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This paper presents an experimental study of a low-cost seismic isolator that can be
used for the protection of residential structures in low-income countries. The isolator is
based on mortar-filled, used tennis spheres, rolling on flat or spherical concrete
surfaces. The tennis spheres serve as permanent, spherical molds to cast mortar,
and they are not removed after casting. The thin rubber shell of the tennis sphere offers
increased damping and reduces stress concentrations at the contact areas. At the
same time, this procedure creates a promising solution for the re-use of tennis spheres.
Using a closely-spaced grid of such spheres may allow for avoiding the diaphragm slab
at the isolation level, or reducing its thickness. Avoiding the cost of this additional,
heavily reinforced isolation slab is crucial for making seismically isolated low-rise
dwellings economically feasible in low-income regions of the globe. Initially, the
tennis isolators were subjected to monotonic uniaxial compression to examine their
behavior under vertical loading. Different mixes and low-cost reinforcement approaches
to increase their strength were tested. Subsequently, cyclic tests were performed to
obtain the lateral force-displacement diagram of the isolation system. The effects of the
geometry of the rolling surface (i.e., flat or concave) and of the applied compressive load
(i.e., 2.08, 3.23, 4.74, or 8 kN/sphere) on the cyclic behavior were investigated. It was
found that the restoring force of such systems mainly originates from the curvature of
the concrete surface. However, the vertical motion induced by the compressed sphere
and its local casting imperfections is not negligible. When surface imperfections
become significant, the force-displacement loops deviate from the bilinear curves
that a rigid-body model suggests. When the spheres are properly cast, they
experience zero damage even under 8 kN of compressive force, and their loops
have a bilinear form. For the tested configurations, the rolling friction (defined as the
ratio of lateral to vertical force at zero displacement) was in the range of 4.7–7.2%, thus
suitable for seismic isolation applications. The cost of the tested tennis ball isolators was
0.05 $ per sphere.
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INTRODUCTION

Contemporary earthquake engineering was developed within the financial framework of the
financially developed world. Therefore, the methods and materials it uses are often too
expensive to be applied in low-income countries. This is the main reason why structural codes
are not followed in low-income regions of the planet and not some supposed “propensity for
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delinquency” written in the DNA of people. Therefore, there is a
social need for engineering methods that could be applied for
seismic design in low-income regions of the globe.

Seismic isolation is an established andmatured method, but its
applications in low-income countries are very limited because of
its high cost: The isolators themselves cost upwards of $10,000
and an additional heavily reinforced concrete slab is needed at the
isolation level. The cost of this slab becomes important for low-
rise buildings, as, for a one-story masonry dwelling, it essentially
doubles the quantity of Reinforced Concrete (RC) required.

Seismic isolation bearings can be classified into three
categories: 1) Flexible rubber bearings, 2) Sliding bearings, and
3) Rolling bearings. Low-cost seismic isolation attempts have
been made with devices from all three categories.

Several researchers have proposed the replacement of the steel
shims of standard rubber bearings with fibers, creating the Fiber
Reinforced Elastomeric Isolators (FREIs) (Kelly, 1999; Kelly and
Takhirov, 2001; Kelly, 2002; Russo et al., 2008; Russo et al., 2013;
Toopchi-Nezhad et al., 2008a; Toopchi-Nezhad et al., 2008b;
Toopchi-Nezhad et al., 2009; de Raaf et al., 2011; Kelly and
Konstantinidis, 2011; Kelly and Calabrese, 2012; Russo and
Pauletta, 2013; Osgooei et al., 2014; Van Engelen et al., 2014a;
Van Engelen et al., 2014b; Van Engelen et al., 2016; Pauletta et al.,
2015; Pauletta et al., 2017; Das et al., 2016a; Das et al., 2016b;
Pauletta et al., 2017; Pauletta et al., 2018; Van Ngo et al., 2017;
Thuyet et al., 2017; Osgooei et al., 2017; Pauletta, 2019; Mordini
and Strauss, 2008; Strauss et al., 2014; Ruano and Strauss, 2018;
Konstantinidis and Kelly, 2012; Tran et al., 2020). This not only
reduces their cost but it also makes them lighter; therefore, there
is no need for a crane on the construction site. However, such
isolators remain too stiff to isolate lightweight (i.e., one or two-
story) residential buildings.

