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Masking noise and reverberation strongly influence speech intelligibility and decrease listening
comfort. To optimize acoustics for ensuring a comfortable environment, it is crucial to
understand the respective contribution of bottom-up signal-driven cues and top-down
linguistic-semantic cues to speech recognition in noise and reverberation. Since the
relevance of these cues differs across speech test materials and training status of the
listeners, we investigate the influence of speech material type on speech recognition in
noise, reverberation and combinations of noise and reverberation. We also examine the
influence of training on the performance for a subset of measurement conditions. Speech
recognition ismeasuredwith an open-set, everyday Plomp-type sentence test and compared to
the recognition scores for a closed-set Matrix-type test consisting of syntactically fixed and
semantically unpredictable sentences (c.f. data byRennies et al., J. Acoust. Soc. America, 2014,
136, 2642–2653).While both tests yield approximately the same recognition threshold in noise in
trained normal-hearing listeners, their performance may differ as a result of cognitive factors,
i.e., the closed-set test is more sensitive to training effects while the open-set test is more
affected by language familiarity. All experimental data were obtained at a fixed signal-to-noise
ratio (SNR) and/or reverberation time set to obtain the desired speech transmission index (STI)
values of 0.17, 0.30, and 0.43. respectively, thus linking the data to STI predictions as ameasure
of pure low-level acoustic effects. The results confirm the consistent difference between
robustness to reverberation observed in the literature between the matrix type sentences
and the Plomp-type sentences, especially for poor and medium speech intelligibility. The
robustness of the closed-set matrix type sentences against reverberation disappeared when
listeners had no a priori knowledge about the speech material (sentence structure and words
used), thus demonstrating the influence of higher-level lexical-semantic cues in speech
recognition. In addition, the consistent difference between reverberation- and noise-induced
recognition scores of everyday sentences for medium and high STI conditions and the
differences between Matrix-type and Plomp-type sentence scores clearly demonstrate the
limited utility of the STI in predicting speech recognition in noise and reverberation.
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INTRODUCTION

In realistic room scenarios speech intelligibility is mainly
determined by background noise and reverberation. This has
been confirmed by various studies that investigated the
detrimental effects of background noise and reverberation in
listeners with different hearing status. To model the combined
effect of these factors for arbitrary situations, objective measures
have been developed based on the concept of the Speech
Transmission Index (Steeneken and Houtgast, 1980). Several
studies confirmed a strong relationship between STI
predictions and empirical speech recognition data as well as
the detrimental influence of noise, reverberation, and hearing
status of the listeners (e.g., Duquesnoy and Plomp, 1980; George
et al., 2010). Rennies et al. (2014) employed a similar paradigm as
George at al. (2010) by measuring speech recognition scores in
normal-hearing listeners for different combinations of noise and
reverberation that produced the same STI values. In contrast to
the data of George et al. (2010) for their group of normal-hearing
listeners, Rennies et al. (2014) reported significant discrepancies
between the measured data and STI predictions. While the STI
correctly accounted for the influence of noise on speech
recognition, but the influence of reverberation was
overestimated compared to the empirical data, i.e., the
predicted detrimental effect of reverberation was larger than in
the measured data. Rennies et al. (2014) speculated that the
differences between these two studies may be caused by the
fact that speech material differed in talker (male German
speaker used by Rennies et al., 2014, vs. female Dutch talker
used in the study of George et al., 2010). Furthermore, different
types of speech material were used which could be crucial for the
different outcomes. However, it remains unclear which of these
differences is mainly responsible for the observed discrepancy.1

In the current study we therefore investigate if the observed
discrepancies between the studies of George et al. (2010) and
Rennies et al. (2014) are due to the type of speech material used in
the experiments: Rennies et al. (2014) used a closed-set matrix-
type sentence test consisting of semantically unpredictably and
syntactically fixed sentences which are generated from a base
matrix consisting of 50 words (10 names, 10 verbs, 10 numerals,
10 adjectives, and 10 nouns, Wagener et al., 1999). Before the
actual measurements, listeners are always trained with at least two
test lists of 20 sentences to get familiar with the speech material
and account for training effect (Wagener et al., 1999; Kollmeier
et al., 2015). In contrast, George et al. (2010) used open-set
everyday sentence test VU98 (Versfeld et al., 2000) consisting of

sentences with different syntax and vocabulary. Hence, the
listeners were not aware of the sentence content and were not
trained with the same material that was used for testing.

