
Impact of Measurement Uncertainty
on Building Modeling and Retrofitting
Decisions
Mario Frei*, Illias Hischier, Chirag Deb, Diego Sigrist and Arno Schlueter

Architecture and Building Systems, Institute of Technology in Architecture, Department of Architecture, ETH Zürich, Zürich,
Switzerland

Retrofitting buildings is essential for improving the existing global building stock. Innovations
in wireless sensor networks have provided new means for scalable and potentially low-cost
solutions for evaluating optimal retrofit measures in a building. Building models are used to
explore different retrofit options and to find effective combinations of retrofit measures for a
building in question. This paper departs outlining a novel grey-box modeling process for
building retrofit based on measurement data. However, it is unknown if the measurement
data and, as a consequence, the retrofit analysis is affected by uncertainties due to
measurement accuracy and other factors. Quantifying these uncertainties during the
analysis process is important in the context of making effective retrofit decisions.
Consequently, this work examines the influence of measurement uncertainties on the
generation of the retrofit models and the suggested retrofit measures. The results
illustrate that measurement uncertainty is manageable for retrofit decisions, i.e., the
measurement uncertainties rarely influence the ranking of retrofit measures. However,
reduced measurement uncertainties are beneficial for adequately sizing the building
retrofit interventions. It is shown that measurement uncertainty of flow meter
measurements and indoor temperature measurements have the biggest impact on the
heat loss coefficient estimation error, which ranges overall from 3 to 26%. Further, it is shown
that some retrofit measures are more sensitive to uncertainty in the input data, such as
district heating and wood pellets boilers, compared to measures that include heat pumps.

Keywords: building retrofit, uncertainty assessment framework, retrofit assessment, building energy assessment,
grey box modelling, wireless sensor networks, in-situ measurement, measurement uncertainty

INTRODUCTION

Buildings have a huge impact on global energy demand and greenhouse gas emissions (Global
Alliance for Buildings and Construction and International Energy Agency and the United Nations
Environment Programme, 2019). Hence, the building sector has been identified as a key sector to
mitigate climate change due to its opportunities for substantial and cost-effective emissions
reductions. In particular, building retrofits offer a great mitigation potential due to the relatively
long building lifespan of 60–100 years and the estimation that approximately 65% of the building
stock of 2060 is already built today (International Energy Agency and the United Nations
Environment Programme, 2018).

However, undertaking building retrofitting in the construction sector is affected by the
performance gap (Sunikka-Blank and Galvin, 2012), i.e., the predicted or perceived energy
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demand does not match the measured or actual energy demand.
The causes for this performance gap include, among other factors,
incorrect assumptions, e.g., material properties of the building
elements or ventilation patterns (Khoury et al., 2016). Building
retrofits are particularly prone to this phenomenon because the
energy demand is estimated twice during the process, once for the
building’s pre-retrofit state and once for the post-retrofit state. The
estimated error in the energy demands curtails the potential energy
savings twice. The pre-retrofit energy demands are often
overestimated, and the post-retrofit energy demand is usually
underestimated (Sunikka-Blank and Galvin, 2012). In the worst
case, building retrofit measures are based on an inaccurate
building assessment, which renders the suggested measures
underperforming or ineffective. Sunikka-Blank and Galvin found
an average performance gap of 30% in a study, including 3,400
German buildings (Sunikka-Blank andGalvin, 2012). In Switzerland,
a performance gap of 42% has been found in a study concerning the
retrofits of multi-family buildings (Khoury et al., 2016), and more
recently, an average negative performance gap of −23% for pre-
retrofit residential buildings has been identified (Cozza et al., 2020).

Buildings are inherently complex, multidisciplinary, and
unique (Reid, 1984). On one hand that means that building
retrofits can be accompanied by co-benefits such as improved
health, increased thermal comfort, better indoor air quality,
conservation of value, and lower operation and maintenance
costs. (Almeida and Ferreira, 2018). On the other hand, this
complexity extends building retrofits, which need to be tailored to
each building. In addition, finding the optimal combination of
building retrofit measures is not trivial because the measures
might effect each others effectiveness (Lee et al., 2015). Building
retrofits need to be implemented carefully and tailored to each
building and the respective stakeholders to get the most impact
from investments in the retrofits.

Previous Work
Building Assessment and Retrofit Assessment
There is a large selection of building performance assessment tools
and building retrofit tools available in the literature.Ma et al. (2012)
recognize that building retrofits are multi-objective optimization
problems, which are subject to many constraints, such as
regulations, resources, uncertainties, and human factors. Lee
et al. (2015) highlight that retrofit decision tools often exhibit
limitations, e.g., limitation to a particular geography, a limited set of
retrofit measures, or limited longevity of the retrofit tool. Both
studies criticize the lack of recognition of integrated effects, i.e., the
sum of energy savings of multiple retrofit measures is not equal to
the sum of benefits of the individual measures (Ma et al., 2012; Lee
et al., 2015). They also mention a lack of consideration of modeling
mismatches or model generation. Measured data input is often
limited to total energy use, weather data, and energy bills.

Measurement-based building assessment methods are
available but do usually not include retrofit assessments. For
example, co-heating is a quasi-stationary method for the
assessment of the whole building envelope (Bauwens and
Roels, 2014). It requires that the occupants leave the building
for several days, during which the building is heated to a constant
temperature. With measured weather data and energy input, the

heat loss coefficient (HLC) of the building can be determined.
QUB is a similar method that allows for the determination of the
HLC within two nights (Alzetto et al., 2018). Papafragkou et al.
(2014) devised a much less intrusive method, which allows rating
a building in four qualitative categories based on one temperature
measurement during the course of one week. Dimitriou (2016)
demonstrated sensor-rich energy assessments of occupied
residential buildings using lumped parameter models.

