary Roof
Shape

Wall Structure 17.5 m/s (34 kt) Wind Duration
25.7 m/s (50 kt) Wind Duration
32.9 m/s (64 kt) Wind Duration

Landsea and Franklin., (2013)

Primary Wall
Cladding

Secondary Wall
Cladding

Large Door
Present

Inundation Depth FEMA., (2017a), FEMA., (2017b), FEMA, (2018)

Roof Structure Distance to Coast FEMA, (2022)

Roof Cover Shielding Buildings

First Floor
Elevation

Building Density

Damage State
(Target)
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TABLE 2 Description of damage states in this study.

Damage State Extent of damage to

Roof/Wall Cover Windows/Doors Roof/Wall Substrate Roof Structure Wall Structure

No Damage 0% None None None None

Non-Structural >0% and ≤50% ≥1 and ≤ larger of 3 and 20% ≤3 panels None None

Structural >50% > larger of 3 and 20% >3 panels or >25% Any Any

FIGURE 5
Map of buildings in the dataset and their damage states (A)Overviewmap of combined dataset (B)Hurricane Harvey in Texas (C)Hurricane Irma
in Peninsular Florida (D) Hurricane Michael in the Florida Panhandle; and (E) Hurricane Laura in Louisiana.
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and Technology (NIST) and Applied Research Associates’ (ARA)

windfield map data (NIST and ARA, 2017a; b, 2018, 2020),

consisting of grids of peak wind gust values interpolated from

observation tower data. Since the design wind speed varies

throughout the various hurricane impact regions, typically

according to American Society of Civil Engineers (ASCE)

Minimum Design Loads and Associated Criteria for Buildings

and Other Structures, or ASCE 7, the peak wind gust values were

not used as a feature. Instead, peak gust values were compared to

the design wind speed for the zip code of each observation using

Applied Technology Council (ATC, 2022) Hazards by Location

tool (2022) with ASCE, (2017) Risk Category II design wind

speeds.While the 2016 edition of ASCE 7 and Risk Category II do

not apply to all observations in the dataset, these values were

assumed to give a regional baseline for expected wind speeds and

were used to create the input feature Design Exceedance.

The duration of sustained winds was also hypothesized to

contribute to structural performance. To obtain these values, the

storm track and wind speed radii tabulated in the National

Hurricane Center (NHC) HURDAT2 dataset (Landsea and

Franklin, 2013) were used to obtain the duration which each

observation experienced 17.5 m/s (34 kt), 25.7 m/s (50 kt), and

32.9 m/s (64 kt) sustained wind speeds.

To capture the multi-hazard impacts on building

performance, inundation depth at the location of each

observation was determined from FEMA coastal surge depth

grids for each hurricane. These grids were generated by FEMA

and its affiliates using modeled inundation depth (determined by

subtracting land surface digital elevation model from modeled

water surface elevation) and validated according to observed

peak inundation depths at observation stations throughout the

impact areas (FEMA, 2017a; FEMA, 2017b, FEMA, 2018). In

addition to inundation depth, three geospatial features which

influence the effects of storm surge and wind loading on

buildings were considered. Using geographic information

system (GIS) software, the distance from each building to the

coast was calculated as the minimum distance from the building’s

footprint centroid to the nearest coastline point. Shielding refers

to the number of buildings situated between a given building and

the nearest coastline point which could mitigate wind and surge

impacts. Shielding was then expanded upon by considering the

building density in the area surrounding each building, which

further influences wind, surge, and windborne debris impacts.

FEMA (2022) United States Structures building footprints were

used to obtain these three geospatial features.

4.3 Case study model selection

The ML approach to the objective of this work was

performed using algorithms available from the Scikit-Learn

library in Python (Pedregosa et al., 2011). With the ML

algorithms investigated for the objective of this study, model

selection involves tuning the model to provide the best

performance on the available data. The methods described in

this subsection are general and do not apply specifically to this

case study. However, they are presented in the context of the case

study as they will vary from one case to another depending on the

data and objective. The following subsections focus on model

selection for the RF model, however each of the KNN, DT, and

GBC models underwent the same processes.