The main cost issue of sliding bearings is the need for steel
parts and Teflon covering of sliding surfaces. Jampole et al.
(2014), Jampole et al. (2016) and Swensen et al. (2014) have
tested a timber structure isolated on high-density polyethylene
sliders on galvanized steel with promising results. However,
communication with engineers from Peru and Cuba has
revealed that in many low-income countries, neither
galvanized steel nor polyethylene is available at a low cost.
Other studies suggested the creation of a sliding mechanism
below the isolation slab using special sand layers (Tsiavos
et al., 2019; Tsiavos et al., 2020a; Tsiavos et al., 2020b; Tsiavos
et al., 2021).

The vast majority of rolling isolator systems use steel rollers
rolling on steel surfaces—and this makes them not affordable in
the developing world (Harvey and Kelly, 2016). To reduce their
cost and increase damping of the system, (Foti and Kelly, 1996;
Menga et al., 2017; Foti, 2019; Menga et al., 2019) have used steel
balls rolling on rubber layers. Cilsalar and Constantinou (2019a);
Cilsalar and Constantinou (2019b); Cilsalar and Constantinou
(2019c) and Cui et al. (2012) suggested the opposite: a device
where a deformable elastomeric sphere rolls on a rigid concrete
concave surface (Figure 1C). It seems feasible to use such an
isolation system in one or two-story masonry houses. For
example, South East Cuba, has a 10% in 50 years PGA equal
to 0.33g (Norma Cubana NC46, 2017). This essentially prohibits

the use of masonry—which is the only easily available material,
because of the blockade enforced by the United States
governments. Similar (or higher) seismicity and lack of
recourses can be found in many countries in Latin America,
especially the Andean ones, in Asia, and Africa.

However, such a seismically isolated masonry dwelling still
requires the use of a heavily reinforced slab at the isolation level.
In an effort to reduce the thickness or completely eliminate the
slab, many and closely spaced isolators can be used (Figure 1E).
Then, each isolator should be of extremely low cost. To achieve
this, instead of using elastomeric spheres, one can use tennis balls
filled with cement paste. The concept is compatible with the
concept of circular economy and re-using of materials. This paper
presents a series of cyclic and compressive tests, which constitute
a feasibility study of this idea.

THE SPHERICAL DEFORMABLE ROLLING
SEISMIC ISOLATOR

Figure 1 shows the spherical deformable rolling seismic isolator
that was proposed by Cilsalar and Constantinou (2019a), Cilsalar
and Constantinou (2019b), Cilsalar and Constantinou (2019c). It
comprises an elastomeric sphere rolling in between 2 concrete
surfaces. It is essentially low cost version of the double concave
friction pendulum bearing (Fenz and Constantinou 2006; Makris
and Vassiliou 2011; Ponzo et al., 2015; 2021; Bao et al., 2017; Bao
and Becker, 2019; Di Cesare et al., 2021 among others) that uses
rolling instead of sliding.

Curved surfaces of different shapes and dimensions can be
used. This paper examines 1) systems with one flat and one
spherical rolling surface; and 2) systems where both concrete
surfaces are flat, in order to understand the rolling behavior of the
sphere.

A first approximation of the behavior of the proposed system
can be obtained by assuming a rigid behavior for the rolling
sphere (i.e., the mortar-filled tennis ball, in the case of this paper).
Then the force-displacement relation is (Cilsalar and
Constantinou, 2019a; Cilsalar H. and Constantinou, M. C.
2019; Cilsalar and Constantinou, 2019c):

F � W

4Reff
u + μW sign( _u), (1)

where Reff � R − r, R is the radius of curvature of the spherical
plate and r � D/2 is the radius of the rolling sphere. The quantity
W
4Reff

u sources from gravity and is the restoring force of the system.
The “4” factor in the denominator makes the system 4 times more
“flexible” than an FPS with the same radius of curvature. The
quantity μW sign( _u) is the rolling friction of the system. The
displacement capacity of the system is do - D (Figures 1A,B).
Figure 1D plots the response of a system described by Eq. 1. It is a
bilinear system.