The standard-based assessments, e.g., SIA 380/1 (Swiss Society
of Engineers and Architects (SIA), 2016) or ISO 13790
(International Organization for Standardization, 2008), offer a
methodology to assess the building energy demand. However,
the use of measured data is not foreseen. Further, experts have
to suggest suitable retrofit options relying on intuition and
experience. On the other hand, there are building retrofit
assessment methods that are elaborate and include metrics such
as cost, energy demand, and environmental impact but lack an
evidence-based assessment of the initial state of the building. Tadeu
et al. (2015) demonstrate a comprehensive retrofit assessment
wherein they compare more than 4,000 combinations of retrofit
packages for three different locations. The assessment includes cost,
environmental impact, and energy. However, the initial building
assessment does not include measured data.

Uncertainty in Building Performance Energy
Assessment and Retrofit Assessment
Tian et al. (2018) give an overview of uncertainty analysis during
the building assessment process. They found that more effort is
required on the quantification of uncertainties in the input
parameters. Heo et al. (2012) examine the impact of
uncertainty on the retrofit analysis of building energy models
for risk assessment. They consider uncertainties of the calibrated
building model, as well as uncertainties introduced by the retrofit
measures. They recognize that simplified thermal networks offer
a simpler and more robust approach to retrieve a building model
that reproduces the characteristics of the actual building. Further,
the required computational power is much lower compared to
high-resolution building energy models. Rysanek and Choudhary
(2013) examine the impact of economic and technical uncertainty
on the retrofit decisions for a commercial building. They found
that economic uncertainties have a larger impact on the
performance of retrofit inventions than technical uncertainties.
Additionally, they found that the performance of demand side-
measures is less affected by uncertainties. Heo et al. (2015) use
standard-based building models to compare the retrofit decisions
of calibrated and uncalibrated building models. The models
yielded similar predictions and the same ranking of energy
efficiency measures over the entire building portfolio.
However, for individual buildings, the measures yielded
different rankings. They conclude that the calibration of
building models reduces the uncertainty of model predictions.
Galimshina et al. (2020) employ statistical methods to find robust
building retrofit decisions. They show significant differences in
robustness between life cycle assessment (LCA) and life cycle cost
(LCC). However for LCA and LCC, the heating systems exhibit
less uncertainty than the demand-side measures, such as added
insulation.
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Novelty and Objectives
The research described in the literature encompasses a range of
evidence-based retrofit processes, such as in-situ measurements,
grey-box modeling, and retrofit assessments. However, a whole
retrofit process from a measurement-based assessment to a retrofit
performance assessment has not yet been demonstrated. Such a
process would use measurements of building characteristics to
propose building retrofit interventions, including predicted cost
and energy performance of the interventions. At the current state of
knowledge, however, it remains unclear what the requirements for
the in-situ measurements are with regards to the amount of
measurement data necessary and the impact of uncertainty
throughout the building retrofit process. Missing in the literature
is a systematic assessment and discussion of phenomena that can
influence measurement data and the subsequent retrofit models
and decisions.

The work in this paper seeks to build upon our previous work
to address this shortcoming. In our previous work on a custom
wireless sensor network (WSN) for retrofit and the evaluation of
its performance (Frei et al., 2020), we described the distortion of
measurement data that could occur due to gaps in measurement
data and the accuracy of sensors. In (Frei et al., 2021), we present
practical issues associated with sensor deployment in occupied
residential spaces, such as sensor malfunction, environmental
influences, and access to energy measurements. In addition, this
work builds upon previous work that shows how choices during
sensor data aggregation and modeling approaches can influence

the building retrofit assessment (Sigrist et al., 2020). This paper
further builds upon this approach in the following novel ways:

A measurement-based retrofit process is presented that adds
and analyzes WSN measurement uncertainty as a parameter to
the retrofit process, making the building energy assessment and
the building retrofit assessment more robust.

Since such a measurement-based process is still afflicted with
measurement uncertainties, we evaluate the acquired
measurement data uncertainty and its impact on the retrofit
assessment. The impact on simulation results is quantified in
terms of variations in the estimated model parameters and in
terms of impact on retrofit decisions.

The objective of this work is to develop a novel methodology to
quantify the impact of measurement uncertainties on the model
parameter estimation and the building retrofit analysis. The
proposed process is implemented using a case study building in
St. Gallen, Switzerland, considering several retrofit options and
quantifying uncertainty and its implications on the retrofit decision-
making process. The findings and outcomes are critically discussed.

METHODOLOGY

This paper establishes a method to assess the impact of measure-
ment uncertainties on a previously introduced measurement-based
retrofit process (Sigrist et al., 2020). Figure 1 provides a graphical
overview of the method. The measurement-based retrofit process

FIGURE 1 | Process of measurement uncertainty impact assessment (red frame) based on the evidence-based retrofit process (black frame).
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starts with the deployment of a WSN to gather data in the occupied
building of interest (Step 1). Then, the acquired data from the
WSN is screened and processed in step 2 for further use in building
models. Subsequently, the processed data is used to estimate the
parameters of a physics-based lumped parameter building
model (step 3). After this model is generated, the building model
represents the current thermal state of the building. This model
serves as the basis for the exploration of retrofit measures and
combinations thereof (step 4). In this step, the performance of the
retrofit measures is calculated with regard to life cycle cost and
greenhouse gas emissions equivalents. The uncertainty impact
assessment builds on top of this retrofit process (step 1–4). For
the uncertainty assessment, measurement uncertainties are
introduced between steps 1 and 2 (A). Then the impact of these
introduced uncertainties is evaluated at the end of the retrofit
process (B).