It is investigated here if a priori knowledge about the speech
material (i.e., training to the speech material resulting in the
familiarity with the limited set of 50 words and information about
the fixed grammatical sentence structure) is the reason for the
observed robustness of matrix tests in reverberant conditions.
Furthermore, the effects of noise only, reverberation only, and
combinations of noise and reverberation are systematically
investigated using the method adapted from Rennies et al.
(2014), i.e., speech recognition measurements at a fixed signal-
to-noise ratio (SNR) and/or reverberation time set to obtain the
desired STI values of 0.17, 0.30, and 0.43 but with a different type
of speech material, namely the German everyday sentences test
(so-called Kollmeier and Wesselkamp, 1997). This type of speech
material is comparable to the Plomp-type speech material used by
George et al. (2010). The GÖSA was recorded with the same
speaker as the German matrix sentence test used by Rennies et al.
(2014) which allows for excluding the potentially large effects of
speaker on speech recognition (Hochmuth et al., 2015). This way
a direct comparisons and examination of the effect of speech
material type was possible without confounding effects of talker
differences.

If the type of speech material is indeed the main factor
responsible for different outcomes in the studies reported by
George et al. (2010) and Rennies et al. (2014), the speech
recognition scores measured here with the German everyday
sentence test should agree with the findings of George et al. (2010)
and the measured scores should be constant along iso-STI
contours, i.e., for different combinations of SNR and
reverberation time that produce the same STI.

Furthermore, we investigated the reasons for the high
robustness of the German matrix sentence test against
reverberation observed by Rennies et al. (2014). We
hypothesize that the high recognition scores in strongly
reverberant conditions as measured by Rennies et al. (2014)
arise from the a priori knowledge about the speech material
which is given in the training session. In order to test this
hypothesis, two additional conditions with the matrix test in
reverberation were included. The main difference to the study of
Rennies et al. (2014) was that the listeners were not familiarized
with the speech material prior actual measurements and by that
they were not aware of the fixed grammatical structure of the
sentences and the limited number of words (which effectively
made the matrix test similar to an open-set speech test).

By comparing the experimental results with GÖSA and the
untrained matrix test to the trained matrix test data collected by
Rennies et al. (2014) and George et al. (2010), we can assess the
influence of top-down processing (i.e., knowledge-driven
cognitive processes utilizing lexical-semantic cues) for speech
recognition in reverberant environments. Furthermore, the
comparison of the measured data to predictions of the STI
will provide an estimate of the signal-driven, low-level,
bottom-up processing contribution in the conditions
considered. Hence, an estimate of the role of cognitive

1While both the study of Rennies et al. (2014) and of George et al. (2010) employed
normal-hearing listeners, the age range differed slightly (20–41 years vs.
26–57 years), i.e., the listeners group of George at al. (2010) included some
older normal-hearing listeners. This may have contributed to differences
between the studies. However, the mean speech recognition threshold and
corresponding standard deviation observed by George et al. (2010) was
comparable to the reference data of young normal-hearing listeners for the
speech material used (VU98 corpus, Versfeld et al., 2000). Hence it can be
assumed that differences in listener groups are not the main contributor to the
systematic differences discussed by Rennies et al. (2014).
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processes (with a focus on knowledge-driven cognitive processes
utilizing lexical-semantic cues) in compensating for the
detrimental effect of reverberation and background noise will
become possible.

METHODS

Speech Transmission Index Calculations
The STI is based on the concept of the modulation transfer
function (MTF), which describes the changes in the temporal
modulation of the signal due to its transmission through a system.
A simplified STI calculation method was adopted here from the
study of Rennies et al. (2014). This method considers the
calculation of the MTF as a product of the factor mrev, which
quantifies the convolutive distortion of the speech signal due to
reverberation, and the factor mnoise, which characterizes the
distortions of the speech signal due to the additive noise (IEC,
2003). If the room impulse response is approximated by an
exponential decay, the factor mrev can be then described as:

mrev(F) � (1 + (2πFT60

13.8
)2)

−0.5

where F is the modulation frequency in Hertz and T60 is the
reverberation time in seconds (IEC, 2003).