The above rigid body approximation is convenient and
elegant, but significantly deviates from the results of the tests
performed by Cilsalar and Constantinou (2019a), Cilsalar and
Constantinou (2019b), Cilsalar and Constantinou (2019c)
apparently because of the deformability of the sphere.
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FIGURE 1 | Spherical Deformable rolling isolator. (A) Under compression, (B) Under compression and lateral load, (C) During testing by Cilsalar and Constantinou
(2019a); Cilsalar and Constantinou (2019b); Cilsalar and Constantinou (2019c), (D) Bilinear force-displacement plot, (E) Potential application of the tennis ball isolator
(TBI) proposed in this study.
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MANUFACTURING OF THE TENNIS BALL
ISOLATOR

Tennis Balls Description, Materials and
Mechanical Properties
Today’s tennis balls are made of a hollow, two-piece rubber shell
filled with pressurized gas. The external diameter of the tennis balls
should be between 65.4 and 68.6 mm, according to the
specifications of the International Tennis Federation. The rubber
shell of a tennis ball is covered with felt (made from nylon or wool),
and has an approximate total thickness of 5 mm. The rubber part of
the shell is made of two hemispheres that are pressed together.
Subsequently, pressurized air is injected into the center of each
rubber core, to achieve bounciness. The external surface of the
pressurized rubber balls is then smoothened and covered in glue.
Two different pieces of yellow felt are cut, wrapped around the
tennis ball, and heated to glue together (Good, 2018).

For the tests, we obtained used tennis balls for free from tennis
clubs that would have otherwise dumbed them. In fact, the waste
created by tennis balls is a waste management issue on its own.
Every year 300 million tennis balls are discarded globally. In the
United States alone, 125 million tennis balls are sold every year,
with most of them ending up in landfills (Miller, 2016). This is
because, after each tennis game, the balls become softer and
unsuitable for further use. No viable solution towards the mass-
scale re-use and sustainable management of this large number of
tennis balls is proposed so far, to the best of the authors’
knowledge.

Filling Used Balls With Cement Paste
Using tennis balls has a two-fold purpose: 1) It serves as a
spherical mold to cast the cementitious paste, and, 2) The
rubber shell reduces stress concentration at the contact area,
increases the rolling resistance of the ball, and increases damping.
So, the tennis balls are not removed after the cement paste cures.

Initially, mortar mixtures of cement, sand, and water were
used to fill in the used tennis balls. The balls were cut in half, filled
with mortar, and then stuck together with tape. The result was
unsatisfactory, as the final shape deviated significantly from being
spherical. Moreover, the two pieces of rubber were detached from
the inner mortar core under cyclic loading. These tests are not
discussed herein, but are mentioned as a failed strategy to
discourage potential researchers and engineers from filling in
the balls with this method.

Subsequently, instead of cutting the balls in half, a 15 mm-
diameter hole was drilled in the balls to fill themwith the mix, and
improved cementitious mixtures were used. The external
diameter of the balls was 67 mm. Hence, assuming a 5 mm
shell, the inner diameter is 57 mm. Therefore, the mortar
volume needed to fill a tennis ball isolator (TBI) is extremely
small (less than 0.1 L) and the cost of themixture does not govern;
even the most expensive mixtures can be used because the total
quantity to fill in enough tennis balls for a residential structure is
very low.

A bag of 25 kg of conventional Portland CEM I 52.5 R cement
costs approximately 10 $. Mixing this cement quantity with water,

at a water to cement ratio W/C � 0.5, gives a mortar volume of
20 L. Therefore, one can cast 200 TBIs using the aforementioned
mortar. This practically means that the cost of a single sphere is
roughly 0.05 $ (excluding labor and assuming that the used balls
are provided for free). The manufacturing time for each TBI is
approximately 2 min. However, this is not the only cost of the
system, as one would need to construct the concrete concave
surfaces.

COMPRESSION TESTS

Initially, 7 different mixes were tested (Table 1), aiming at high
strength, high fluidity (to allow for proper casting), and low
shrinkage. In several cases, to ensure adequate fluidity, the used
W/C was slightly higher than the one suggested by the
manufacturers. Three variations for each mix were tested. 1)
Using 3 orthogonal nails or 2) Using 3 orthogonal screws as
reinforcement for the ball; 3) Using no reinforcement. The length
and diameter of the used nails and screws were 45, 2.2 mm and
45, 4 mm, respectively. Three specimens of each variation were
cast, resulting in a total of 3 × 3 × 7 � 63 TBIs. Four additional
spheres of Mix 7 (without reinforcement) were cast, leading to a
total number of 67 TBIs. The specimens were named MX-Y,
where X denotes the mix number and Y is 0 for the specimens
without reinforcement, N or S for the specimens with nails or
screws, respectively.