In this process, uncertainties can occur during the data
acquisition through measurement inaccuracies or disturbances.
These uncertainties are present in the raw data, which are
processed in step 2, where additional inaccuracies can be
introduced during data aggregation. In order to assess the
impact of such uncertainties in the measurement data,
distortions were simulated by synthetically adding variations
to a dataset with presumably little distortions. The form and
range of these synthetic distortions are based on experience from
previous studies where sensors were deployed in occupied
buildings (Frei et al., 2020; Frei et al., 2021) and on
comparisons of measurement data from different sensors.
After the insertion of the synthetic distortions, the retrofit
process continues and yields a set of performance indicators
for potential retrofit measures to be applied to the building. The
impact of the synthetic distortions can be assessed by comparing
the different sets of performance indicators resulting from each
input dataset.

Sensor Deployment and Data Screening
The first step of the process is the creation of measurement data to
capture the envelope-based heat loss calculation. For data
acquisition, a lean open-source WSN was used for the in-situ
measurements. It was introduced in a previous publication, where
the cost, performance, and choice of sensors are discussed in
detail (Frei et al., 2020). The sensor node installation took on
average 12 min. The cost per node ranges from approximately
116 USD (air temperature and humidity) to 1,800 USD (water
flow meter). All design files for the hardware and the software of
the WSN are available online1. The deployment process is
described in detail in (Frei et al., 2020; Frei et al., 2021).
Sensor data collection provides the foundation for the creation
of the resistance-capacitance modeling process.

Building Envelope Resistance-Capacitance Modeling
These measurement data are used to estimate parameters of a
building model. In (Sigrist et al., 2020), a grey-box model based
on a resistor-capacitor (RC) network was introduced. Within this

framework,measurement data and geometric information are used to
calibrate a single-zone RC model. The R and C parameters typically
are estimated by means of a maximum likelihood estimation. It is
important to check whether a strong correlation exists between the
estimated parameters and the observed measurements. Once the
model is calibrated to match the estimated with the measured
parameters, the internal air temperature as well as the heating
demand, and the effects of potential envelope retrofit measures on
the heating demand can be obtained. The samemodel structure could
be used with measurement data from different buildings of the same
type. Measurement inputs include the external air temperature (Te),
the ground temperature (Tgr), solar heat input throughwindows (φsol)
and on external surfaces (φre), and the heat input from the central
heating system (φh). The heat input is derived from the supply
temperature (Ts), the return temperature (Tr), and the water volume
flow rate (V_) of the heating system.

The grey-box model parameters represent the heat transfer
coefficients of the building envelope, the thermal mass of the
building, and heat transfer coefficients of the heating system.
However, changes to thermal mass and heat emission systems are
not considered. Only changes to the envelope parameters and
heat generation are considered.

The measurement of the indoor air temperature (Ti) is used
for the model output. The model output is used to evaluate the
predictive power of the grey-box model. For cross-validation,
the measurement data is split into two subsets. The training
dataset is used during the grey-box model parameter estimation
process. During this process, the grey-box model parameters are
varied in such a way, as to minimize the error between the
predicted indoor temperature and the measured indoor
temperature from the training dataset. The validation dataset
is then used to evaluate the grey-box model with estimated
parameters. During the validation, the error between predicted
indoor temperature and measured indoor temperature is used as
a model performance metric. For the sake of simplicity, we focus
in this work on the mean absolute percentage error (MAPE,
Eq. 1).

MAPE(Ti) � 1
n
∑n
j�1

∣∣∣∣∣∣∣∣
Ti, mes, j − Ti,pre,j

Ti, mes, j

∣∣∣∣∣∣∣∣ (1)

where Ti,mes,j is the measured indoor temperature at timestamp i.
Ti,pre,j is the indoor temperature predicted by the grey-box model
at timestamp j, and n is the number of all timestamps. In the
context of building control, the actual estimates of the model
parameters would be of less interest, as long as the model has
great predictive power (small MAPE). In the context of this work,
the purpose of the grey-box modeling is to acquire estimates of
building characteristics, e.g., HLC, that are physically meaningful
and as close to the true values as possible. However, the true value
is unknown and can only be approximated for real buildings.
Hence, we need to resort to the MAPE of the indoor temperature,
get an indication of how good the model can recreate measured
data, and assuming that good prediction of the indoor
temperature also indicates meaningful model parameters. It is
possible that a grey-box model yields meaningful estimates for
model parameters while maintaining low predictive power.1https://github.com/architecture-building-systems/Wireless-Sensor-Network.
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Building Envelope Intervention Modeling
Model parameters of the calibrated RC model can be altered to
emulate retrofit measures applied to the building envelope. The
type of retrofit measures includes roof insulation, wall insulation,
cellar ceiling insulation, and window replacement. The modified
model parameters are calculated based on the estimated value
from the model generation and the U-value of the retrofit
measure. For instance, if additional insulation is to be applied
to the walls, the new U-value Unew of the walls with insulation is
calculated according to Eq. 2.

Unew � 1

(1/Uold) + (1/Uretrofit) (2)

where Uold is the U-value of the walls of the existing building
and Uretrofit is the U-value of the additional layer of insulation.
The additional thermal capacity of the retrofit measures is
neglected. The heat loss coefficient is calculated as the
weighted sum of all heat transfer coefficients from the indoor
temperature node to the environment. The calibrated model
with the applied retrofit measures can be used to simulate the
hourly heat demand of the post-retrofit building for a reference
year. This simulation is carried out for all permutations of the
retrofit measures.