4.3.1 Preprocessing
ML frameworks begin with preprocessing the data, which

consists of handling missing data and transforming the data to a

format or range that is conducive to the algorithm at hand. In this

case, observations withmissing data were simply eliminated. This

reduced the usable dataset to 2,555 observations. Attempts were

made at imputing the missing data through ML regression

strategies, but the results did not provide adequate confidence

and missing data imputation was abandoned. Regarding data

transformation, categorical features such as cladding materials

and roof shape were first modified to ensure consistent labeling

(e.g., “asphalt shingles” and “shingles, asphalt” given the same

name), and then given ordinal values (i.e., 1, 2, . . . ). Since RF

relies on a set of rules defined when fitting its underlying DTs, the

range of values for individual features are insignificant, as

opposed to proximity-based algorithms such as KNN or

parametric algorithms like neural networks. As such, no

scaling or normalization of the features were performed.

After preprocessing, the dataset was split into training and

testing subsets. The training set is used to fit the model and create

the decision rules for classifying observations. The testing set is

kept separate until after the model is fitted, and then used to

evaluate model performance on data that it has not “seen” yet. A

random subset of 80% of the preprocessed data

(2,044 observations) were used for training in a stratified

fashion, maintaining the same proportion of each class as in

the full dataset, and the remaining 20% (511 observations) were

set aside for testing.

4.3.2 Model tuning
Next, feature selection was performed using the training set

to determine which of the 19 features positively contribute to

predictive accuracy. In lieu of an exhaustive, computationally

expensive search of all combinations of features, forward and

backward stagewise selection were performed. In stagewise

selection, features are sequentially added (forward) or

removed (backward) one at a time and selected such that the

added or removed feature offers the greatest performance

improvement as determined by accuracy and f1-scores

obtained during 10-fold cross-validation (CV) until no further

improvement is achieved. 10-fold CV involves splitting the

training observations into 10 equal groups, training the model

on 9 of the groups, evaluating on the remaining group, and

repeating until each group has been used to evaluate the model.
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However, these feature selection methods offered negligible

improvement compared to a model using all available

features. Additionally, feature importance, measured as the

Gini importance or the reduction in class impurity by

splitting an individual feature, was calculated to identify an

optimum subset of features. Using feature importance values

as a starting point and engineering judgement for additional

feature selection, six features were selected as the model input:

Design Exceedance, Distance to Coast, Age, Inundation Depth,

Building Density, and Roof Structure.

The training set was then used to select the hyperparameters

for the RF model. Hyperparameters that were tuned for this RF

model were the number of underlying DTs, the maximum

number of features used to build each DT, and the minimum

number of observations required to warrant a split in the DT.

Hyperparameter tuning was performed using a grid search of

ranges of hyperparameter values, in which an RF model was

made with each possible combination of tunable hyperparameter

values, and evaluated using 10-fold CV. The combination of

hyperparameters that provided the best average performance was

then selected for the model. The selected hyperparameters were

100 DTs, each built using two random features of the six selected

features, and a minimum of seven observations required for a

split to be made. All remaining hyperparameters available for the

RF used Scikit-Learn’s RF classifier default values1.

5 Results and variations of case study

5.1 Baseline case study hindcast results

The RF tuned as described in the previous section serves as

the baseline model in the hindcast objective of the case study.

This model represents forecasting conditions assuming available

data includes all six features in the best subset determined during

model selection.

The ML algorithms were tuned, fit to training data, then

evaluated by introducing the testing set of data which was held

out during model tuning and fitting. The comparative

performance of the DT, RF, KNN, and GBC models are

presented in Table 3. Table 3 also compares the computation

time for each model, which includes hyperparameter tuning,

fitting the tuned model, and classifying testing data. The

computation times in Table 3 were obtained using 8-core

multi-processing parallelism on 11th Gen Intel® Core™ i7-

11700 at 2.50 GHz. The DT was the least computationally

expensive model, but a single DT proved to be too simple to

capture trends in the testing data and produced the worst

accuracy of 61%. The RF model produced the best accuracy of

76%, which was assisted by the fact that it includes many DTs,

reducing variance and thus providing better estimations of

unseen data in testing. The KNN, being a proximity-based

algorithm, struggled to distinguish between different classes,

which often overlapped in the feature space of the available

data and gave 66% accuracy. Finally, the GBC, also an ensemble

of DTs, performed nearly as well as the RF model at 72%

accuracy, but with a larger computational expense and more

hyperparameters to consider, proved to be overly sensitive to

tuning without the benefit of increased performance.