Mix 1 and Mix 7 used the same cement (Holcim Portland
Cement CEM I 52.5 R), with a water ratio (W/C) equal to 0.6 and
0.5, respectively. These two differentW/C ratios were tested, trying
to optimize strength and fluidity. Mix 2 was the commercial
cementitious mix “Lugato Fliesst and Fertig”, which includes
quarzitic and calzitic fillers together with organic additives and
is typically used in floor leveling applications.Mix 3was “Sikacrete-
08SCC”, a self- compacting concrete mix, with a maximum
aggregate size of 8 mm. A W/C � 0.2 was used, which is higher
than the suggested 0.1 to ensure sufficient fluidity. Mix 4 was the
only non-cementitious mix, employing “Saing-Gobain Hartform
Gypsum” (Alpha plaster), withW/C � 0.45, which is slightly higher
than the suggested 0.4. Using gypsum instead of concrete could
allow for a shorter curing time, but one would also have to consider
the possible effect of environmental factors (e.g., humidity) on the
properties of gypsum.Mix 5 used Holcim Portland cement CEM I
42.5 R, which is similar to the one used in Mix 1 and 7, but of the
lower class. Finally, Mix 6 was “Sikagrout 212”, a cementitious

TABLE 1 | Mixes used to fill the tennis balls.

Mix name Concrete mix used Water to cement ratio
(W/C)

Mix 1 Holcim Portland Cement CEM I 52.5 R 0.6
Mix 2 Lugato Fliesst & Fertig 0.2
Mix 3 Sikacrete 08SCC 0.2
Mix 4 Saing-Gobain Hartform Gypsum 0.45
Mix 5 Holcim Portland Cement CEM I 42.5 R 0.5
Mix 6 Sikagrout 212 0.18
Mix 7 Holcim Portland Cement CEM I 52.5 R 0.5
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grout with selected fillers, aggregates, and additives andwithW/C �
0.17, which is higher than the suggested 0.12.

A piping bag with a steel tip (usually used for cream
pastries) was used to fill in the balls from the 15 mm hole
to get more aggregates into the balls (Figure 2). During the
pouring, the balls were shaken manually for compaction. Two
days after the filling of the concrete balls, a gap near the casting
holes of the tennis balls could be observed due to concrete
shrinkage. To avoid this gap, the balls were topped up two days
after casting.

Using a normal measuring cup (instead of a piping bag) to
pure mortar into the balls is not recommended. This is because
when using a measuring cup, the aggregates flow to the bottom,
and the liquid part remains on top (the ingredients separate).
Therefore, during pouring, mainly the liquid part ends into the
sphere.

The balls were left to cure for 28 days, and then they were
compressed between steel plates in a Universal Testing Machine
at a compression rate of 2 mm/min. Before testing, spheres with
visible casting flaws were excluded. This could be the first level of
quality assurance in a practical application.

Figure 3 shows the force deformation diagrams of the
compressive tests. The nail and screw reinforcement does not

seem to increase the compressive strength of the balls, whereas
they may impose additional casting difficulties. Therefore, this
reinforcement strategy is not recommended. The large scatter of
the results is attributed to casting imperfections and to the well-
documented uncertainty of cementitious mixes, something that
should be attempted to be improved in the future by using more
workable mixes, potentially using admixtures.

Based on the tests, Mixes 3, 6 and 7 were chosen for further
evaluation. It is worth noting that even the weakest
(unreinforced) specimen of these mixes can sustain 10 kN of
compressive load, which is more than two times higher than the
design compressive force of a typical one-story masonry house in
Cuba, as discussed in Tested Configurations and Testing Protocol
of the Cyclic Tests.

EXPERIMENTAL SETUP

Testing Equipment and Instrumentation
The 1D shake table of the ETH (Bachmann et al., 1999) was used
as an actuator to perform the cyclic tests. The shake table
comprised a stiff steel box with dimensions of 2 × 1 m, excited
by a 100 kN servo-hydraulic actuator. The stroke, maximum
velocity, and maximum payload is ±120 mm, 220 mm/s, and
7.5 tons, respectively.