Heating System Modeling
Once the building RC-model is generated, the modeling of the
heating system is performed. In this framework, the heating system
entails only the heat generation system. The heat emission system
is considered as part of the building RC-model and is mentioned
above. This step is important in the context of Switzerland, where a
large share of energy in buildings is consumed for space heating
(Kemmler and Spillmann, 2020). The retrofitting options for sizing
the heating system are based on the heating load, which is based on
theHLC and design temperatures for the indoor and outdoor. Each
combination of retrofit measures requires an individual sizing of
the heating system accordingly.

Heating System Sizing
The first step in the system modeling process is the system sizing
based on the output of the RC-model derived from the sensor
measurements. The maximum heating capacityΦh,max is the sum
of the design space heating load and the heat demand for
domestic hot water (QDHW) as seen in Eq. 3). The design
space heating load is represented by the multiplication of the
HLC of the model and the design values for the internal and
external temperatures, i.e., Ti,design and Te,design.

Φh,max � HLC · (Ti,design − Te,design) + QDHW

8760h
(3)

The heat demand for DHW is based on the local standard SIA
2024 (Swiss Society of Engineers and Architects (SIA), 2015),
where QDHW is assumed to be constant throughout the year. For
pellet boilers and district heating, a fixed heating efficiency
independent of the envelope configuration and season was
assumed. Thus, the final energy demand for space heating and
DHW FEDh&DHW [kWh/a] is calculated as:

FEDh&DHW � Qh + (QDHW/ηDHW)
ηh

(4)

For heat pump-based heating system, the seasonal
performance factors need to be considered. The detailed
equations for the sizing of heating systems based on heat
pumps are available in Supplementary Appendix A.

Life-Cycle Assessment Process
The projected energy consumption of a heating system is useful
to determine operational efficiency, but retrofit decisions also
need to address cost-effectiveness and greenhouse gas
emissions. Thus, we include both as a metric for assessing
the retrofit options. In the following subsection, we provide
the details for both metrics.

Cost Assessment
The foundation of the calculation of the life-cycle costs is based
on the assessment of the global cost (GC) outlined by (EU
Commission, 2012), which has been used in other building
retrofit assessments, e.g., (Tadeu et al., 2015). Equation 5
outlines the calculation of the global cost.

GC(τ) � ∑m
i�1

ICi +∑τ
t�1

EC(t)
(1 + (r/100))t +∑τ

t�1

OMC

(1 + (r/100))t

+∑m
i�1

∑
k

RCi,k

(1 + (r/100))k −∑m
i�1

Vi(τ)
(1 + (r/100))τ (5)

wherem is the number of measures. τ [a] is the calculation period.
r [%] represents the real interest rate. ICi [CHF] stands for the
investment cost of the measure i and Vi(t) represents the residual
value of measure i after the calculation period τ. EC(t) [CHF/a] is
the energy cost in the year tt and OMC [CHF/a] represents the
operation and maintenance cost. RCi,k is the replacement cost of
measure i at the end of its lifetime LTi in year k where k � n·LTi <
τ for n � 1, 2, 3,....

The Energy cost EC(t) [CHF/a] is calculated as

EC(t) � FEDh&DHW · Pec · (1 + rec
100

)t

(6)

where Pec [CHF/kWh] is the energy price of the corresponding
energy carrier ec. rec represents the annual change in energy price.

Greenhouse Gas Assessment
Cost has an impact on the retrofit-decision-making process.
However, many individuals and organizations have a mandate
to reduce greenhouse gas emissions. The greenhouse gas
emissions calculation in this process is based on the ISO
14040 (International Organization for Standardization, 2006).
Equation 7 outlines its calculation method.

EI � ∑m
i�1
(EIembodied,i

LTi
) + FEDh&DHW · CFEI,ec (7)

In Eq. 7, the unit of measurement for the environmental
impact (EI) is kg-CO2-equivalents according to the IPCC
2013GWP 100a method. For the materials used, the
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production and disposal of the used materials are considered
along with the transport from the factory to the construction
site. The processing on the construction site, and the
maintenance of the heating system and building envelope
were neglected.

Measurement Uncertainties Quantification
and Analysis
The focus of this study is to calculate the impact of sensor
measurement uncertainty on the retrofit decision, which
results in implications on the final life cycle cost and
greenhouse gas emissions. This process is done through the
modulation of various sensor measurement data parameters to
calculate the propagation of those errors into the retrofit metrics
and, therefore, the retrofit decision-making process. Figure 2
exemplary illustrates a schematic of the process to test the
influence of indoor air temperature measurement uncertainty
on the heating load and HLC. First, the original (unaltered) data
set is afflicted with additional synthetic errors according to
estimated and previously observed measurement uncertainties.
The altered data set is then fed into the RC model estimation
process to estimate the RC-model parameters. The output of this
step is an estimate of the overall HLC and model performance
indicators such as the mean absolute percentage error (MAPE)
for the indoor temperature. The MAPE of the model output
indicates how well the RC model is able to predict the indoor
temperature. Following, the retrofit measures are applied to the
model, which means that the model parameters are altered to
emulate the retrofit interventions. This altered model is then used
to predict the yearly heating energy demand of the refurbished
building and the required supply temperatures of the heating
system. In the next step based on heating load, heating systems
can be sized, and the heating demand can be converted into final
energy demand. Environmental impact assessment and cost

assessment are then done based on the applied envelope
measures, system sizing, and final energy demand.