The overall accuracy of predictions by the selected RF model

was 76%, with an average f1-score of 0.70. The confusion matrix

of Figure 6 depicts these results. In this normalized confusion

matrix, the values on the diagonals represent recall scores for

their respective classes, which were 59.2% for No Damage, 87.5%

for Non-Structural Damage, and 54.7% for Structural Damage.

Weaker performance for the No Damage and Structural Damage

classes was driven by class imbalance in the dataset. In both the

training and testing sets, the Non-Structural Damage class

contained three times as many samples as each of the other

two classes. The impacts of such an imbalance are reflected by the

lower average f1-score compared to accuracy, and are discussed

in Section 6.

5.2 Dataset size sensitivity analysis

Since reconnaissance data containing the required level of

detail for building features was limited to 3,796 observations, of

which 2,555 were usable, a sensitivity analysis of sample size

(number of observations) was also conducted. The impact of

sample size has been documented by Cui and Gong (2018), who

found that multiple ML regression algorithms exhibited

exponential increase in prediction accuracy as a function of

sample size. Sordo and Zeng (2005) similarly demonstrated

such increase in accuracy for 3 ML classification algorithms,

including tree-based algorithms. To evaluate the effect of

sample size on damage state prediction accuracy in this study,

data from each hurricane was sequentially tested in the order they

occurred: Harvey, Irma, Michael, then Laura. At each step in this

sequential prediction study, all the data from hurricanes prior to

and including that step were shuffled, 80% of the data were used

TABLE 3 Comparative performance and computation time (including
hyperparameter tuning, fitting, and testing) for the classification
algorithms considered in this study.

Algorithm Computation time (s) Accuracy (%)

DT 0.8 61

RF 201 76

KNN 16 66

GBC 874 72

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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FIGURE 6
Normalized confusion matrix for baseline RF model predictions of testing data.

FIGURE 7
Performance of random forest model using sequentially added hurricane data.
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to fit the model, and the remaining 20% of data were used to test

performance. The results shown in Figure 7 depict generally

linear increasing trends in performance metrics, with the

exception of average f1-score in the second step of the

sequential process. The dip in average f1-score for this step,

containing Harvey and Irma data, resulted again from poorer

recall of the underrepresented No Damage and Structural

Damage classes of 47.9% and 49.2%, respectively, compared to

82.5% recall for the Non-Structural Damage class.

5.3 Parametric studies of input features

During forecasting, hazard features will be obtained from

modeling by other researchers and organizations as hurricanes

begin to develop. Depending on the resolution of available

modeling for a hurricane, inundation depths may not be

available for forecasting since propagating wave and surge

impacts onto land requires high grid resolution. Geospatial

features are typically readily attainable since FEMA and others

have building footprint datasets for nearly all buildings in the

United States. Building data, however, which are typically

obtained from county property appraisal offices, are

sometimes sparse and vary greatly depending on the study

region. With these potential forecasting limitations in mind,

parametric studies considering availability of different features

were generated as described in Table 4.

In Table 4, RF denotes the baseline RF model of this study,

trained on the six features selected during model selection. Input

features were then modified in the “building” cases, denoted as B-

, to represent availability of different building features. The Bay

County, Florida Property Appraiser is an example of one of the

more robust building data sources, listing such data for each

building as age, framing type, wall cladding, roof cover, and

footprint area. Conversely, in rural communities such

information is often unavailable, as is the case with

Plaquemines Parish, Louisiana, which simply lists the

occupancy type. With this consideration in mind, two levels

of detail for building data were considered as supplementary

features to the baseline model: B1 which allows for more detailed

information as listed for Bay County, Florida, and B2 which

considers building features available from a visual inspection.