Figure 4A shows the experimental setup. An isolator
consists of an upper concrete plate, a bottom concrete plate,
and a mortar-filled tennis ball that rolls between them. In all
configurations, the bottom concrete plate was flat. The top
plate can be either concave (“Concave configuration”) or flat
(“Flat configuration”).

Four isolators (i.e., four pairs of concrete plates with a tennis
ball in between) were placed on top of the shake table in a 2 by 2
configuration. The upper concrete plates of the isolators were
mounted on a steel slab of 30 mm thickness. Variable weight, in
the form of steel beams, was placed on top to emulate the weight
of the structure. The bottom plates of the isolators were mounted
on the surface of the shake table. A rail in the middle and side
stoppers prevented the out-of-plane motion of the slab
(i.e., motion along the y axis). To minimize friction, all
stoppers and rails were covered with Teflon.

During the cyclic tests, the steel slab was constrained in the
horizontal direction (x) by connecting it to a stiff column via two
rigid struts. The struts also constrained the rotation around the
vertical axis (z), and the shake table was used to impose the cyclic
motion.

The lateral force imposed on the isolators during cyclic testing
was measured with two strain gauges installed in the horizontal
struts, which hold the steel diaphragm in place. The sampling
frequency of the struts was 1,200 Hz.

The movement of the shake table and the superstructure was
measured using an NDI Optotrak Certus system. A total of
22 infrared-emitting diodes markers were used to track all
possible movements and rotations of the superstructure and
the shake table (green dots in Figure 4A). The NDI system
recorded the 3-dimensional position of the markers with an
accuracy of 0.1 mm and a sampling frequency of 60 Hz.

FIGURE 2 | Left, Piping bag used to fill in the TBIs; Right, Steel tip
attached to the piping bag.
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FIGURE 3 | Compression tests of the TBI using different mixes, screws and nails.

Frontiers in Built Environment | www.frontiersin.org September 2021 | Volume 7 | Article 7683036

Katsamakas et al. Used Tennis Balls Isolation Bearings

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


FIGURE 4 | (A) Schematic representation of the utilized experimental setup. Green dots show the position of the displacement sensors. (B) 3D view of the concave
concrete plates; (C) Plan and side view of the concave concrete plates; (D) TBI loaded with 3.23 kN of compressive force between flat concrete plates.
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Construction of the Concrete Plates
A commercial low-cost M15 concrete mix was selected for the
construction of the concrete plates, with a maximum aggregate
size of 4 mm. The plates were unreinforced since steel
reinforcement increases cost and construction time, making
implementation harder in low-income countries. To minimize
shrinkage cracking in a practical application, there should be a
minimal reinforcement or fiber reinforcement. The plates were
cast in wooden molds. The construction of the concave surfaces
utilized plastic molds, carved in the desired dimensions (diameter
of 350 mm in plan view, with a radius of curvature R � 750 mm,
Figures 4B,C). After uncasting, the plates were covered with thin
plastic sheets and left to cure for 28 days. It is worth noting that
the plastic molds used for the concave surfaces were intact and
reusable after uncasting. The average compressive and flexural
strength of this concrete mix was equal to 27.62 MPa, and
4.63 MPa, respectively, tested according to EN 1015-11, (1993).

Tested Configurations and Testing Protocol
of the Cyclic Tests
The tests are in full scale due to the evident impossibility of
scaling tennis balls. In plan view, the diameter of the concave
concrete plate was 350 mm (Figures 4B,C). The radius of
curvature of the concave concrete plates (R) was R � 750 mm,
which is similar to the bearings tested in Cilsalar and
Constantinou (2019). Assuming a tennis ball diameter of Dt �
67 mm and based on Eq. 1 this would give an isolation period of
2π

�������
4·(R−Dt/2)

g

√
� 3.40s.

To calculate the compressive load that should be applied to
each TBI, a typical modern unconfined masonry house in Cuba
was considered. Typical masonry weighs 2.80 kN/m2. Assuming a
wall height of 2.8 m, gives a weight of the masonry wall of 7.8 kN/
m (without considering additional safety factors). A 10 cm roof
slab at a typical 5 m × 5 m room would add 3 kN/m to each wall,
giving a total weight of 11 kN/m. Assuming isolators placed every
0.40 m, the vertical load of each isolator is 0.4 × 11 kN � 4.4kN.