For compatibility with the studies of George et al. (2010) and
Rennies et al. (2014), the reverberation time was assumed to be
frequency independent. Accordingly, all the room impulse
responses (RIRs) used in this study were generated based on
their broadband reverberation time. The factor mnoise is
expressed as

mnoise � (1 + 10−SNR/10)−1
where SNR is signal-to-noise ratio in dB (IEC, 2003).

Since the long-term spectra of the speech material and the
masking noise were similar, it was assumed that the SNR also is
constant across frequencies.

Listeners
Fourteen normal-hearing listeners with a pure-tone threshold not
exceeding 20 dB HL for octave frequencies between 125 Hz and
8 kHz participated in this study. They ranged in age from 21 to
27 years (mean age of 22.3 ± 2.2). None of them had previous
experience with speech recognition measurements. All listeners
were informed about the general purpose of the study, gave
written informed consent, and were paid for their
participation in the listening experiments. Ethical approval was
obtained from the Research Ethical Committee of the Universität
Oldenburg.

Speech Recognition Measurements
Set-Up
The Göttingen sentence test (Kollmeier and Wesselkamp, 1997)
was used as a speech material in this study. It contains short,
meaningful everyday sentences like the Plomp-type sentences
(Plomp and Mimpen, 1979) and the HINT test (Nilsson et al.,

1994), but employing word scoring and a numerical optimization
procedure for homogenization across test items. The word corpus
is rather large (1,194 words), the content of each sentence is
unknown to the listener. Ten perceptually balanced lists of 20
sentences each are available. The lists were optimized for
perceptual equivalence between lists, i.e., speech recognition
scores do not depend on the test list used in the measurements.

In addition, two test lists of 20 sentences each from the
German matrix sentence test (in Germany known as
Oldenburg sentence test) were used to assess the influence of
“a priori knowledge” about the speech material on speech
recognition in reverberation. Speech recognition was measured
without informing the listener about the structure of the test and
with no training with the speech material. These sentences have a
fixed grammatical structure and limited speech material of 50
words. Each word occurs in the test list exactly twice.

For the GÖSA, four different measurement conditions were
included. In condition 1, only the influence of masking noise was
considered. The noise had been generated by multiple, randomly
time-shifted superpositions of sentences from the target talker
and, hence, the long-term spectrum of the target material and the
noise were very similar. Speech and noise were mixed at SNRs of
−10, −6, and −2 dB to obtain the desired STI values of 0.17, 0.30,
and 0.43, respectively. They were adapted from the study of
Rennies et al. (2014) and corresponded to low, medium and high
speech recognition scores. Conditions 2 and 3 included the
combined influence of noise and reverberation. The signals
were mixed at an SNR of 0 dB (condition 2) and 7 dB
(condition 3), and the reverberation time was adapted to
obtain the desired STI values (0.17 and 0.30, i.e., the same two
lowest values as employed in condition 1). In condition 4, only
reverberation was used as a detrimental factor. The reverberation
times were chosen such that the same STI values were obtained as
in the condition 1. The experimental settings are summarized in
Table 1.

For the measurements with the German matrix test, two
conditions with a reverberation time of 9.38 and 4.06 s were
used resulting in the two lowest STI values used in this study (0.17
and 0.30, respectively). These conditions reflect the situations in
which the robustness of the German matrix test was most
prominent (Rennies et al., 2014). Pilot studies resulted in
speech recognition scores for the reverberation time of 9.38
close to zero so that it can be assumed that presentation of
one test list in this condition does not give sufficient possibility to
get trained to the speech material. In other words, the second
measurement with a reverberation time of 4.06 s can be

TABLE 1 | Summary of the measurement settings including different
combinations of signal-noise-ratio (SNR) and reverberation time (T60).