Visual inspections could potentially be performed with door-to-

door inspections of a study region, or using emerging artificial

intelligence (AI) technology such as Building Recognition using

AI at Large Scale (BRAILS) to collect this information by

processing street-view imagery with ML (Wang et al., 2021).

Other models were considered with the understanding that

building data may not be rapidly available as hurricanes

approach, as mentioned for rural regions particularly. These

“hazard” analyses, denoted as H- in the test matrix, consider

the absence of building features and availability of only wind and

inundation hazard features with and without geospatial features.

Additionally, separate analyses were performed to compare

design wind speed exceedance as a feature (as was used in the

baseline model) with using peak gust values instead, without

consideration of design wind speed.

Finally, forecasting cases in which hurricane modeling grid

resolution is such that inland inundation cannot be determined

were considered. “Wind” models were created using a W-

designation which consider only wind-related features being

available, both with and without accompanying geospatial

features.

For each of these parametric studies, the full list of features

corresponding to the case description were used as input. Since

these models each consider a small number of features, an

exhaustive search of feature combinations was feasible to

determine the best subset of features for each model. This

process, called best subset selection, evaluates performance of

the model using each combination of features and results in a

model trained only on the combination that yields the best

accuracy.

Performance of the various parametric models as well as the

list of features considered and those selected for each are given in

Table 5. As expected, the B1 model which considered all the

baseline RF features plus additional building features, ultimately

TABLE 4 Parametric study descriptions.

Name Description

RF Baseline random forest model

B1 Baseline model with detailed building information added, such as that from certain property appraisers

B2 Baseline model with building features available from visual inspection added

H1 Hazard features only

H2 Hazard and geospatial features only

H3 Hazard features only, using peak gust rather than design wind speed exceedance

H4 Hazard and geospatial features only, using peak gust rather than design wind speed exceedance

W1 Wind features only

W2 Wind and geospatial features only
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used only the features of the baseline RF model and resulted in

the same performance. B2, which excluded the building features

of the baseline RF, reduced accuracy by 5.3%. The absence of

critical building data (age and roof structure) was not

counterbalanced by less influential building characteristics

considered in the B2 model.

While using different subsets of hazard features, H2 and H4,

which consider geospatial features, performed considerably

better (6.6% accuracy reduction) than H1 and H3 which used

hazard features only and excluded geospatial features (10.5%

accuracy reduction). Likewise in the “wind”models, inclusion of

geospatial features benefits the W- models. Still, without

inclusion of more influential building features and

consideration of storm surge effects, these models performed

worst of all those in the study with 11.8% and 7.9% accuracy

reduction in W1 and W2, respectively.

5.4 Comparison to Hazus predictions

FEMA’s Hazus software (FEMA, 2021a, FEMA, 2021b;

Vickery et al., 2006a, Vickery et al., 2006b) is widely used in

hurricane hazard engineering applications to estimate damage

and economic loss from hurricanes. This software provides a

comprehensive approach to modeling wind, storm surge

inundation, and windborne debris intensity based on

hurricane track parameters. Since Hazus is well-established in

the hazard engineering community and is built upon engineering

theory and extensive experimental testing, it was selected as a

baseline against which ML damage predictions could be

compared. Furthermore, the damage states predicted by the

RF model were selected such that they correspond with Hazus

damage states as such: No Damage is equivalent to Hazus DS-0,

Non-Structural Damage refers to Hazus DS-1 and DS-2, and

Structural Damage encompasses Hazus DS-3 and DS-4.

The analysis follows Hazus’s Level 2 analysis, which uses

observed hurricane track and wind parameters included in the

software package to determine hazard intensities, and applies the

resulting forces to user-defined buildings which contain data

about the buildings’ location, age, footprint area, occupancy type,

and building type (FEMA, 2021a). Hazus calculates loads

imparted on buildings by generating wind speed profiles based

on peak wind gusts and aggregated to a single value per Census

tract (Vickery et al., 2006b; FEMA, 2021a). Building damage is

then determined from applying calculated pressures and impact

loading onto building models representing occupancy and

building types, iteratively checking for damage based on

experimentally derived resistance values of components in the

TABLE 5 Parametric study test matrix, where “o” indicates a feature was included in the selected features for a model, and “x” indicates a feature was
considered but not selected for the model.