Four compressive loads (2.08, 3.23, 4.74, or 8 kN per sphere)
under 2 rolling surface geometries (flat and concave) were
planned. This corresponds to a total number of 8
configurations. However, due to a limitation of the
experimental setup, the concave configuration under the
maximum vertical load (8 kN) was not tested. Table 2 shows a
summary of the tested configurations.

A different set of 4 spheres was used in each weight/
geometry configuration, resulting in 4 × 7 different spheres.
Three different types of cyclic tests were performed for all
configurations (apart from the one with W � 8 kN/sphere),
with the following sequence: First, cyclic (“0/+230”) tests with
the bottom slab applying a sinusoidal motion to the bottom
concrete plate between zero and +230 mm (that is,
u(t) � 115mm × (1 − cos(2πf × t))). Subsequently, cyclic
(“0/-230”) tests with the bottom slab applying a sinusoidal
motion to the bottom concrete plate between zero and
-230 mm (that is, u(t) � −115mm × (1 − cos(2πf × t)).
Finally, cyclic sinusoidal tests with an amplitude of
±115 mm were performed. All configurations were subjected
to at least three full cyclic loops. In some configurations, more
cycles were applied to investigate the possible deterioration of
the rolling spheres. For the same weight/geometry
configuration, the same balls were used for all 0/+230, 0/
−230, and −115/+115 tests.

The excitation frequency of all cyclic tests was f � 0.2 Hz,
corresponding to an average velocity of 92 mm/s.

TEST RESULTS

Behavior in Compression
As the specimens used for the rolling tests were coming from a
new batch (not the one used for the initial compression tests of
Compression Tests), more compressive tests were performed.
The aim was to further quantify the dispersion of the strength,
this time also among different persons building the specimens.
The results are shown in Figure 5. It is evident that significant
scatter exists even among the specimens of the same mix. The
minimum compressive strength of the balls was 12.5 kN which
is approximately 3 times higher than the expected (design)
static vertical load of 4.4 kN. It is noted that for the vertical
loads tested (2.08, 3.23, 4.74 and 8 kN per sphere) the
corresponding vertical compressive displacement of the
tennis spheres (excluding the sphere of Mix 6 with the
largest displacements) is in the range of 4.5, 5, 5.8 and 6.8
mm, respectively. This means that the shape of the isolator
deviates from being spherical, since the top and bottom end is
flattened. Based on the results, the spheres of Mix 7 were
selected for cyclic testing.

Cyclic Tests
The rolling friction coefficient (μroll) is defined as the ratio of
lateral to vertical force at zero displacement. For all
configurations, excluding the one with W � 8 kN, this
coefficient is defined using the −115/+115 loop. For the
configuration of W � 8 kN with flat plates, an approximate
μroll is defined at 50 mm horizontal displacement, as no −115/
+115 tests were performed with this configuration. Figures 6–11
(left) show the vertical displacement of the steel slab of the tests
discussed in this paper as a function of the horizontal
displacement. As imperfections cause small rotations of the
slab around its horizontal axes, the vertical displacement is
defined as the average of the vertical displacements, recorded

TABLE 2 | Summary of the tested configurations.

Weight
per sphere (kN)

Geometry
of concrete plates

Test performed

2.08 Flat 0/+230, 0/−230,−115/+115
Concave

3.23 Flat
Concave

4.74 Flat
Concave

8 Flat 0/+230
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by the 4 NDI infrared markers placed at its four corners above the
isolators. Figures 6–11 (right) plot the ratio of lateral-to-vertical
force against the lateral displacement.

Based on Figures 6–11, the following observations can be
made:

1) Τhe curvature of the concrete plate influences the response
moderately—for this chosen curvature that leads to a rather
high isolation period of 3.4 s. The concave surface provides
restoring force through gravity, with the restoring force
being associated with the uplift of the upper slab of the
isolator. For small lateral displacements (i.e., during the
cyclic tests with an amplitude of ±115 mm), the effect of the
concave plates is less pronounced since, according to the
rigid body model, the corresponding uplift at maximum
lateral displacement (115 mm) is 2.2 mm. Therefore, for
small displacements, the local imperfections (due to
compressive load or due to casting imperfections) of the
TBI overshadow the uplift due to the concave plate. For the

0/+230 and 0/−230 tests, uplift at maximum lateral
displacement (230 mm) is 9 mm. Thus, for larger lateral
displacements (i.e., 0/+230 and 0/−230 motions), the
influence of the plates becomes greater. These
conclusions hold for the specific geometry of the concave
concrete plates used in this study. Using a concave surface
with a smaller radius of curvature (R) would lead to a more
significant effect of geometry and should be tested in the
future.