STI Settings Condition 1 Condition 2 Condition 3 Condition 4

0.17 SNR [dB] −10 0 7 (∞)
T60 [s] (0) 4.45 7.71 9.38

0.30 SNR [dB] −6 0 7 (∞)
T60 [s] (0) 1.63 3.25 4.06

0.43 SNR [dB] −2 — — (∞)
T60 [s] (0) — — 2.03
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considered as untrained measurement with no a priori knowledge
about the sentence structure and linguistic content.

For all conditions containing reverberation, speech and noise
(if applicable) were convolved with the desired RIR. To generate
the RIR, white noise was multiplied with an exponential decay
corresponding to the desired reverberation time. The length of
the RIR was equal to the reverberation time. The same method of
RIR generation was used by George et al. (2010) and Rennies et al.
(2014) which makes it possible to define and vary the T60 in a
systematic way.

The signals were calibrated to dB SPL using Brüel&Kjӕr
instruments (artificial ear type 4153, microphone 4134,
preamplifier 2669, and amplifier 2610). In the measurements,
the speech level was fixed at 55 dB SPL and the level of the noise
was varied to obtain the desired SNR. The masking noise was
turned on 500 ms before and turned off 500 ms after sentence
presentation. All signals were digitally preprocessed in MATLAB
and the measurements were administered using the Oldenburg
Measurement Application software (HörTech GmbH, Germany).
The signals were run through an RME DIGI 96/8 PAD 24bit
sound device and converted to analog signals (RME 4 ADI-8
Pro). The analog signals were then amplified by a TDT HB7
headphone amplifier and presented diotically through Sennheiser
HD650 headphones in a sound attenuating booth (fulfilling the
requirements of ANSI/ASA S3.1-1999, R2008).

Procedure
A constant stimulus-level method was used in all measurements.
For each measurement condition, one test list of 20 sentences was
used. The order of the measurement conditions with GÖSA was
fully randomized. The two tests conducted with the German
matrix test were presented between the 3rd and the 7th
measurement with GÖSA, the exact order was randomized,
but the most difficult condition with a reverberation time of
9.38 s was always presented before the condition with
reverberation time of 4.03 s. This was done to exclude the
possibility of training to the speech material. Overall, 12
different conditions were tested (10 with GÖSA, 2 with the
German matrix test). The listeners’ task was to repeat the
understood words. The experimenter marked the correct
responses. Word scoring was used meaning that each word in
a sentence was judged separately as correct or incorrect. The
percentage of correct responses was used as a measure of speech
recognition.

Statistical Analysis
Speech recognition data were transformed using the rationalized
arcsine transform (Studebaker, 1985) since recognition scores for
the lowest and highest STI were close to 0 and 100%, respectively.
The statistical tests were done on the transformed data. Non-
parametric Friedman rank tests and Wilcoxon tests for pairwise
comparisons were used since, in some of the conditions, the data
were not normally distributed as indicated by Kolmogorov-
Smirnov tests. If appropriate, the Wilcoxon test was used for
post-hoc analysis to further explore the sources of
significance—in this case the significance level of 0.05 was
adjusted using Bonferroni corrections.

RESULTS

Speech Recognition for Everyday
Sentences
The median rationalized arcsine unit (RAU) scores with
corresponding interquartile ranges for all conditions (listed in
Table 1) measured with everyday sentences are shown in
Figure 1. As expected, speech recognition scores were lowest
for the STI of 0.17 and highest for the STI of 0.43. No statistically
significant differences were found across the measurement
conditions for the lowest STI [χ2(3) � 3.51, p � 0.32]. The
median scores for the lowest STI averaged across all four
conditions was 13.6% with an interquartile range of 9.1%. For
the highest STI, the median score and corresponding
interquartile range were 87.3 and 8.1% in condition 1, and
69.4 and 11.2% in condition 4, respectively. These differences
were statistically significant [Z � −3.3, p � 0.001]. Statistically
significant differences were found also across measurement
conditions for the medium STI value [χ2(3) � 28.11, p <
0.001], where median scores were 48.1, 31.1, 36.7, and 30.1%
in conditions 1 to 4, respectively, and interquartile ranges varied
from 7% (condition 1) to 14.7% (condition 2). Pairwise
comparisons (with a significance level of 0.008) showed
statistically significant differences in recognition score
between condition 1 (noise only at an SNR of -6 dB) and
condition 4 (reverberation only with T60 � 4.06 s; p �
0.001), condition 1 and condition 2 (SNR � 0 dB and T60
� 1.63 s, p � 0.001), condition 2 and condition 3 (SNR � 7 dB
and T60 � 3.25 s, p � 0.004), and condition 3 and 4 (p � 0.002).
Note that a consistent difference in speech scores across
respective STI indicates that the measured effect of
reverberation differs from the effect of noise on speech
recognition even though no difference is predicted by the
respective STI.