Feature Parametric analysis name

RF B1 B2 H1 H2 H3 H4 W1 W2

Design Wind Speed Exceedance o o o o o — o o

Distance to Coast o o o o — o o

Age o o — — — — — — —

Inundation Depth o o o o o o o — —

Building Density o o o o o — o

Roof Structure o o — — — — — — —

Wall Structure — x — — — — — — —

Roof Cover — x x — — — — — —

Primary Wall Cladding — x o — — — — — —

Secondary Wall Cladding — x x — — — — — —

Primary Roof Shape — — o — — — — — —

Secondary Roof Shape — — x — — — — — —

First Floor Elevation — — x — — — — — —

17.5 m/s (34 kt) Wind Duration — — — x x o x o o

25.7 m/s (50 kt) Wind Duration — — — o x o o x o

32.9 m/s (64 kt) Wind Duration — — — o x o o o o

Shielding Buildings — — — — x — o — x

Peak Gust — — — — — o x o o

Accuracy 76% 76% 72% 68% 71% 68% 71% 67% 70%

Reduction from Baseline — 0% 5.3% 10.5% 6.6% 10.5% 6.6% 11.8% 7.9%
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assumed building models and recalculating loads imparted on

the building models as damage occurs (Vickery et al., 2006a;

FEMA, 2021b).

The user-defined buildings input into Hazus analyses were

the same buildings from the testing data in the RF model, which

were assigned occupancy and building types according to

definitions in Hazus documentation. Each of the hurricanes in

the study was applied in Hazus to the input buildings respective

of that hurricane, and damage state probabilities were returned.

For each building, the damage state with the highest probability

was the Hazus prediction for that building, and the Hazus

damage state was converted to the damage state scheme of the

case study ML framework.

To evaluate the validity of this comparison, peak wind gust

and maximum sustained wind speed used by Hazus for

estimating pressures acting on building components were

compared to values from NIST/ARA datasets used in the ML

framework. Since Hazus uses wind speed parameters aggregated

at the Census tract level, the grids of peak gusts and sustained

wind speeds in the NIST/ARA data were averaged throughout

each Census tract. Both of these parameters demonstrated strong

agreement between Hazus values and averaged NIST/ARA data

values as shown in Figure 8. Agreement between the two sources

is indicated by an R2 value of 0.97 and mean absolute error

(MAE) of 0.96 m/s for peak gusts and an R2 value of 0.95 and

MAE of 0.93 m/s for maximum sustained wind speeds.

Finally, the sequential prediction methodology used for the

RFmodel was also applied to Hazus predictions to observe trends

in performance when applied to more scenarios. It was assumed

that this computational model based on probabilistic loads and

resistances and application of engineering theory would not be

impacted by sequential analyses since it uses direct calculations to

determine damage states, rather than learned trends as in the RF

model.

Subjecting the buildings represented in the testing data to

their respective hurricanes using Level 2 Hazus analysis with

user-defined buildings resulted in 47% overall accuracy, with an

average f1-score of 0.35. These results are not indicative of Hazus’

predictive capacity as a whole, since the tool is intended for

decision support on “state, local, tribal, and territorial” scales

(FEMA, 2021a). Instead, they highlight potential limitations in

building-level predictions by Hazus, which others have attributed

to deviations in building type distribution among user-defined

facilities relative to aggregated stock building inventory

(Hernandez, 2020). The Hazus model had a strong tendency

to misclassify buildings as Non-Structural Damage (Hazus DS-1

and DS-2) as shown in the confusion matrix of Figure 9. From

this confusion matrix, it is clear that the majority of Structural

Damage observations were misclassified as Non-Structural

Damage, as were more than half of the No Damage

observations. These results coincide with those of

Subramanian et al. (2013) who observed Hazus predictions of

roof damage (one component considered when ascribing damage

states) to over 700,000 buildings from Hurricane Ike in Harris

County, Texas with only 29.5% accuracy due to both over- and

under-predictions. Since their study only analyzed roof damage,

predictions were considered accurate if the observed and

predicted roof damage ratios were consistent with the same

damage state. Furthermore, Subramanian et al. (2013)

similarly employed an ML ensemble of DTs for comparison

and found greatly improved predictive accuracy of 86% when

testing on 90% of the Harris County Hurricane Ike data.

