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Traditional methods for seismic damage evaluation require manual extractions of
intensity measures (IMs) to properly represent the record-to-record variation of ground
motions. Contemporary methods such as convolutional neural networks (CNNs) for time
series classification and seismic damage evaluation face a challenge in training due
to a huge task of ground-motion image encoding. Presently, no consensus has been
reached on the understanding of the most suitable encoding technique and image
size (width × height × channel) for CNN-based seismic damage evaluation. In this
study, we propose and develop a new image encoding technique based on time-
series segmentation (TS) to transform acceleration (A), velocity (V), and displacement
(D) ground motion records into a three-channel AVD image of the ground motion event
with a pre-defined size of width × height. The proposed TS technique is compared
with two time-series image encoding techniques, namely recurrence plot (RP) and
wavelet transform (WT). The CNN trained through the TS technique is also compared
with the IM-based machine learning approach. The CNN-based feature extraction has
comparable classification performance to the IM-based approach. WT 1,000 × 100
results in the highest 79.5% accuracy in classification while TS 100 × 100 with
a classification accuracy of 76.8% is most computationally efficient. Both the WT
1,000 × 100 and TS 100 × 100 three-channel AVD image encoding methods are
promising for future studies of CNN-based seismic damage evaluation.

Keywords: ground motion record, time-series image, image encoding, convolutional neural networks, seismic
damage classification

INTRODUCTION

Traditional seismic fragility curves based on a scalar intensity measure (IM) have been widely
used to generate fragility estimates in earthquake events (Hwang et al., 2001; Baker and Cornell,
2005; Cimellaro et al., 2010; Xu et al., 2020a). Although they are affected by geometry and material
uncertainties, seismic fragility estimates are dominated by the earthquake uncertainty (Kwon
and Elnashai, 2006; Padgett and DesRoches, 2007; Jalayer et al., 2014; Mangalathu et al., 2018;
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Xie et al., 2020). The traditional seismic fragility curves using
one IM to propagate the primary earthquake uncertainty have
several disadvantages. First, the fragility curves generated from a
single IM are likely inaccurate because of the weak dependence
of seismic structural responses on the selected IM (Grigoriu,
2016). Second, different ground motions at the same IM level
generate the same fragility estimates, thus overlooking their
record-to-record variation. To address the first disadvantage, an
optimal IM that can sufficiently characterize ground motions
is recommended in seismic fragility analysis (Padgett et al.,
2008). However, previous studies of correlation between IMs and
structural damage indices showed that the optimal IM varies
with the dynamic structural properties and the used damage
index (Riddell, 2007; Kostinakis et al., 2015). It is a daunting
assignment to find the optimal IM from dozens, if not hundreds,
of existing IMs when generating the traditional fragility curves.
To address the second disadvantage, researchers built a desired
confidence interval confined with the pre-determined upper and
lower bounds around the traditional fragility curves (e.g., Jalayer
et al., 2017; Miano et al., 2018; Wang et al., 2018). Thus, the
confidence interval corresponds to a range of fragilities at a
certain IM level, which can account for the record-to-record
variation to some degree. An alternative approach involved the
use of multiple IMs. For example, Baker and Cornell (2005) used
two IMs to better characterize the ground motions in fragility
estimates. Morfidis and Kostinakis (2018, 2019) investigated the
ability of multilayer feedforward perceptron networks (MFP) and
radial-basis function networks (RBF) to predict the reinforced
concrete (r/c) buildings’ seismic damage state with 14 IMs as
input. They concluded that both MFP and RBF neural networks
could reliably and rapidly predict the damage states of r/c
buildings based on the case study results of 30 r/c buildings.
Du et al. (2020) used five IMs to facilitate more accurate and
reliable regional seismic risk estimates. Xu et al. (2020b) included
up to 48 IMs as input to machine learning models to predict
the structural damage states of different types of buildings. They
used an iterative approach to filter the optimal IMs from different
combinations of IM candidates by training the machine learning
models multiple times. Overall, the traditional seismic damage
evaluation requires time-consuming manual computations and
the selection of optimal IMs from a large pool of IM candidates in
order to represent the ground motion record-to-record variation
and achieve the best performance in damage evaluation.