FIGURE 1 | Median RAU speech recognition scores for the GÖSA with
corresponding interquartile ranges for different STIs and the measurement
conditions listed in Table 1. Stars indicate statistically significant differences
across measurements conditions.
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Influence of Speech Material on Speech
Recognition in Noise and Reverberation
Median scores with corresponding interquartile ranges for
measurements in reverberation (no noise) with GÖSA and
untrained matrix sentences (present study) as well as trained
matrix sentences (data from Rennies et al., 2014, transformed in
RAU) are shown in Figure 2. Statistically significant differences
across measurement conditions were found for each STI with p <
0.001. For the lowest and medium STI values, pairwise
comparisons (with a significance level of 0.016) showed
statistically higher scores for the trained matrix sentences than
for the untrained matrix sentences as well as for the GÖSA (all
comparisons with p � 0.001). No differences between GÖSA and
untrained matrix sentences were found for both STIs (with p �
0.041 for both comparisons). Higher scores for trained matrix
sentences than for the GÖSA were also confirmed for the highest
STI (p < 0.001). The median scores of trained matrix sentences
were 45.2 percentage points higher than for the untrained matrix
sentences at an STI of 0.17, and 47.7 percentage points higher at
an STI of 0.30. This indicates a strong effect of a priori knowledge
(top-down processes) on speech recognition in reverberant
conditions. The results of speech recognition in reverberation
with untrained matrix sentences (no a priori knowledge about the
speech material) are comparable with the outcomes of everyday
sentence test (GÖSA).

Comparisons of the median recognition scores between
trained matrix sentences and GÖSA for measurements in
noise at different SNRs (no reverberation) are shown in
Figure 3. The difference across the tests were significant for
each STI. The median magnitude of this difference was 29.0% at
an SNR of −10 dB (corresponding to an STI of 0.17, p < 0.001),

21.4% at an SNR of −6 dB (corresponding to an STI of 0.30, p <
0.001), and 5.1% at an SNR of −2 dB (corresponding to an STI of
0.43, p � 0.001). The relatively small difference at the highest STI
probably resulted from ceiling effect observed at this SNR for
both tests. The differences in speech recognition scores across the
tests in noisy conditions were not expected since it is known from
the literature that both tests have comparable reference speech
recognition threshold in stationary noise (Kollmeier and
Wesselkamp, 1997; Wagener et al., 1999; Brand et al., 2004;
Warzybok et al., 2015). Possible reasons for this discrepancy
will be elaborated in the discussion section.

DISCUSSION

The main aim of this research was to assess the role of different
types of speech material on speech recognition in noise, in
reverberation, and in combinations of noise and reverberation.
The two speech material types used here, recorded with the same
male talker, indicated significant differences in speech
recognition even though the intelligibility should have been
equal based on the STI predictions. The largest differences
were observed in the conditions with reverberation as the only
detrimental factor. In all reverberant conditions, the speech
material of the German matrix test showed strong robustness
(after training), i.e., the recognition scores were significantly
higher than for the GÖSA. Moreover, comparing the
outcomes of the measurements with the trained matrix test in
noise and in reverberation, Rennies et al. (2014) found
significantly higher speech recognition scores in reverberation
(using the same white-noise RIRs as here) than in noise at STI
values of 0.17 and 0.3, which is in disagreement with the STI
predictions.

FIGURE 2 | Median RAU recognition scores and corresponding
interquartile ranges for everyday sentence test (GÖSA), trained German matrix
test (data from Rennies et al., 2014), and untrained German matrix test
including only reverberation as detrimental factor. Stars indicate
statistically significant differences across measurements conditions.

