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The purpose of the present study is to grasp the situation of construction sites easily by
distinguishing the movements of construction workers at construction sites from the
accelerometer data attached to their waists. For the construction manager to accurately
perceive the active or inactive state of his workers, their movements were classified into
three distinct categories: walking, standing, and sitting. We tracked and observed two
rebar workers for 5 days at a large building construction site. Their movements were
classified by two-axis plots of (1) the difference between the maximum and minimum
absolute values and (2) the value of acceleration at each second, and visualized by a
heatmap among others for this trial. The results showed that despite the difficulty in
distinguishing rebar work without a total body movement while sitting, the accuracy of
discrimination was 60–80% in walking and sitting. From this analysis, we were able to
identify repetitive tasks and the differences between morning and afternoon tasks.
Furthermore, by applying simple visualization, we could concisely represent changes in
work intensity over a relatively long period.
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INTRODUCTION

Construction workers and their productivity are routinely monitored to improve results and
safety at construction sites. Visual observation is the conventional method to analyze work
productivity. However, a visual analysis is timeconsuming, subjective to judgments, and error
prone (Costin et al., 2012). Furthermore, it is hard to apply in some cases, including dangerous
work areas, dark construction sites, and busy worksites with many moving obstacles to observe,
compared with analyses on open-air outdoor work (Cheng et al., 2011; Park and Brilakis, 2012).
Few studies have acquired and analyzed data from actual construction sites. A method that can
obtain information regardless of construction site conditions is badly needed. Construction
projects often suffer from a waste of waiting time for crews, rework, unnecessary movement and
handling of materials, unused inventories of workspaces and materials, etc. (Sacks et al., 2010).
The lack of orderly progress, a significant condition at construction sites, leads to projects going
off schedule and financial loss. It is also the big difference from analyzing worker movements in
a controlled laboratory setting. Since 2000, new technologies, such as biometric sensors (Hwang
et al., 2016), image recognition (Kim et al., 2009), motion capture (Yu et al., 2019), and Artificial
Intelligence (AI) (Peddi, 2008), have been developed to monitor human movement. These
technologies focus primarily on how detailed and precise the discrimination of work can be,
although cost and other factors are additional evaluation indicators in preparing for widespread
use (Sanhudo et al., 2021). Some of these methods present problems, including prohibitive costs
of data acquisition, labor for analysis, and psychological burden on the operator. Improved
approaches are underway. Construction managers often contend with rough or slightly
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inaccurate information when managing big projects with large
crews over long construction periods (Kim et al., 2013;
Moselhi et al., 2020). There are limits to the amount of
data that can be accurately absorbed when many people or
tasks appear on the construction site. Furthermore, if the data
is collected over several days or months for dozens or even
hundreds of people, the time and effort required to conduct a
detailed analysis and the time and effort necessary for the on-
site manager to understand the information become
problematic (Navon and Shpatnitsky, 2005). It indicates a
limitation of perception. In addition, when a large amount of
data is acquired in this way, adding to the direct classification
of work and productivity analysis, there is the added
possibility of revealing some worker movement
characteristics by analyzing data over long periods. Based
on this concern, Gondo and Miura (2020) attached a 3-axis
acceleration sensor to the waist of a worker at construction
sites, clarifying the degree of movement by using a simple
program to distinguish between two types of workers: active
and inactive. The present study aims to develop and improve
the method for differentiating worker’s activity, and to
validate the effectiveness of data acquisition and
discrimination. We had workers of the same occupation
wear the accelerometer for 1 week (5 days) to see what
kind of characteristics or tendencies of workers’
performances could be captured by the acceleration data.

REVIEW

Monitoring Workers on Construction Sites
Visual observation and analysis are methods used to understand
the movements of construction site workers. Industrial
Engineering is the standard classification method for work
measurement and analysis. In Japan, the Work Efficiency
Measurement Guidelines provide a standard for analyzing
building construction work efficiency (AIJ (Architectural
Institute of Japan), 1990). Implementing measurement
methods improves productivity, reduces costs, and shortens
construction periods. With proper classification, current
productivity can be evaluated and compared with other
methods. Notably, the productivity of the construction
industry is lower than that of other industries (Mckinsey
Global Institute, 2017). Improving productivity is a significant
priority, especially in regions with severe worker shortages, such
as Japan (Labour Force Survey, 2020). In recent years, visual work
analysis has been developed using new technologies. A typical
example is the attempt to grasp movement via image recognition.
Zhu et al. (2017) used construction site video data,
simultaneously detecting and tracking multiple workers and
equipment. The wireless real-time video monitoring system
(WRITE) analyzed image sequences of workers on a bridge
construction site while classifying their work as effective,
contributory, or ineffective (Kim et al., 2009; Bai et al., 2012).
There have been studies using Radio Frequency Identification
(RFID) tags and accelerometers with Bluetooth Low Energy
(BLE) to identify the location and movements of multiple