In Table 1, we present an example of potential causes of
uncertainties along with their impact. The data was derived from
previous experiences (Frei et al., 2020; Frei et al., 2021). The
sensor accuracies are taken from the manufacturers’ datasheet.
The last column lists how original data was altered (modulation)
in order to emulate all uncertainties.

The unaltered indoor temperature Ti input of the RC model
consists of all indoor temperature measurements averaged and
weighted by the volume of the room where the sensors were
placed. However, as it would reduce the measurement effort and
simplify the WSN, the measurement data of just one indoor
temperature sensor (Ti,i) is used instead. From the raw data of
this and previous work (Frei et al., 2021), it is visible that
measured indoor temperatures often exhibit similar trends,
while the main difference is a relatively constant offset. Such
temperature offsets, albeit smaller, could also be caused by an
offset error of the sensor. To emulate these effects, the averaged
indoor temperature data is afflicted with an offset of ±2°C in
order to emulate the sensor accuracy and thermal stratification
effects (Ti + ΔTi).

The outdoor temperature (Te) is also modulated in two ways;
First, we emulate distortions caused by solar radiation on shaded
and unshaded outdoor temperature sensors. Second, we emulate
errors caused by sensor offsets and offsets due to differences
between temperature data measured on-site and data measured
by a nearby weather station. Differences in elevation and
the urban heat island effect can cause differences in the
outdoor temperature data (Frei et al., 2021). To emulate the
solar distortion, a weighted average is formed of the
measurements from a shaded temperature sensor and one
exposed to the sun (Te + ΔTe,sol). The weight is increased from
0 to 100%, in steps of 20%. The 0% data consists only of data from
the shaded sensor, and 100% represents data from only the sensor

FIGURE 2 | Process diagram of calculating the propagation of sensor measurement uncertainty error on the impact assessment of retrofits. The red and magenta
lines represent the synthetically distorted measurement data.
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affected by solar radiation. For the sake of simplicity, the second
modulation consists of constant offsets between ±3°C in order to
emulate sensor accuracy and distance between the building and
the sensor, e.g., data from nearby weather stations.

The two main sources of measurement uncertainties for the
supply and return temperature (Ts, Tr) are the sensor mount and
sensor accuracy. While the temperature of interest is the fluid
temperature, with the current setup only the pipe temperature is
measured. Hence, these temperatures are modulated with an
offset of ±2°C (Ts + ΔTs, Tr + ΔTr).

Lastly, the water flow rate measurement ( _V) is afflicted by sensor
accuracy and scaling or fowling on the inner pipe surface. The pipes
from the case study building have an inner diameter of 33.7 mm. A
1mm layer of fouling would reduce the cross-sectional area by 12%.
Hence, the flow data is afflicted with offsets of ±15% ( _V + Δ _V).

CASE STUDY IMPLEMENTATION

To demonstrate the application of the proposed process, a case
study was chosen. The process was deployed on a single-family
residential building in the city of St. Gallen, Switzerland, during
the heating season 2018–2019. The key building properties are
available in Table 2.

Figure 3 shows the case study building and the floor plans.
There are four occupants living in the building. The building
underwent several refurbishments. A non-condensing oil boiler
was installed in 1990. Water is used as the heating distribution
medium through a system of radiators, which are controlled by
thermostatic valves.

The case study building is typical for Switzerland, where 57%
of all residential buildings are single-family buildings and 51% of
all buildings were built before 1970 (Bau-und Wohnungswesen
2018, 2020). Further, 89% of residential buildings have a central
heating system, and 60% of residential buildings use fossil fuels as
a primary source for heating2.

All sensor types used for this work are listed in Table 3. The
measurement data were acquired with a sampling interval of
5 min. Based on the insight from previous work (Frei et al., 2021),
the sensor suite was extended by an ultrasonic clamp-on flow
meter (Keyence FD-Q-32C) for this work. Such a flow meter
allows measuring the space heating input independent of the
primary energy carrier and domestic hot water (DHW)
generation. Unfortunately, the electricity demand could not be
measured with the WSN in this building because the whole house
energy meter did not have an interface that allowed access to it.
However, the electricity demand was read manually from the
electricity meter at the beginning and at the end of the
measurement campaign.

The sensor deployment lasted from January 28 to April 17,
2019. During the 79 days of deployment, three major
interruptions occurred, splitting the entire dataset into two
larger sets, each lasting 22 days (February 09–March 03,
March 06–March 28). The average data loss rate for these
two datasets was 0.44%. The total electricity demand
amounts to 10% of the total energy input. Based on previous
experience (Deb et al., 2019) and the absence of electrical
heaters for space heating, we assume that a significant
amount of this electricity is used for DHW generation,
which does not contribute to space heating. Hence, it appears
to be acceptable to neglect electricity as heat input for space
heating.

Tested Retrofit Measures
We selected a series of typical retrofit configurations with various
combinations of retrofit options that, in a previous analysis, have
shown to be cost-optimal for the case study building. These
options are primarily variations of the building’s insulation type,
material, and thickness (Sigrist et al., 2019):

TABLE 1 | Overview of measurement uncertainties and the corresponding sources.