2) Two configurations (Concave 2.08 and 3.23 kN)
demonstrated significant fluctuations, which were
consistent over the cycles. These fluctuations are attributed
to the insufficient casting (and shrinkage) of some of the
spheres, which, during rolling, ended up with the flattened
surface in contact with the concrete plates (Figure 12A). This
led to intense vertical motion of the slab, affecting the
restoring force and the force-displacement plot (Figure 10,
middle-right, and Figure 11 bottom-right). Avoiding such
imperfections in a practical application is crucial. It is

FIGURE 5 | Compressive behavior of the three selected cementitious mixes. Top-Left, Mix 3; Top-Right, Mix 6; Bottom-Left, Mix 7; Bottom-Right, TBI under
compression between steel plates.
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FIGURE 6 | Cyclic motion 0/+230 mm. Influence of the geometry of the concrete plates. Left, Vertical-horizontal displacement; Right, Lateral/Vertical
force—Lateral displacement.
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interesting to note that significant fluctuations of the force-
displacement loop also exist in other rolling systems,
comprising seemingly “perfect” rolling objects, such as
rubber wheels (Nikfar and Konstantinidis, 2017).

3) For the configurations ofW � 4.74 kN/sphere (concave plates)
and ofW � 8 kN/sphere (flat plates), the response is very close
to bilinear. The reason is that in these 2 configurations, the
mortar core of the TBI remained totally intact during the test,
without surface imperfections, as seen in Figure 12B,C. The
configuration whereW � 4.74 kN/sphere (concave plates) was
used as a case study, to assess whether an analytical bilinear
model can predict the experimentally obtained plot. This
configuration was used since: 1) the spheres were properly

cast and demonstated no surface imperfections and 2)
concave plates are used, allowing for the use of Eq. 1. The
effective radius of curvature Reff was set to 716.5 mm,
following the equations of The Spherical Deformable Rolling
Seismic Isolator. The rolling friction coefficient (μroll) was set
to 5.4%, which is the experimentally obtained value (Table 3).
It is noted that the value of μroll is not known a priori. The
numerical results are closely correlated to the experimental
ones for this configuration, indicating that, when casting is
successful, the response of the isolator is indeed bilinear.

4) With the exception of the sphere used for the tests with the
concave plates under W � 3.23 kN, the spheres deteriorated
only marginally under cyclic loading. During rolling, one

FIGURE 7 | Cyclic motion 0/+230 mm. Influence of the vertical load. Left, Vertical-horizontal displacement; Right, Lateral/Vertical force—Lateral displacement.
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FIGURE 8 | Cyclic motion from 0/−230 mm. Influence of the geometry of the concrete plates. Left, Vertical-horizontal displacement; Right, Lateral/Vertical
force—Lateral displacement.
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could hear a moderate cracking sound (mainly during the
first circle) and see concrete dust. This is attributed to
cracking of the mortar that was unavoidably accidentally
spilled at the outer surface of the tennis ball while casting.
The result was that, in some cases, the final vertical position
of the steel slab was slightly lower than the initial one
(settlement up to 2 mm). Even when settlements are
observed, and even when 5 (or more) circles were
applied, the cyclic loops remained stable. The
consequences of the settlement to a masonry building
remain to be quantified with system-level testing.

5) It is clear that there is energy dissipation that increases with
increasing compressive load. Energy dissipation sources from
the rolling resistance of the balls.

6) The friction coefficient (μroll, defined as the ratio of lateral-to-
vertical force at zero displacement) ranges between 4.7 and
7.2% (Table 3) which is within the range of friction
coefficients used in sliding bearings.

7) Even under W � 8 kN per sphere, no damage to the TBI was
observed. This load level is significantly higher than the
vertical design load of 4.4 kN and half of the average
compressive strength of mix 7, which is 16.7 kN (Figure 5).