workers at a construction site (Lim et al., 2016). Wireless
technology measuring the location of objects and people at
construction sites has been around since the 2000s. Navon and
Shpatnitsky (2005) used Global Positioning System technology to
automatically measure earth-moving performance by identifying
equipment locations at regular intervals, calculating the data into
project productivity. Zhao et al. (2019) and Zhao et al. (2021)
applied BLE beacons for real-time tracking of construction
workers in three case projects to collect location- and time-
based worker information. Efforts are ongoing to acquire
various kinds of information beyond images or locations to
gain a more precise understanding of worker conditions. For
example, Hwang et al. (2016) attached a photoplethysmography
biometric sensor embedded in wristband-type trackers to analyze
the heart rates of seven construction workers in the field to avoid
excessive workload. Gatti et al. (2014) compared the breathing
rates and heart rates of construction workers at rest and during
routine activities. Still, a high hurdle exists for system installation
due to privacy and other issues surrounding image recognition. In
addition, the amount of data is massive when targeting multiple
workers or workers over long periods, although individual
analysis of a person and specific movement is possible.

After the data acquisition, proper classification is necessary.
The conventional method identifies them by human observation,
but this is time-consuming and costly. AI is also being used to
classify worker movement from images and videos. Peddi (2008)
captured the poses of workers from image sequences at
construction sites and used AI to categorize them as effective,
ineffective, or contributory work. Luo et al. (2018) distinguished
the work status of multiple workers from low-quality video by
using convolutional networks to interpolate image information
from surveillance cameras. With respect to video research
focusing on specific body movements, Kim and Cho (2020)
measured construction worker movements by recognizing the
position of each joint through motion sensors and motion
recognition and analyzing it with the Long Short-Term
Memory network. Such image recognition has the potential to
discriminate work more directly and precisely. On the other
hand, unlike factory workers, construction site workers may
move around looking for things, especially at indoor
construction sites where there are many obstacles, and it may
be dark. However, due to the large number and variety of workers
working on construction sites, it is impossible to make a
comprehensive identification.

Many new technologies apply to analyzing work productivity,
however implementing them in the field is a different story. It is
necessary to reduce the cost of data collection and analysis by
narrowing the targets. Measures are developing to grasp
construction status more indirectly, using beacons with
approximately 10-m accuracy to determine the room or floor
where the construction workers work (Zhao et al., 2019). These
methods are more effective for repetitive tasks. The current study
uses accelerometers to collect data and is an indirect way to
identify movement. Since it only detects the acceleration of the
workers’ body, and construction work consists of repetitive
movements, we can assume the workers’ movements to a
certain extent.
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Work Analysis Using Accelerometers
According to Godfrey et al. (2008), motion analysis using
accelerometers has been around since the 1950s. Initially,
researchers faced challenges regarding the cost and accuracy of
the equipment. Researchers focused on the problem again in the
1970s with microelectromechanical systems (MEMS) technology.
By now, MEMS has become a commonly used behavior analysis
method because accelerometers have advantages in quantitatively
measuring human movement at a lower cost. Therefore,
accelerometers were widely accepted as beneficial and practical
sensors for wearable devices to measure and assess physical
activity (Yang and Yeh-Liang, 2010). In a context more closely
related to people’s daily lives, Hendelman et al. (2000) conducted
a study with 25 people to determine how much data they needed
to measure the intensity of real-life behavior. In another study,
Matthews et al. (2002) conducted a physical activity analysis
using accelerometers for 122 subjects for 3 weeks to shed light on
behaviors in real-life situations. In this research, the differences in
activities, such as according to the day of the week, were clarified.
As a study of office workers, Cha et al. (2018) achieved high
accuracy in classifying seven common office activities such as
‘keyboard typing’ and ‘mouse-clicking’ based on accelerometer
data attached to the back of the subject’s dominant hand.There
have been efforts to install accelerometers to capture worker
movements or other objects at construction sites. Joshua and
Varghese (2011, 2014) investigated the feasibility of using
wearable accelerometers attached to masonry workers’ waists
for automated activity classification. In the civil engineering
field, it is easier to detect whether machinery is moving or
not. Akhavian and Behzadan (2015) used smartphones to
verify the operational status of civil engineering and
construction equipment. Another approach applied a
wristband-type activity tracker to discriminate masonry
workers’ hand movements in the laboratory (Ryu et al., 2019).
Several researchers applied sensors at construction sites to
determine the safety of construction workers in severe
conditions. Cheng et al. (2013) applied a wideband wireless
position sensor and a biometric sensor to continually monitor
the location and physiological status of workers to help them
avoid unsafe behaviors. Valero et al. (2017) developed inertial
measurement unit (IMU) devices to detect awkward postures to
decrease the risk of musculoskeletal disorders and validated it by
bricklaying tasks. In a similar study, a wearable IMU was created
to estimate the balance of construction workers to prevent falls
(Jebelli et al., 2016) and validated by rebar tying tasks (Umer et al.,
2018). In another approach, Yantao et al. (2019) introduced an
automatic workload assessment method to assess workers’ joints
using image-based 3D posture-capturing smart insoles.