Parameter Cause of Uncertainties Impact Modulation

Indoor temperature (Ti) Selection of a single sensor, rather than aggregated average ±4°C, temporary Ti,i: Individual sensor data
Sensor accuracy ±0.3°C, constant ΔTi: ±2°C
Vertical temperature stratification ±1.5°C, constant

Outdoor temperature (Te) Solar radiation +12°C, temporary ΔTe,sol: 0–100% disturbance
Sensor accuracy ±0.5°C, constant ΔTe: ±3°C
Distance between building and weather station ±2°C

Supply temperature (Ts) Sensor mount on pipe surface +2°C, constant ΔTs: ±3°C
Return temperature (Tr) Sensor accuracy ±0.5°C, constant ΔTr: ±3°C
Water volume flow ( _V ) Sensor accuracy ±3% constant Δ _V : ±15%

Scaling or fouling on inner pipe walls −12% constant

TABLE 2 | Overview of the case study building properties.

Metric Value

Construction year 1,953
Heated area 242 m2

Heat demand (Swiss Society of Engineers and Architects (SIA), 2016) 582 MJ/m2

HLC (Swiss Society of Engineers and Architects (SIA), 2016) 512 W/K
Energy label [GEAK, (Hall, 2020)] F
DHW Electric
Oil boiler power 28 kW

2https://www.bfs.admin.ch/bfs/en/home/statistics/constructionhousing/buildings/
energy-field.html.
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• 20 cmmineral wool inter-rafter roof insulation (0.18W/m2K).
• 16 cm polystyrene ventilated curtain facade insulation
(0.19 W/m2K).

• 16 cm mineral wool cellar ceiling insulation (0.19 W/m2K).
• Triple-glazed windows replacement (0.76 W/m2K).

Table 4 illustrates the combination of envelope-based retrofit
options that were tested in the case study. Each envelope option
was applied to the four heating system types being considered in
this context: wood pellet boilers, district heating, air-to-water heat
pumps, and geothermal heat pumps.

FIGURE 3 | Case study overview: a recent photo of the residential building case study in St. Gallen, Switzerland (left, view from west) and the floor plans with
indications of where various sensors were installed.

TABLE 3 | Overview of sensors deployed in the case study with the corresponding accuracy ranges from their documentation.

Sensor Modalities Range Accuracy

Sensirion SHT31 Air temperature −40°C to +125°C, ±0.3°C
Relative humidity 0–100% ±2%

Maxim Integrated DS18B20 Temperature −55°C to +125°C ±0.5°C
Keyence FD-Q-32C Water flow rate 0.5–300 L/min ±2%
Braun Messtechnik HZ6-DR Oil flow rate 1–60 L/h ±1%

Frontiers in Built Environment | www.frontiersin.org July 2021 | Volume 7 | Article 6759138

Frei et al. Measurement Uncertainty in Building Retrofits

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


The retrofit options for upgrading the heating system
include wood pellet boilers, district heating, ground source
heat pumps, and air-to-water heat pumps. The design
parameters used for the sizing of the interventions,
environmental impact assessment, and cost assessment are
available in Supplementary Appendix B.

RESULTS AND DISCUSSION

After the implementation of the methodology on the case study,
the results are presented in this section to illustrate the impact of
measurement errors on the decision-making process. The
impact of the error propagation on the heat loss coefficient is
outlined, followed by the result on the overall systems retrofit
analysis according to the life cycle cost and greenhouse gas
emissions.

Sensor Error Impact on Parameter
Estimation
First, we compare the output of the RC model with the
measurement data. The MAPE for the indoor temperature
during the validation period amounts to 3.9%. This represents a
mean temperature error of 0.86°C, which is common. The building
characteristics derived from the measurement or from the RC
model deviate in part significantly from the building characteristics
estimated according to the standard (SIA 380/1). For example, the
unaltered data set yields 485W/K as an estimate for the overall
HLC, compared to an HLC of 512W/K estimated by the standard-
based assessment. This represents a 5.5% difference.

Second, we compare the annual heating demands derived with
three different methods. According to the calculations using the
standard (SIA 380/1), the annual heating demand is 39,170 kWh/
a, while the RC model predicts an annual heating demand of only
28,630 kWh/a. The measured oil consumption normalized by
heating degree days amounts to a heating demand of

30,660 kWh/a. An assumed boiler efficiency of 90% yields a
heating demand of 27,594 kWh/a. Hence, the standard-based
heating demand deviates by 40% from the measured heating
demand, while the heating demand based on the RC model
deviates by 2.4% from the measurement. Hence, the RC model
yields a significantly more accurate heating demand than building
energy assessment according to the local standard.

Figure 4 shows the impact of measurement disturbances on
the estimation of the HLC (A) and the MAPE of the indoor
temperature (Ti) (B). The variation of the HLC estimates shows
how robust the proposed grey box model is against measurement
uncertainties. In other words, it shows how robust this method of
building performance assessment is against measurement errors.
The HLC estimates range from 343W/K (−29%) to 590W/K
(+22%). Most notably, the impact of solar disturbance of the
outdoor temperature measurement on the estimation of the HLC
is moderate, with a maximum deviation of 3%.

The variations in the MAPE of the indoor temperature
indicate how robust the predictive power of the proposed RC
model is against disturbances in the measurement data
(Figure 4B). For a moderate solar impact of 20%, the MAPE
of Ti even improves. However, for cases with stronger solar
disturbance, the MAPE of the indoor temperature of the
resulting models deteriorates drastically. It is an overall trend
that small spreads in HLC estimates come with a larger spread in
Ti-MAPE. Further, the MAPE in the presence of measurement
error stays robust for the parameters of outdoor temperature (Te)
and sensors for the heating system (Tr, Ts, _V).