FIGURE 3 | Median RAU recognition scores and corresponding
interquartile ranges for everyday sentence test (GÖSA) and trained German
matrix test (data from Rennies et al., 2014) measured in stationary noise at
different signal-to-noise ratios. Stars indicate statistically significant
differences across measurements conditions.

Frontiers in Built Environment | www.frontiersin.org July 2021 | Volume 7 | Article 6893885

Warzybok et al. Speech Recognition in Noise and Reverberation

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


The outcomes of the present study indicate that the a priori
knowledge and training to the speech material has a substantial
contribution to the robustness of the matrix test against
reverberation. The knowledge of the sentence structure and
familiarity with the limited speech material consisting of 50
words obtained within the training session resulted in much
higher speech recognition scores than expected based on the STI
predictions. However, the robustness of this type of speech
material was not observed when the listeners were not trained
prior the actual measurements. In the measurements with
untrained matrix sentences, the recognition scores did not
differ from the scores of the everyday sentence test. This
shows the importance and contribution of the high-level top-
down processes to speech recognition, which cannot be predicted
by the STI since its calculations are based on the acoustic cues of
the signals without consideration of top-down processes. Since
each test list of the GÖSA contains unique sentences, i.e., the
vocabulary differs across the lists, no training effect that would be
comparable with that of the matrix-type sentences is expected for
the everyday sentences. However, a strong contribution of higher-
level top-down processes will be observed when the same test list
is used for the second time in a short period. This is due to the
context in the everyday sentences which makes these sentences
easy to memorize and, in addition, enables the listener (to some
degree) to guess the complete sentence from recognizing a single
word. In comparison to first-time use of a meaningful sentence
test, this would result in incorrectly high recognition scores. This
is not the case for the matrix-type sentences, since due to their
semantically unpredictable content, the sentences are difficult to
memorize and there is no benefit available from sentence context.

Previous studies reported comparable speech recognition
thresholds (SRTs), i.e., the SNRs corresponding to 50% speech
recognition for GÖSA and the German matrix test (Kollmeier
and Wesselkamp, 1997; Kollmeier et al., 2015). Hence, it was
expected that the results of both tests would result in similar
speech recognition scores in noise. However, the results showed
higher scores for the matrix sentences than for the GÖSA.
Rennies et al. (2014) reported that the good results observed
in their study could be due to two extensively trained listeners
participating in their experiments. To assess the impact of these
listeners, we re-evaluated these data by excluding the two best
listeners (corresponding to the two experienced listeners).
However, the median speech recognition scores in different
conditions only changed marginally (from 1 to maximally 5%)
so that other reasons seem to be responsible for the good
performance of the listeners in Rennies et al. (2014).
Warzybok et al. (2015) and Brand et al. (2004) measured
SRTs with a naïve group of normal-hearing listeners with the
German matrix test and reported mean values of −6.7 and −6.8
dB, respectively. In the study of Rennies et al. (2014), the median
speech recognition scores were 48% at an SNR of −10 dB and 84%
at an SNR of −6 dB. This is considerably higher than the results
obtained with naïve listeners by Brand et al. (2004) andWarzybok
et al. (2015), supporting the assumption that listeners in the study
of Rennies et al. (2014) were better than could be expected from a
naïve listener panel. In contrast, Kollmeier and Wesselkamp
(1997) reported a reference SRT of −6.2 dB for the GÖSA,

which is in close agreement to the present data (median score
of 48% at an SNR of −6 dB).