For human activity classification, deep learning methods such
as convolutional neural networks have been applied. Zheng et al.
(2018) compared four methods of data preprocessing when using
deep learning for human activity recognition and found that the
multichannel method showed the best performance. These
studies attempted to classify the movements into several types.
In order to classify more complex motions, Sanhudo et al. (2021)
conducted an indoor circuit experiment using 10 common
construction activities including non-productive activities, and

showed that the accelerometer data on both wrists and the
dominant leg could classify these motions with high accuracy.
Again, there are a large number of workers and occupations
working on construction sites. Each worker has many activities to
execute. In addition to aiming for detailed discrimination, there is
also the possibility of collecting data over long periods, or
targeting multiple people at once to gain a general
understanding of the situation at the construction site, even if
the accuracy of the discrimination is somewhat reduced.

Bouten et al. (1997) developed a portable unit to record
acceleration and distinguish between active and rest states.
Mathie et al. (2003) also categorized daily activities into active
and inactive states and developed a program to identify them.
Gondo and Miura (2020), referring to Mathie et al. (2003),
attached accelerometers to workers at construction sites of
houses and buildings and classified them into two states:
active and inactive. By doing so, Gondo and Miura (2020)
were able to detect abnormal values, which coincided with the
failure. However, we were unable to conduct a systematic analysis
of the building because of the different job types, such as rebar,
carpenter among others. As a method for simple visualization of
data over a relatively long period of time, as in this study, and for
reflecting it sequentially in health management, Sun et al. (2020)
proposed a method for collecting several kinds of data including
the blood pressure and heart rate among others of workers in a
factory and using it for lean management. In building
construction industry, there is a need for a similar approach
to acquire data on the movements and situations of workers on-
site over a relatively long period of time, and then simply visualize
them and make improvements from there. As Calvetti et al.
(2020) point out, in order to envision an information-based
construction industry such as construction 4.0, “Craft-
workforce-centered” technology should be adopted.

Gaps in the Existing Literature
In addition to conventional visual observation, various recent
technological developments can be applied to analyzing
construction site operations. They include image
recognition and biometric sensors. These methods need to
be used in different ways according to their purpose. For
example, in determining the work details, methods that
acquire a large amount of information per time, such as
image recognition (Kim et al., 2009; Bai et al., 2012) and
biometric sensors (Gatti et al., 2014; Hwang et al., 2016), are
effective but carry the hurdle of increased data acquisition. In
addition, by increasing the number of discriminating types of
work, it is possible to grasp the content of the work more
precisely. However, this may increase the time and effort
required for analysis and complicate visualizing the results.
The significance of detailed work analysis is enormous. When
considering the information necessary for construction site
managers, it is critical to grasp how the construction site
operates in general while avoiding spending time and money
on analysis. As Kim et al. (2009) pointed out, one of the
limitations of these measurement technologies is the difficulty
for engineers and managers in ongoing construction sites to
analyze and use the results. In this regard, analysis automation
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is effective, as is the method of collecting location information
over a long period with as little time as possible spent on data
acquisition, and the mode of deliberately limiting the analysis
to simple data, as in the case with Mathie et al. (2003). In the
manufacturing industry, there are attempts to collect data
over a relatively long period of time and reflect it in
management in a sequential manner, such as Sun et al.
(2020). In addition, as Calvetti et al. (2020) point out, in
the construction industry, from the construction manager’s
point of view, it is not only a question of how to increase
productivity, or how to get craftsmen to work, but also a
question of how to improve the situation of construction sites
from a broader perspective, including productivity, based on
how workers work. However, although there are many studies
aimed at improving the accuracy of discrimination and
detecting safety hazards, there are few studies that analyze
the characteristics of the movements of workers at
construction sites with the help of information
technology.Based on our awareness of the underlying
problems, we analyze the construction site work using an
acceleration sensor. Compared with image recognition and
biometric sensors, accelerometers are easier to install, require
less data, and place less of a psychological burden on the
subject. As Ryu et al. (2019) pointed out, the only use of a
single sensor can reduce the burden to carry multiple sensors
while also reducing computational cost and memory. In the
analysis, we discriminate only three types of movements,
namely, standing, walking, and sitting, to distinguish the
most common movement of future workers. The present
study is a continuation of Gondo and Miura (2020). While
Miura’s data collection took only 1 or 2 days for a specific type
of work, and they encountered difficulties standardizing the
content of the work, the current study records similar work,
with the same type of rebar worker, over 5 days. In Gondo and
Miura’s study, records divide into two categories, namely,
activity and inactivity. The present study is novel. It revisits
the classification method, distinguishes three categories, and
attempts several analyses and visualizations based on new
information.