A possible explanation is that when the model is able to capture
the dynamics of the altered data sets, themodel parameters change,
and the modeling error remains small. In cases where the model
estimation process is not capable of capturing the dynamics of the
dataset, the model parameter estimation is dominated by initial
values, and the model has little predictive power. Hence, the HLC
spread remains small, and the predictive error (MAPE) becomes
large. Exemplary for this is the results for the outdoor temperature
disturbed by solar radiation Te,solar. Solar radiation causes the
apparently measured temperature values to rise and fall much
steeper than usual. These measurement distortions occur only
during sunny hours. During these periods, the heating load is
small because the solar radiation also increases the true ambient
temperature, and hence the temperature difference between indoor
and outdoor is smaller. From a steady-state perspective, it is in any
case difficult to estimate the HLC during the day because a small
heating load is divided by a small temperature difference. In this
scenario, any deviations in the numerator and denominator have a
larger impact on the results, making it noisier. On the other side,
during the night or during cloudy days, the heating load is larger,
and the temperature difference between indoor and outdoor is
larger. Hence, deviations from the true values have a smaller
impact on the results. Therefore, estimates during these periods
are more reliable and heavier weighted in the estimation process.
Hence, the spread of HLC estimates is small, but the predictive
power of the model deteriorates significantly. This could indicate
that, in the case of solar radiation impacting outdoor temperatures,
the model would perform poorly for control purposes. However, it
yields robust results for building performance assessment.

TABLE 4 | Combination of building envelope-based retrofit measures
implemented on the case study with the corresponding unique identifying
codes used in subsequent figures (adapted from Sigrist et al. (2020))

Code Roof Walls Windows Cellar ceiling

0
1a ✓
1b ✓
1c ✓
1d ✓
2a ✓ ✓
2b ✓ ✓
2c ✓ ✓
2d ✓ ✓
2e ✓ ✓
2f ✓ ✓
3a ✓ ✓ ✓
3b ✓ ✓ ✓
3c ✓ ✓ ✓
3d ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
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Table 5 relates the impact of the measurement uncertainties
from Table 1 on HLC estimates with the magnitude of the
measurement uncertainty. This is done by dividing the
difference between the largest and smallest HLC estimates by
the difference of the most positive and the most negative
modulation of measurement data. This method yields a
measure of the sensitivity of the HLC estimate regarding
measurement uncertainty. It shows that the HLC estimation is
most sensitive for measurement errors of the water flow rate
measurement of the heating system.

Retrofit Measure Performance Impact Due
to Sensor Error
Figure 5 shows an overview of the range of intervention
measures implemented for the case study. The box for each
retrofit combination is labeled according to system and retrofit
code from Table 4. Two boxes of the same retrofit
configuration are connected if their rank changes from one
measurement offset to the next one. The distance between the
various retrofit configurations is highly influenced by the
underlying assumptions. In the presented case study, an
emission factor of 0.108 kg-CO2/kWh was assumed for
district heating. This results in a lower performance
compared to the other systems, which are assumed to be
driven by local resources (0.027 kg-CO2/kWh) or electricity
from the Swiss grid with a rather low carbon intensity of
(0.102 kg-CO2/kWh), which is further leveraged by the
performance factors of the heat pumps. As a consequence,
all district heating configurations are distant from other
configurations in regard to greenhouse gas emissions. The
rank of different envelope configurations does not change
for district heating, regardless of the measurement input.
Generally, the ranking of a retrofit configuration only
changes if performance is very close to the performance of
another configuration.

To better visualize the impact of potential measurement
uncertainties on predicted relative performance and retrofit
decisions, the various configurations are listed by their rank.
In the presented example, the best performing solutions in terms
of GHG solutions are using a wood pellet boiler (Figure 6). No
changes in ranks are observed, i.e., these solutions seem to be
robust against the investigated indoor temperature offsets.
Changes in ranks are only observed for configurations that
perform similarly. This illustrates the change of order of the
interventions that can occur for measurement uncertainties of the
indoor temperature. Boxes of the same retrofit configuration are
connected between two measurement offsets if the rank of the
retrofit configuration changes. While absolute differences are not
visible in this plot, rank changes are apparent. Notably, the five
best performing retrofit configurations do not change regardless
of the measurement offset. These retrofit configurations are based
on wood pellets and geothermal heat pump systems combined
with minimal or no measures applied to the envelope.

Figure 7 provides an overview of how various measurement
uncertainties impact the greenhouse gas emissions (Figure 7A)
and the global cost (Figure 7B) of the retrofit interventions.
Generally, the trend is similar for greenhouse gas emissions and
global costs. If a positive measurement offset results in increased
greenhouse gas emissions, the global costs will also increase and
vice versa. While retrofit interventions in including district
heating are far off from the other inventions with regards to

FIGURE 4 | Selected input parameters together with measurement uncertainty impact on the HLC (A) and model quality (B). The green line indicates the
performance based on the unaltered dataset.

TABLE 5 | Sensitivity of the HLC to measurement errors.

Measurement uncertainty Measurement variation Variation HLC

Δ _V +10% +7%
ΔTi +1°C −6%
ΔTe +1°C +4%
ΔTs +1°C +4%
ΔTr +1°C −4%
ΔTe,sol +10% +0.3%
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greenhouse gas emissions, district heating solutions are in the
midst of retrofit interventions regarding cost. Instead, wood pellet
boiler solutions with no envelope interventions stand apart due to
high global costs. Similarly, retrofit interventions with little
changes to the envelope and a geothermal heat pump stand
apart on the low side of costs. These distinct gaps are
independent of the magnitude of measurement uncertainty or
affected measurement input.