The measured data with the GÖSA can be also compared to
the data from George et al. (2010) who adaptively measured SRTs
with everyday sentences (VU98 corpus, Versfeld et al., 2000) in
noise, in reverberation, and in combinations of noise and
reverberation. George et al. (2010) assessed their listeners
using sentence scoring. Because sentence scoring produces
lower recognition rates than word scoring, the present data
were re-calculated using sentence scoring in order to be
directly comparable. Sentence-scored speech intelligibility was
achieved by scoring a sentence as correct only if all the words of a
sentence were repeated correctly. If the listener misunderstood
one or more words, the answer was scored as incorrect. Then the
number of correctly understood sentences was divided by the
number of sentences presented to the listener (for GÖSA N � 20)
and % correct responses were obtained. The re-calculation was
possible since all the listener answers were digitally stored. Re-
calculation was done for all conditions corresponding to STI
values of 0.30 and 0.43 (the lowest STI was excluded from the
comparisons since it resulted already in very low recognition
scores for word scoring). For an STI of 0.30, sentence-scored
medium recognition scores decreased similarly across
measurement conditions and were on average 19.4% lower
than scores obtained with word scoring. The median scores
were 22.5% in condition 1 (SNR � −6 dB), 2.5% in condition
2 (SNR � 0 dB, T60 � 1.63 s) and 4 (T60 � 4.06 s), and 10.0% in
condition 3 (SNR � 7 dB, T60 � 7.71 s). For an STI of 0.43, the
median scores with sentence scoring were 90% in condition 1
(SNR � -6 dB) and 62.5% in condition 2 (T60 � 2.03 s). George
et al. (2010) reported 50% speech recognition at an SNR of
−3.9 dB when only noise was considered as a detrimental
factor. For measurements in reverberation, 50% speech
recognition was measured for T60 of 2.03 s. Considering the
results of the present study, the 50% threshold in noise using
sentence scoring can be estimated to be at about −4.4 dB (by
interpolation) which is in line with the threshold measured by
George et al. (2010) for the Dutch everyday sentence test.
Sentence recognition scores in reverberation only at T60 of
2.02 s were 12.5% higher for GÖSA than the VU98 corpus,
however, the significance of this difference remains unclear.

George at al. (2010) found a good correlation between the
speech recognition data and STI predictions. They showed that
the STI can account for the influence of noise, reverberation, and
combination of both. In the study reported here, the recognition
scores in reverberation only (condition 4) were significantly lower
than in noise (condition 1) although the calculated STI was the
same for both conditions. Hence, the detrimental influence of
reverberation on speech recognition (using the same type of
white-noise RIRs as used by George et al., 2010) was found to
be greater than it was predicted by the STI. This effect occurred
for both, sentence and word scoring methods, so that the scoring
method does not seem to be the underlying reason for the
observed discrepancies.

Apart from the scoring method, these two studies differ also in
other aspects including the talker (female Dutch talker vs. male
German talker) or speaking style (more informal for the Dutch
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speech material). However, the influence and interaction of these
factors on the observed differences and mainly on the relative
susceptibility to reverberation is unclear and could be a subject of
future studies. Furthermore, the STI calculation differs slightly
between the two studies. George et al. (2010) used a modified
STI version (Houtgast et al., 1980) including 18 modulation
frequency bands instead of the classic 14 (used in the present
study). They argued that the classical STI underestimates the
adverse effect of reverberation on speech intelligibility when
informal, conversational speech is concerned. Systematic
investigation and comparisons of STI predictions with different
number of modulation frequency bands and for different types of
speech material could be investigated in future studies.

CONCLUSION

In summary, it was shown that the difference between robustness to
reverberation observed in the study of Rennies et al. (2014) and of
George et al. (2010) may be attributed to the speech material type
(closed-set matrix type sentences with high familiarity/training effect
vs. unfamiliar, short meaningful Plomp-type sentences) because our
listeners basically exhibited the same difference for comparable speech
materials. The impact of the speechmaterial type seems to be stronger
at low and medium STI values, corresponding to poor and medium
speech intelligibility than for high STI resulting in very good speech
intelligibility and being limited by a ceiling effect. The robustness of
the closed-set matrix type sentences against reverberation disappeared
when listeners had no a priori knowledge about the speech material
(sentence structure and words used).

This provides some evidence about the relative importance of
high-level, top-down processing strategies in difficult
reverberation situations. It remains unclear if the same applies
for situations with interfering noise without reverberation.
Further studies are needed with a direct comparison within
the same subjects to assess the importance of bottom-up and
top-down processing across different acoustic conditions.

Nevertheless, the consistent difference between reverberation-
and noise-induced recognition scores of everyday sentences for
medium and high STI conditions and the differences between
Matrix-type and Plomp-type sentence scores clearly demonstrate

the limited utility of the STI for predicting speech recognition in
conditions with varying susceptibility to noise and/or
reverberation.
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