METHODS

Accelerometer
In the present study, a single-function accelerometer was affixed
to the worker. In another approach, an accelerometer built into a
smartphone or smartwatch has been used in several studies
(Akhavian and Behzadan, 2015).However, APIs that can
analyze acceleration data have not become widespread,
andtheanalysis can be difficult because different people carry
their smartphones in different ways. Moreover, the continuous
acquisition of acceleration data may affect the original use of the
device, such as increasing battery consumption. Based on these
issues, a single-function accelerometer was affixed to the worker
in this study. From another viewpoint, this study used data-
storing accelerometers, because of the stability of data acquisition
in conjected construction sites, compared with the data

transmission accelerometers, even which type is smaller than
data-storing ones.

Based on the above discussion, we used MicroStone’s 3-axis
acceleration sensor in the current study. This sensor can acquire
XYZ 3-axis acceleration data with a period of 5–200 Hz. The
accelerometer had a built-in recording medium, and data was
collected after the survey. Its battery life is good for up to 50 h of
continuous surveying and was recharged daily during our trial.
Accelerations were recorded throughout the entire working
period. Most of the previous studies using accelerometers
attached the sensor to the waist primarily because the waist is
close to the body’s center of gravity. Body movements are
quantified more accurately in this position. Similarly, in the
present study, the acceleration sensor was attached to the
operator’s belt at the waist (Figure 1).

Construction Site
Our 5-days field survey (October 12–16, 2020) took place at a
large office building construction site (over 100,000 m2). The
accelerometer recorded 10 rebar laborers working on floor
reinforcement, 2 workers per day (one skilled and one
unskilled). Only on Day 3, skilled workers replaced the
unskilled workers as unskilled labor was unavailable. The
workers attached the acceleration sensors to their belts (on the
right side of their waist) before starting the work. Two
investigators recorded each day with a video camera. To
synchronize the time between the accelerometer and the video
camera, characteristic movements were made while recording the
accelerometer with the video camera. The time was synchronized
with the recording time of the movements. Both apparatuses
continued filming and recording without interruption until the
end of the workday, except for break times (due to the hindrance
of the accelerometer and the battery life of the video camera). The
workday broke down into four work periods, with a 1-h lunch
break and two 30-min breaks during the day, one in the morning
and one in the afternoon. The first work period was from 7:30 to
9:00, the second was from 9:30 to 11:00, the third was from lunch
to the afternoon break, 12:00 to 14:00, and the fourth was after the
afternoon break, from 14:30 to 16:00. Every day, we videotaped
one skilled worker. Although accelerometers were attached to
both workers, one skilled and one unskilled, it was impossible to
film both simultaneously due to the frequent walking around on
the large worksite. Therefore, the accurate discrimination analysis
described below focused on one skilled worker each day.

Movement Discrimination
After the field survey was over, a portion of the filmed work was
extracted from the video camera data and judged visually. We
extracted 5 min at the 30–35-min mark after the start of each
work term. Because, at the beginning and the end of each work
period, movements that differed from the usual work, such as
work preparation and cleanup, were not appropriate for
discrimination. The reason that a portion of the work was
used rather than the full scope of the day is the amount of
time required to render an accurate (visual) judgment of the
operation. The process took approximately 10–20 min per 5-min
video extraction.
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The floor reinforcement work required the following actions.
First, move around the site, and take out the appropriate rebar
from the rebar storage area. Carry the rebar to its placement
location, and drop the rebar on the floor while standing. If the
rebar does not fall into the proper position, squat down, and
rearrange it correctly. After a fixed area of rebar is laid out, tie
the rebar together by bending or crouching because it is
necessary to use a hacker to wrap the tying wire around the
intersection of the rebar. Stand still during short rest breaks
during work or when consulting with other workers or giving
instructions. However, due to the variable flooring condition at
the worksite, the body is always in slight motion. Based on the
above movement prompts, the visual analysis classified the
worker’s movements into three types: 1) walking. Walking
occurs due to the worker’s movements and the movement of
the rebar. 2) Standing. Standing occurs when the worker
communicates with other workers, consulting and giving
them instructions. Motionless time and resting time are also
classified as standing. 3) Sitting. Sitting occurs when the worker
lays out rebar and ties reinforcement.

Discrimination Program
In the present study, we used a two-axis scatter plot for
discrimination. First, the x-axis is defined as the difference
between the maximum and minimum absolute values of
acceleration in 1 s. It makes it possible to discriminate by the
change of acceleration during 1 s, especially the degree of sudden
change.

xi � max( �����������
a2xi + a2yi + a2zi

√ ) −min( �����������
a2xi + a2yi + a2zi

√ )
Next, similar to a previous study (Gondo and Miura, 2020),

the value of acceleration at each time is added together and used
as an index. The frequency means the number of acceleration
data per second. In the field study, we acquired acceleration data
every 0.01 s, or 100 Hz, so frequency � 100.

yi � ∑
1secondi

�����������
a2xi + a2yi + a2zi

√
frequency

In this study, we took the following steps to discriminate
behaviors. First, we determined themagnitude of the acceleration.
In the field study, we acquired acceleration data every 10 ms or
100 Hz. The 100 data acquired after t seconds from the start of the
experiment are named t1, t2, . . . , t99, t100. Therefore, the
magnitude of the acceleration for each 10 ms is

ati �
������������
a2xti + a2yti + a2zti

√
Next, we performed discrimination using a scatter plot of the

two axes. First, the X-axis is defined as the difference between the
maximum and minimum absolute values of acceleration in 1 s. It
makes it possible to discriminate by the change of acceleration
during 1 s, especially the degree of sudden change. The frequency
in this experiment is 100.