It is apparent that measurement uncertainties have little
impact on the retrofit decision, i.e., the rankings in terms of
cost and GHG emissions of retrofit interventions only change in
few cases. In cases where a reordering occurs, the interventions
that switch ranks perform very similarly. However, the
measurement uncertainties can have a significant impact on
absolute performance, i.e., absolute cost and GHG emissions.

Hence, the management of measurement uncertainty is
particularly important for the sizing of retrofit measures and
achieving energy saving targets.

Retrofit decisions are commonly based on a multi-criteria
analysis, where several performance parameters, including
costs and GHG emissions, are considered simultaneously.
We chose to present the range of uncertainties in a scatter
plot, where the range of the performances (GHG, cost) of
retrofit measures is indicated by ellipses (Figure 8). The
centers of the ellipses indicate the performance of the
retrofit interventions using the unaltered data set. The
length of the ellipse axes is based on datasets, where
measurement errors were applied to every measurement
input in such a way to produce a very high estimate for the
HLC and a very low estimate of the HLC.

FIGURE 5 |Measurement uncertainty impact on the predicted performance of retrofit measures in absolute numbers, which show a general downwards trend from
left to right and are close in terms of grouping of the most retrofit measure combinations. Rank changes of retrofit measure combinations due to measurement
uncertainty indicated with lines between the boxes occur rarely.

FIGURE 6 |Measurement uncertainty impact on the rank of predicted performance of retrofit measures. The changes is ranks are small with one or two positions at
maximum.
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In Figure 8 one can observe that the impact of measurement
uncertainty on costs and emissions are mostly dependent on the
exchange of the heating system. Differences based on the
envelope configuration are negligible. The impact on cost and
emissions is noticeably larger for wood pellet boiler and district
heating systems. After considering the system efficiencies and
performance factors, these two systems have the highest energy
cost of heat production at 0.11 CHF/kWh and 0.09 CHF/kWh. In
comparison, air-to-water heat pumps cost 0.07 CHF/kWh. For
geothermal heat pumps, it is 0.05 CHF/kWh.

District heating has the largest GHG emission intensity. This
effect is further elevated when considering system efficiencies and
performance factors. A share of the GHG emissions of
geothermal heat pumps depends on the length of the borehole,
which is sized based on the HLC. Hence, the variable share GHG
emissions for geothermal heat pumps increases the impact of
measurement uncertainties on GHG emission estimates.
Likewise, the uncertainty of costs for geothermal heat pump
based systems is driven by the high variable investment costs
for geothermal heat pumps.

The RC-models used to produce Figure 8 performed poorly
with MAPE for Ti of 16 and 63%. The HLC estimation yielded
290 and 590W/K, respectively. Notably, the uncertainties for cost
and GHG estimates are much more pronounced for district
heating systems and pellet boiler systems, while the effect for
heat pump-based systems is moderate.

In Sigrist et al. (2020), it was shown that the RC model is able
to predict the indoor temperature adequately with unaltered
measurement data. But when all measurement inputs are
maximally distorted to form worst-case scenarios, the RC
model is no longer able to predict the indoor temperature
adequately and the HLC estimates are far off. Hence, we could
hypothesize that poor RCmodel performance indicates poor data
quality, provided that the model structure is adequate.

CONCLUSION

This paper outlines a novel process of using sensor-driven RC
models and parametric analysis to quantify the impact of

FIGURE 7 |Measurement uncertainty impacts from various measurement uncertainties on the rank of predicted performance of retrofit measures, (A) greenhouse
gas emissions, (B) global cost, red: geothermal heat pump, yellow: air-to-water heat pump, purple: district heating, green: pellet boiler. All plots show that the spacing
between the retrofit measures combinations remains similar throughout out the input variation and the changes in ranks are rare and are limited to one or two positions.
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measurement uncertainty, exemplified in a residential case study in
Switzerland. A four-step process was implemented to deploy various
sensors, screen the data for quality, create the RC models using
buildingmeta-data, and conduct the retrofit assessment according to
both life cycle cost and GHG emissions. The framework created
from this process was then subjected to a series of perturbations of
the input data to emulate measurement uncertainty, and the impact
on the output metrics was quantified. The results illustrate that for
all configurations, the impact of measurement uncertainty is
manageable. In some configurations, such as district heating and
wood pellet boiler systems, the impact was greater, while measures
that utilized heat pump systems, were affected less. For the presented
case study, individual measurement uncertainties appear to have
little impact on the retrofit decision, i.e., the ranking of retrofit
interventions with regard to costs or emissions is little affected by
measurement errors. However, in a worst-case scenario with all
measurement uncertainties compounding towards the same sign of
the error, the RC model fails, and the estimated building properties
become unreasonable. As a consequence, the prediction of retrofit
measures appears to be futile. For cases where the RC-model showed
apparently reasonable results from a data set with significant
synthetic errors in the range observed measurement uncertainties,
absolute performance results showed deviations of 3–26%. Thus,
measurement uncertainties should be paid attention to when one is
concerned with building systems, e.g., sizing of the heating systems.
Further, measurement uncertainties are also important for achieving
the predicted performance targets of a building refurbishment.
Hence, measurement uncertainties should be kept to a minimum
to narrow the performance gap of refurbishments. For example,
higher accuracy temperature sensors and appropriate measures
against solar disturbances should be implemented. At the current
state of this work, the performance of the case study building with
implemented retrofit measures has not yet been demonstrated
because no retrofit measures have yet been implemented. Also, so
far the methods have been applied to Swiss single-family buildings
only, and the retrofit assessment entails retrofit measures typically
applied in Switzerland. Therefore, it is still to be investigated how

these methods can also be applied to other building types, different
climates, and geographical contexts.
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