Employing the sequential prediction methodology in Hazus

involved performing each hurricane analysis independently and

FIGURE 8
(A)Comparison of Hazus peak gust and peak gusts fromNIST/ARA data used inML framework, aggregated at Census tract level (B)Comparison
of Hazus maximum sustained wind speeds and those from NIST/ARA data used in ML framework, aggregated at Census tract level.
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FIGURE 9
Normalized confusion matrix of Hazus predictions of buildings in testing data of baseline RF model.

FIGURE 10
Hazus performance compared to random forest model using sequentially added hurricane data.
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sequentially combining the results. As indicated in Figure 10,

Hazus performance generally did not fluctuate with the number

of observations. This is expected since Hazus does not rely on

additional data for training. Instead, it compounds probabalistic

component resistance of detailed building archetype models and

probabilistic loading from wind speed parameters to calculate

estimated damage. Given the explicit calculations of the Hazus

model, it is expected that not much variance should occur in the

accuracy across multiple events or building types.

6 Discussion

6.1 RF model performance

While the R2 values typically evaluated in regression models

cannot be directly compared to the 76% predictive accuracy of

the classification model developed in this study, the relative

performance of each type of model gives insights into

important damage prediction features. The regression models

of Szczyrba et al. (2020) to predict hurricane damage ratios at the

census tract level, and Wendler-Bosco and Nicholson (2021) to

predict county-wide damage ratios and aggregate them

throughout the entire impact were able to capture 29% and

50–60% of the variance in observed damage ratios (R2 values),

respectively. The RF model of this study benefited from a

comparatively more holistic range of features which was not

limited to hurricane parameters, but also considered building

features which contribute to load-resisting capacity of buildings

and geospatial features which influence load mitigating effects of

nearby buildings and breakdown of hazard intensity as a storm

moves inland. The work of Szczyrba et al. (2020), particularly,

does offer insight for future work, as they note in their work and

their references that social and demographic features are highly

correlated to the extent of damage in extreme events. Such

features were not considered in the present study, but could

prove beneficial going forward.

The classification model of van Verseveld et al. (2015), which

states prediction accuracy of each class and uses a different

damage rating scheme, also does not provide a direct

comparison to accuracy of the RF model developed in this

study, but does follow similar trends at the class level. Their

Bayesian network provided 68.4% and 95.8% correct

classification for “affected” and “minor” damage states, but

less than 5% for higher damage states. Their “affected” and

“minor” damage states can be most closely compared to the

Non-Structural Damage class of the present study, which was

predicted correctly in 87.5% of cases (recall). Performance of the

higher damage state of the Structural Damage class similarly

waned as the worst-performing class in this study, with 54.7% of

cases correctly recalled. In this case, better performance of the

Non-Structural Damage class is likely driven by an imbalance

toward this class in the available data. The No Damage and

Structural Damage classes each contained only one-third of the

number of observations in the Non-Structural Damage class.

Since more majority class observations are available to offer

greater proportions in terminal nodes, such an imbalance leads to

better reinforcement of decision rules to classify the majority

class and lesser influence of minority class observations.

Oversampling and undersampling methods including random

over- and undersampling and the Imbalanced Learn synthetic

minority oversampling technique (SMOTE) and near-miss

undersampling algorithms (Lemaître et al., 2017) were

employed to artificially balance class representation in the

training data. These methods were sometimes effective in

increasing minority class performance, but at the expense of

Non-Structural class performance to the extent that accuracy and

average f1-scores were reduced. To overcome the challenges of

imbalanced data inherent with ML drawing from reconnaissance

data, these strategies warrant further investigation in future work.

6.2 Reconnaissance data

The results of the sample size sensitivity analysis indicate a

clear linear trend of improved performance given more

observations from a greater number of hurricanes. Robust

reconnaissance missions following future hurricanes will be

vital in improving the damage prediction abilities of ML

models by allowing for better learning, or greater

reinforcement, of the factors associated with each damage

state. The model in this study incorporates two building

features for optimum performance: age and roof structure.