Xt � max(at1, at2, . . . atfrequency) −min(at1, at2, . . . atfrequency)
Next, similar to a previous study (Gondo and Miura, 2020),

the value of acceleration at each time is added together and used
as an index.

Yt � ∑
i

��
ati

√
frequency

Next, we set up a classification function on the scatter plot that
was optimized for the visual classification results (Figure 2). The
reason for using scatter plots is that in addition to being able to
discriminate in a relatively simple and visually comprehensible
form, the number of parameters was increased from 1 to 2 in
order to increase the number of classifications from 2 to 3
compared to Gondo and Miura (2020), referring to several
programs for predicting motion by acceleration that are
available on the Internet (Paul, 2015). The Validation of

FIGURE 1 | Accelerometer (Left: Accelerometer, Center: Location, Right: Rebar Worker).
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discrimination Validation of Discrimination explains this
function.

In the current study, the F-value is the index measuring the
degree of agreement between the classification result and the
visual judgment of the motion. The F-value is calculated by the
harmonic mean of the rate of conformity and the reproduction
rate. The rate of conformity is the percentage of items in a given
classification that perform that behavior. For example, if 100 s of
walking behavior is classified, and 60 s of it is actual walking, then
the rate of conformity is 60%. Reproduction rate means the

percentage of the actual behavior that fits a certain
classification. For example, if 100 s of walking is classified as a
walking action, and the actual walking action is 200 s, the
reproduction rate is 50%.

The classification was corrected by extracting workflows that
do not occur in the usual work (Figure 3). For example, “sitting
only for 1 s” can be analyzed from the classification function, but
such action never actually occurs. The classification accuracy
improves by extracting and removing such transitions as noise,
which cannot occur in normal body movements. Therefore, we

FIGURE 2 | Scatter plot (Day1 15:00–15:02).

FIGURE 3 | Noise correction method.
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used the following two methods to remove noise. First of all, only
the sitting work has a very different body posture from the other
two actions. Therefore, if there is another movement in the 1 s
interrupted by the sitting work, it is regarded as a sitting, and 1 s
of sitting interrupted by the other movement is corrected to that
classification (standing, walking). In addition, the other 1-s
movements sandwiched between two or more seconds of
another movement are considered as the longer-time movement.

RESULT

Validation of Discrimination
We acquired 5 min of video four times a day (work terms), over
5 days for visual classification purposes. Due to a glitch with
the video camera on the fourth day, the fourth work term was
not fully captured. However, we did capture 5,700 s (5 min by
19 times) of the fourth day’s video, which was classified
visually (Table 1). As a result, there were 936 s, or 16% of
the total, where the worker’s movement was not visible on the
screen, and visual judgment was impossible. Either the worker
was in a blind spot at the site, the worker was on a different
floor, or the worker was moving so frequently that the filming
could not keep up.

We set up a classification function on the scatter plot to classify
the motion from the distribution of each point. First, we consider
the function for extracting the gait. For the convenience of
variables, we set the following function based on point C
where (Cx, Cy) � (5, 15). C is an arbitrary point where the
classification function is roughly considered to pass through a
neighborhood.

y � a1(x − Cx) + Cy + b1

The variable θ was set as the angle between the x-axis and a1,
so that a1 would change its value by changing the variable θ.
Considering the shape of the graph, the following definition
regions were set.

a1 � tan(radians(θ))
y � tan(radians(θ))(x − Cx) + Cy + b1 ( − 95°< θ <

− 55°,−25< b1 < 20)
The function expressed by this formula is illustrated in

Figure 4.
Next, we search for θ and b1 where the F-value is the

maximum. Here, we find the maximum value of the F-value

by changing the values of θ and b1 little by little, finding the
F-value of each. Due to the limitation of computational cost, we
first calculate θ and b1 in a wide range of definitions and then
narrow the range again near the value where the F-value reaches
the maximum. For each definition range, we first defined the
definition range of θ and b1 from the graph as follows. θ was
varied from −50° to −95° every 5°, and b1 was varied from −25 to
20 every 5°, to find the θ and b1 that maximized the F-value of
walking in 10 × 10 combinations. The F-values were obtained
from the total walking time for 5 days. The results are presented
in Table 2.