FIGURE 9 | Cyclic motion 0/−230 mm. Influence of the vertical load. Left, Vertical-horizontal displacement; Right, Lateral/Vertical force—Lateral displacement.
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FIGURE 10 | Cyclic motion ±115 mm. Influence of the geometry of the concrete plates. Left, Vertical-horizontal displacement; Right, Lateral/Vertical
force—Lateral displacement.
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CONCLUSION

This paper presents an experimental feasibility study on the
compressive and cyclic response of low-cost bearings
comprising mortar-filled tennis balls. The idea is to isolate
masonry structures by placing the spheres at a dense grid so
that only a thin or no diaphragm slab at the isolation level is
required. Saving this cost is crucial to make seismic isolation
affordable in low-income countries.

A full-scale model of prototype bearings was tested,
comprising four isolators capped with a slab. The
parameters of investigation of the cyclic tests were the

vertical force on each rolling isolator (i.e., 2.08, 3.23, 4.74
or 8 kN) and the geometry of the rolling surface (i.e., flat or
concave). The vertical loads were computed based on the
assumption that the balls will be placed underneath the
masonry walls (at a distance of 40 cm) of a typical one-
story residential house in Cuba.

The experimental results showed that the investigated system
has the potential to reduce the inertia forces transmitted to the
superstructure, with the rolling friction coefficient (i.e., the ratio
of lateral to vertical force at zero displacement) being in the range
of 4.7%–7.2%, thus, suitable for seismic isolation applications.
These values, the sufficient bearing capacity of the isolators under

FIGURE 11 | Cyclic motion ±115 mm. Influence of the vertical load. Left, Vertical-horizontal displacement; Right, Lateral/Vertical force—Lateral displacement.
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vertical load and the corresponding force-displacement loops,
confirm the feasibility of the proposed isolator.

The experimental results proved that the casting quality
influences the rolling surface of the proposed isolator and,
thus, the force-displacement loop. When the isolators are
properly cast, the resulting force-displacement loop is bilinear,
as a rigid body model suggests.

Tennis balls are used as permanent molds, meaning that they
are not removed after casting. This has 2 main advantages: 1) The
rubber shell of the tennis ball offers increased energy dissipation,
and, 2) Local damage at the contact area is avoided since the shell
offers stress distribution. There is no information on the
deterioration of the mechanical properties of the tennis balls
when exposed to envirnonmental conditions, so further studies
are needed on this subject. However, unlike rubber bearings, the
isolation properties of the suggested device mainly source from its
geometry. So any deterioration of the balls should be quantified
but is not expected to be detrimental.

For the displacements and curvatures considered, the
influence of the concrete plate curvature is moderate since,
sphere imperfections dominate the response. Even in this case,
the system maintains low lateral-to-vertical force ratios, suitable
for seismic isolation applications. However, bearings of smaller
radius of curvature (R) and smaller isolation period should be
tested, so that a restoring force is guaranteed.

The proposed Tennis Ball Isolator (TBI) offers a promising
alternative towards the re-use of tennis balls, which is an
important environmental problem with no viable mass-scale
solution so far.

The main limitations of the present study are related to the
casting procedure of the TBI. The development of better
cementitious mixes which will ensure fluidity, high strength,
less shrinkage and better quality assurance, the optimization of
the casting procedure (e.g., utilized tools, the diameter of the
casting tip, etc.), component level testing under biaxial shear
loading, design methods for the concrete plates, and system level
testing are topics open to further research.
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FIGURE 12 | (A) TBI after 0/+230, 0/−230 and −115/+115 test under compressive force of W � 3.23 kN and concave concrete plates, (B) Tennis Ball Isolator (TBI)
after 0/+230, 0/−230 and −115/+115 test under a compressive force ofW � 4.74 kN and concave concrete plates, (C) Tennis Ball Isolator (TBI) after 0/+230 test under a
compressive force of W � 8 kN and flat concrete plates.

TABLE 3 | Summary of the rolling friction coefficient μroll (%) for the various tested
configurations.

Weight
per sphere (kN)

Geometry
of concrete plates

Rolling friction coefficient,
μroll (%)

2.08 Flat 5.5
Concave 6.7

3.23 Flat 4.7
Concave 6.6

4.74 Flat 6.8
Concave 5.4

8 Flat 7.2
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