These are two features that cannot be discerned from imagery

and may not be available from public records, depending on the

municipality. In the strenuous task that is hurricane

reconnaissance, the effort of collecting these data can increase

damage forecasting potential by over 5% as shown in the

comparison to the B2 case of Table 5 which considers only

externally visible building features. While additional building

features, as in case B1, did not bolster predictive accuracy, it

should not be assumed that theses features are not necessary in

reconnaissance data collection. Instead, it is possible that as more

data is collected on these features, their variance relative to

damage state may become more adequately captured,

increasing their influence in predictions.

6.3 Forecasting

Even with extensive datasets containing the optimum subset

of features for this model in hindcast, forecasting may be limited

depending on available data for the anticipated impact region. As

shown by the H- and W- models in the parametric studies,

decreasing fidelity results in decreasing predictive accuracy.

Forecasting accuracy, regardless of additional reconnaissance
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data for training, will rely upon identifying attainable building

features in an expected impact area and useful hazard features

from hurricane modeling. Regarding building features, work is

underway to collect bulk data from county-wide sources such as

property appraisers, particularly in Florida. As noted in Section

5.3, these data may not contain all the necessary input features for

the RF. One solution is to simply use the features that are

available, which was demonstrated to reduce accuracy through

parametric studies. An alternative is to restructure the input and

re-frame the target such that it more closely follows the Hazus

methodology of aggregated building data and damage

predictions at a regional level. This would require much

manipulation of the model, but is a worthy future objective to

accommodate for a lack of building data or desire for building-

level predictions.

To further increase forecasting ability, hazard features must

be addressed as well. Terrain models exist, such as that in the

Hazus model, which can be used to obtain the surface roughness

coefficient, a factor in wind-related structural engineering which

may prove to enhance similar features such as building density

and distance to the coast. Further enhancements may be made by

incorporating a broader range of water hazards. In the work of

van Verseveld et al. (2015), wave attack, flow velocity, and scour

depth were considered in addition to inundation depth, which

was the only surge-related feature in the RF of this study.

Generating new features to reflect interactions between

existing hazard features, as employed by Massarra et al.

(2020), may also provide improvements as a different

approach to modeling the combined impacts of certain

features. While additional features do not always lead to

better accuracy, as demonstrated in the parametric studies,

these features which address known engineering concepts

could lessen the accuracy reduction observed when building

data is limited.

7 Conclusion

A novel ML framework was developed using building,

hazard, and geospatial features to predict building-level

damage in three qualitative classes: No Damage, Non-

Structural Damage, and Structural Damage. Performance of

different algorithms has been investigated including KNN,

DT, RF, and GBC algorithms. The RF model, selected for

further analysis based on its performance and interpretability,

was used to hindcast a sample of 511 buildings from Hurricanes

Harvey, Irma, Michael, and Laura with 76% accuracy. The Non-

Structural Damage class out-performed the other two classes by

nearly 30% due to the imbalance in available data skewed toward

Non-Structural observations. This could potentially be corrected

using over- and undersampling techniques, but such progress has

not been observed to date. It was also demonstrated that a greater

number of observations from a variety of hurricanes and impact

regions produces a linear trend of increasing accuracy.

Parametric studies were performed to estimate forecasting

abilities given availability of different features, which

demonstrated that building data are required for optimum

performance, both wind and inundation data are needed

regarding hazard features, and geospatial features greatly

contribute to accuracy of building-level predictions. It is

particularly noted that the building features required for

optimum performance relate to age and structural materials -

two features that may not be publicly available, and cannot be

supplemented via visual inspection or AI feature recognition.

Finally, a comparison was made to predictions for the same set of

buildings using FEMA’s Hazus Multi-Hazard Hurricane model,

which yielded 47% accuracy, but offered insights into alternatives

for forecasting given the variability of rapidly available data used

in the ML framework as presented. Given the relatively high

accuracy of the damage prediction model of this study, this

model serves as a vital step in estimating community-wide risk at

the building level from impending hurricanes - a resource that is

ever more important as climate change and urbanization trends

leave more buildings and more people in the path of increasing

hurricane intensity and frequency.
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