From Table 2, we found that the F-value is maximum at (θ, b1)
� (−85°, −15). To fine-tune the parameters further, we narrowed
the range of θ (by 1°, −89° < θ < −80°) and b1 (−19.5 < b1 < −6, b1
by 1.5) and calculated 10 × 10 combinations again as follows. In
the same way, we obtained θ and b1 where the F-value of walking
is maximum. The results are presented in Table 3.

We applied denoising to the result derived from the
discrimination function. The results are presented in Table 4.
Compared with the classification results by the classification
function alone, the noise removal increased the F-value of
walking classification by 1.7% and that of sitting by 2.6%. In
particular, the conformity rate of walking and reproduction rate
of sitting were improved. However, the F-values for standing were
unchanged. By removing the noise, the ambiguous time between
walking and sitting was delineated clearly, likely improving the
accuracy.

Result of Discrimination
Figure 5 shows the ratio of various tasks to the total daily work
time of each worker. All workers walked, stood, and sat at roughly
consistent rates. There was no difference in walking
(approximately 36%) between skilled and unskilled workers.
Skilled workers spent 7.1% less time standing and 6.6% more
time sitting. In other words, the skilled workers spent less time

TABLE 1 | Discrimination by video camera.

Seconds Percentage

Walking 1,943 34
Standing 547 10
Sitting 2,274 40
Unknown 936 16
Total 5,700 100

FIGURE 4 | The function of discrimination.
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resting and consulting and more time placing and tying on
average.

Next, we investigated the transition of the ratio of various tasks
in a day. As for the work terms of each day, the first and second
work terms performed in the morning are the morning activities,
and the third and fourth work terms performed in the afternoon
are the afternoon activities. The transition of the ratio of walking
time was presented in a line graph (Figure 6). The average
percentage of walking time for all workers was 42%. The
graph shows that for nine out of 10 workers, walking time in
the afternoon decreased for those with an above-average walking
time in the morning. On the other hand, for those whose walking
time in the morning was below average, walking time in the
afternoon increased.

To understand the transition of work within each work term,
we divided each work term time into four parts and obtained the
work time in each time range. The reason for such division was
that the transportation and placement of rebar was repeated
within a work term during the observation of the construction
site. The values 1–4 on the x-axis indicate not the work term but
the order in which the work terms were divided into four. Among
them, the six work terms that showed characteristic changes were
extracted and displayed in a line graph (Figures 7, 8). The
characteristics of these work terms are that walking time is
high immediately following the start of the work and walking
decreases as the work reaches the halfway point. The ratio of
sedentary work increases at the same time. As the work reaches
the 3/4 mark, the percentage of walking increases, and sitting

TABLE 2 | Variables and F-value (the bold value is maximum)..

θ −50 −55 −60 −65 −70 −75 −80 −85 −90 −95

b1

−25/g 0.579 0.579 0.579 0.579 0.579 0.579 0.581 0.685 0.725 0.323
−20/g 0.579 0.579 0.579 0.579 0.579 0.580 0.598 0.705 0.725 0.306
−15/g 0.579 0.579 0.579 0.581 0.583 0.593 0.645 0.727 0.725 0.287
−10/g 0.585 0.586 0.587 0.590 0.603 0.641 0.697 0.732 0.725 0.271
−5/g 0.605 0.612 0.627 0.647 0.673 0.705 0.727 0.732 0.725 0.250
0 0.675 0.687 0.702 0.711 0.724 0.728 0.728 0.727 0.725 0.234
5/g 0.596 0.627 0.650 0.669 0.682 0.698 0.713 0.723 0.725 0.217
10/g 0.312 0.395 0.466 0.538 0.606 0.650 0.682 0.709 0.725 0.194
15/g 0.129 0.192 0.267 0.366 0.472 0.573 0.648 0.690 0.725 0.174
20/g 0.039 0.079 0.148 0.219 0.329 0.471 0.597 0.680 0.725 0.163

TABLE 3 | Variables and F-value (the bold value is maximum).

θ −80 −81 −82 −83 −84 −85 −86 −87 −88 −89

b1

−28.5/g 0.579 0.580 0.587 0.596 0.627 0.662 0.696 0.722 0.733 0.729
−27/g 0.580 0.581 0.592 0.606 0.639 0.672 0.703 0.725 0.733 0.727
−25.5/g 0.581 0.587 0.596 0.618 0.647 0.683 0.704 0.729 0.733 0.727
−24/g 0.583 0.592 0.602 0.631 0.659 0.692 0.711 0.730 0.734 0.728
−22.5/g 0.591 0.597 0.615 0.641 0.670 0.695 0.715 0.729 0.734 0.728
−21/g 0.595 0.605 0.630 0.654 0.684 0.703 0.721 0.731 0.734 0.727
−19.5/g 0.601 0.618 0.642 0.666 0.693 0.708 0.726 0.733 0.735 0.726
−18/g 0.611 0.636 0.656 0.682 0.699 0.714 0.728 0.732 0.733 0.727
−16.5/g 0.631 0.649 0.670 0.693 0.706 0.721 0.730 0.733 0.733 0.727
−15/g 0.645 0.665 0.688 0.699 0.714 0.727 0.730 0.733 0.730 0.727

TABLE 4 | F-value after denoising.