Since real-time seismogram data can be obtained from
an advanced system such as the ShakeMap (Wald et al.,
2006) at seismograph stations (USGS, 2021), they may be
preferably used for an in-situ evaluation of seismic damage
through Convolutional Neural Networks (CNNs). To achieve
this, the features of the ground motion records need to
be automatically extracted as IMs. CNNs are well known
for their powerful feature extraction ability and have been
widely used in image and video analysis (LeCun et al., 1998,
2010; Kussul et al., 2006; Lecun et al., 2015; Li et al.,
2016). In addition, CNNs have been successfully applied to
time-series data. For example, Wang and Oates (2015a,b)
used Gramian angular summation/difference fields (GAF) and
Markov transition fields (MTF) to generate the compound

GAF–MTF images of time series for tiled CNN classification.
Their approach was demonstrated to yield competitive results for
time series classification compared to existing best time-series
classification methods. Debayle et al. (2018) proposed to use
the recurrence plots (RP) to transform one-dimensional (1D)
time series to two-dimensional (2D) texture images for deep
CNN classification. Their RP image-based classification approach
proved to outperform the traditional classification framework
and the new CNN-based classification (GAF–MTF images with
CNN). Recently, Mangalathu and Jeon (2020) proposed to use
CNNs to rapidly evaluate the damage of structures. They used
the wavelet transform (WT) to format 320 ground acceleration
records as one-channel images to characterize the temporal
and spectral nonlinearity of ground motions. Those images
were labeled by their resulting damage states obtained from
nonlinear time history analysis (NLTHA), and then inputted
into the CNN classifier. The trained CNN classifier was used
to predict the damage states caused by future ground motions.
The CNN-based approach of ground motion record classification
avoids the process of IM selection and computation, and
thus is suitable for rapid post-earthquake damage evaluation
(Mangalathu and Jeon, 2020).

However, there are still some shortcomings in the current
CNN-based classification methods for ground motions. First,
there is no agreement on which image encoding technique and
its corresponding image size (width × height × channel) is
most suitable for ground-motion image encoding. Second, the
duration and sampling frequency of ground motions lead to
thousands or even tens of thousands of data points in the
ground motion records. This can result in very large time-
series images and create a difficulty for CNN training. In this
study, we propose a new image encoding technique based on
time-series segmentation (TS) to transform the acceleration (A),
velocity (V), and displacement (D) records of each ground
motion event to a three-channel AVD image with a pre-
defined size of width × height. We will compare the CNN
classification performance trained by the newly proposed TS
technique with that of two state-of-the-art time-series image
encoding techniques, RP and WT. In addition, these CNN-
based seismic evaluation approaches will be compared to the
state-of-the-art machine-learning IM-based approach proposed
by Xu et al. (2020b). Finally, the most suitable ground-motion
AVD image encoding techniques and their corresponding image
sizes will be recommended for future studies, based on their
classification performance and computational efficiency.

CONVOLUTIONAL NEURAL
NETWORKS-BASED SEISMIC DAMAGE
EVALUATION METHOD

A CNN for seismic damage evaluation can be regarded as a
classifier of ground motions into different categories according
to their resulting damage states to a structure. For example, three
damage states, green (ready to occupy), yellow (need detailed
inspection before occupying), and red (unsafe to use) as specified
in the ATC-40 Guidelines (Applied Technology Council, 1996)
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were used to label ground motion records in Mangalathu and
Jeon (2020). In their case study of a nonductile building frame,
the nonlinear response of beam-column joints was selected as
the dominant failure mode and the median drift obtained from
NLTHA was used to determine the damage labels. If a record
caused a maximum drift ratio less than 1.2%, the record was
assigned the green label. If a ground motion record caused the
maximum drift ratio to be between 1.2 and 2.4%, the record
was labeled as the yellow tag. If the maximum drift ratio was
beyond 2.4%, the corresponding record was assigned the red
tag. These labeled records were transformed into labeled 2D
images by WT and used as training samples for the CNN
model. Once properly trained using the collected ground-motion
images, the CNN classifier would be run in near real time to
rapidly predict the damage states of the frame building caused
by future ground motions.