Walking Standing Sitting

Conformity
rate

Reproduction
rate

F-value Conformity
rate

Reproduction
rate

F-value Conformity
rate

Reproduction
rate

F-value

Before
Denoising

0.699 0.774 0.735 0.257 0.391 0.310 0.734 0.574 0.644

After
Denoising

0.730 0.774 0.751 0.259 0.386 0.310 0.738 0.612 0.670
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decreases. As the work approaches the end, walking decreases.
Thus, a cyclic behavioral pattern is visible within a single work
term. The reinforcement work was performed twice in these work
terms. In other words, the combination of transporting the rebar

FIGURE 5 | The ratio of various tasks to the total daily work time of each worker.

FIGURE 6 | The ratio of walking in morning/afternoon activities.

FIGURE 7 | The transition of the ratio of walking.

FIGURE 8 | The transition of the ratio of sitting.

FIGURE 9 | The heat map (changes of the ratio of walking).
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and then tying it repeats twice, which was also confirmed by the
video camera. On the morning of the fourth day, the rebar was
transported after the start of the workday. The rebar’s placement
proceeded 26 min after the work began, and the tying work
started 30 min after the work began. Fifty-3 minutes after the
work started, the rebar transport restarted, and the tying work
was done in 78 min. The inspection was done 86 min after the
work started, and work was interrupted after 90 min for a
rest break.

Next, we roughly analyzed how the work activity changed in total.
In this section, the level of work activity is defined as the percentage of
walking. Since walking requires more body movement than standing
or sitting work, people actively move their bodies when they walk.
Therefore, to determine which time of the day was themost active, we
divided the work time into 5-min segments and calculated the
percentage of walking in each segment. Colors were then
determined with the walking percentage and arranged in
chronological order (Figure 9). The left end of Figure 9
corresponds to 7:30, the work start time, and the right end
corresponds to 16:00, the work end time. Since the work was
sometimes finished before 16:00, the color scheme is white after
the acceleration data was interrupted. The color scheme is set so that
the higher the percentage of walking, the closer the color is to red, and
the lower the percentage, the closer the color is to blue. In other words,
the periods with cold colors show gentle movement with a small
percentage of walking, whereas the periods with warm colors show
active work with a focus on more vigorous walking.

The heat map provides an understanding of the operating
characteristics of individual workers. Going by the walking
percentage, it reveals that afternoon rest time varies more than
morning. Similarly, it shows abnormalities and work delays. For
example, the morning of Day 5 is blue, unlike the other days,
because the work was significantly delayed. In another example, if
we look at the red part of the color, there is a period where the
unskilled workers of Day 1 and the unskilled workers of Day 5 are
dark red. It shows that there are times whenworkers continue to work
by walking. Overall, warm colors are more prevalent in the mornings,
whereas cold colors are more prevalent in the afternoons. It may be
because people tend to spendmore timewalking in themorningwhen
they have more energy. On the other hand, for the skilled worker on
Day 3, warm colors are more prevalent in the afternoon than in the
morning. This afternoon, to start work on the upper floor the next
day, one skilled worker wasmarking the area to be constructed and so
on, whereas another skilled worker was carrying materials from the
lower floor to the upper floor.

DISCUSSION

Validity of the Method
In the present study, we developed a method to classify the work in
construction sites using an accelerometer from the study by Gondo
and Miura (2020). Specifically, we classified the rebar worker’s
movements into three types: walking, standing, and sitting. The
accelerometer data was divided every second and classified by
using three types of linear functions in a 2-axis scatter plot. The
difference between the maximum and minimum absolute values of

acceleration in 1 s was the x-axis, and the average of the absolute
values of acceleration was the y-axis. The classification accuracy was
achieved with F-values of 0.735, 0.310, and 0.644 for walking,
standing, and sitting, respectively. The operation was performed to
remove them as noise. As a result, the conformity rate of walking and
the reproduction rate of sitting have improved after denoising and the
F-values of walking and sitting work increased by 1.7 and 2.5%,
respectively (Table 4). This indicates that the addition of a simple
discrimination rule, such as not standing or sitting in one second, even
in a state where the waist is not considered to be moving much while
sitting, showed the possibility of improving the accuracy of
discrimination.

While the accuracy of the results for standing was low, the results
for walking and sitting, while not perfect, were sufficient to analyze the
fieldwork. In the analysis by Gondo and Miura (2020) with
movements using accelerometers, there were two types of
classification: active and inactive. The degree of agreement between
multiple people on the visual classification results was approximately
67%. Note that the agreement rate is the sum of the number of
correctly classified actions and the number of correctly classified non-
actions against the total number of actions. When the agreement rate
was calculated using the parameters in the present study, it was 79%
for walking, 80% for standing, and 71% for sitting. The agreement rate
was not used as an index in the current study because it is greatly
affected by the percentage of each classification element. The accuracy
of the accelerometer analysis was equal to or higher than that of visual
discrimination compared with previous studies.

Application to Future Construction
Management
The following two recommendations can be helpful to future
construction management. The first is to visualize the situation of
the construction site like a heat map (Figure 9). Doing so makes it
possible to detect abnormalities. For example, while the morning
break occurs at a fixed time, the afternoon break varies from day to
day and person to person. Thus, from this data, the construction
manager can determine whether the work is progressing as planned
and whether workers are taking appropriate breaks. By judging this in
combination with the rate of walking and other factors, it would be
possible to estimate whether the work is progressing as planned and
whether the load concentrates on particular workers. In addition to
grasping short-term problems such as temporary stagnation of work,
various analyses will be possible by increasing the period or the
number of workers to be targeted, such as weekly comparisons.
Second, as revealed in our survey, rebar workers have a work cycle
(Figures 7, 8). By combining it with the work output, there is a
possibility of its use in progress management. In assembling the steel
bar reinforcements, especially, it was possible to estimate the
approximate time and work cycle since we went back and forth at
regular intervals between where the materials were placed and the
work location. Thus, the significance of this paper lies in the fact that it
was a trial analysis to see if any characteristics could be found in the
activities and movements of the rebar workers, in addition to detect
errors or wastes in construction sites or to record the health status of
construction workers. In a related study to find the characteristics,
Gondo andMiura (2020) compared skilled and unskilled workers and
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pointed out that skilled workers tended to show less extreme increases
and decreases in activity. The novelty of this study lies in the fact that
although the sample size was small, it was analyzed from several new
perspectives, such as the change in activity between morning and
afternoon, and the cycle of walking and working during the working
hours, and revealed new tendencies. By analyzing these characteristics
of workers’ behavior in construction work, we can find a direction for
worker-centered construction sites where workers can appropriately
demonstrate their abilities (Calvetti et al., 2020).

Limitation and Future Study
The limitations of the study and the future research needed as found
from the survey and analysis are as follows. First, in the analysis, the
accuracy of the walking and sitting tasks was higher than that of the
standing task. It may be partly due to the shorter observation time for
the standing position than for the other actions. In addition, 5,700 s
was used as a sample for discriminating between video data and
acceleration data, which is considered to be a sufficient sample size for
discriminating between the targeted workers, but since individual
differences amongworkers are also considered to be large, the number
of samples needs to be increased in future studies. Particularly, it is
hard to distinguish brief stops while walking from regular walking
because acceleration may occur even though the person appears to be
standing still. Furthermore, these classifications were challenging
because walking involves a large number of waist movements,
whereas standing and sitting both involve far less. In the rebar
work, it was hard to grasp the content of the work with the
accelerometers because it involved hand movements. However, if
the work involves movement, vertical movement, or if each work unit
can be clearly divided, there is a high possibility that it can be used for
work management, and the sample should be expanded to include
more target occupations in future research.

Second, in the present study, the waist was selected as the most
representative part of the acceleration of the body. However, the
accuracy of discriminating movements without moving the entire
body may be improved by attaching sensors to other body parts, such
as thewrist. On the other hand, as the number of sensors increases, the
burden on the workers must be considered. Recently, small and
lightweight wearable devices, such as smartwatches, can be used to
record acceleration. In addition, workers’movements are continuous
and cannot be precisely labeled every second. There is an intermediate
time between walking and sitting, although brief, and there is an
intermediate movement between walking and standing still. If the
worker’s movements are always defined by the superposition of such
differentmovements, an analysismethod that assumes the change and
continuity of themovements (i.e., when a certainmovement starts and
ends) will be required in the future, rather than pursuing the correct
classification of each second itself. For this purpose, it will be necessary
to capture the features of the movement that trigger the action.

Third, in this study, there was repetition in the workers’ work
appeared, but this was only a qualitative analysis. As a future study, a
quantitative analysis by using time series data analysis methods such
as recurrence quantification analysis could be applied. In addition,
this study used a simple scatter plot that is easy to visualize the linear
discrimination on two axes, but the authors would like to compare it
with discrimination by nonlinear clustering or machine learning and
apply it on a trial basis.

CONCLUSION

The present study verified a quantitative work analysis on
rebar workers at actual construction sites using the 3-axis
acceleration sensor. Our results showed that a certain level of
discrimination was possible and the results of discrimination
were improved from the previous study. Furthermore, based
on the obtained data, we proposed several analysis methods to
analyze the characteristics of the work at the construction
site, and we analyzed them on a trial basis. Although the
number of samples was small, the analysis revealed changes in
work activity during the day, the morning, the afternoon, and
between breaks. If data acquisition using acceleration sensors
continues, it will be easier to acquire and analyze data for
large numbers of people over long periods in dark and
congested construction sites. Improvements in data
analysis methods, promoting data acquisition, and
analyzing occupations other than rebar workers are on the
horizon.
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