Proper image encoding of ground motion records and a good
CNN architecture are the two important factors for CNN-based
seismic damage evaluation without the use of traditional IMs.
Figure 1 shows the framework of this CNN-based methodology
for seismic damage evaluation without specified IMs. The CNN
seismic classifier is trained using the collected ground-motion
images that are labeled by their resulting damage states to a
target structure via NLTHA. Thus, the damage state of the target
structure caused by a future earthquake event can be predicted
by the previously trained CNN seismic classifier based on the
proposed image encoding technique with the input of the ground
motion recorded during the earthquake event.

Different CNN architectures such as the AlexNet (Krizhevsky
et al., 2012), VGG-Net (Simonyan and Zisserman, 2015),
InceptionNet (Szegedy et al., 2015), ResNet (He et al., 2016), and
DenseNet (Huang et al., 2017) were developed and utilized to
identify thousands of subjects. These architectures were widely
studied in Mangalathu and Jeon (2020) to evaluate the seismic
damage via transfer learning (Pan and Yang, 2010). The main
advantage of using these pre-trained CNN architecture lies in
that it can train very deep neural networks with fewer data
and less training time. However, since these pre-trained CNN
architectures were mainly designed to identify hundreds, or even
thousands of classes, they are generally very deep and have
millions of learnable parameters to store after well-trained, which

will cause a huge storage problem if they are utilized in regional
seismic damage evaluation where thousands of CNN models
need to be trained and stored. Besides, there are only three classes
of green, yellow, and red tags in seismic damage evaluation.
Therefore, we will propose a new CNN architecture in this paper
(section “Convolutional Neural Networks Training and Results”),
which has less than 20% (0.1–0.2 million parameters depending
on the size of input images) of the learnable parameters used in
the existing CNN architectures as discussed above.

Figure 2 shows the CNN architecture used in this study.
A normal image consists of three channels – R (red), B
(blue), and G (green), which store the brightness and color
information of any subject in the image as pixel values.
Similarly, a ground-motion image is also comprised of three
channels – A (acceleration), V (velocity), and D (displacement).
The AVD channels store the intensity and temporal (frequency)
information of the ground motion as pixel values. These pixel
values are inputted into the CNN model that is comprised
of feature extraction layers and fully connected layers. The
feature extraction layers are stacked with convolutional layers
and pooling layers alternatively. Through the convolutional
layers, new channels are generated via a small sliding window
(e.g., 2 × 2, 3 × 3, or 5 × 5 depending on the image size)
with learnable weights scanning over the image local pixels
horizontally and vertically in a customized stride. ReLu activation
function is usually adopted in the convolutional layer due to
its computational efficiency (Li and Yuan, 2017). Through the
pooling layers, a similar scanning technique to the convolutional
layer is adopted to take the maximal or mean value of a local
area on different channels for the purpose of down sampling. In
this paper, the max pooling is adopted because it outperformed
the mean pooling as demonstrated by Cha et al. (2017). Note
that there are no weights to learn in the pooling layer. Examples
of convolution and max pooling are given in Figure 2 to
represent the detailed computation process. The horizontal and
vertical output sizes of convolutional layers and pooling layers are
determined by the corresponding input size in each orientation,
the stride size, and the sliding window size as shown in the
given examples. With carefully tuned weights of convolutional
layers, the feature extraction layers can automatically extract the
features of the input image and generate high level features for

FIGURE 1 | Methodology of the convolutional neural networks- (CNN) based seismic damage evaluation.
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FIGURE 2 | A CNN architecture to predict image classes. Features are automatically extracted in convolutional layers and max pooling layers. The extracted features
are fed to the fully connected layers for prediction.

the fully connected layers. The fully connected layers of the CNN
architecture take in the extracted features to identify the class of
the input image.

IMAGE ENCODING OF GROUND
MOTION RECORDS

As seen in Figure 2, a ground-motion AVD image is comprised
of A (acceleration), V (velocity), and D (displacement) channels.
The ground motion information is represented as pixel values
in the three channels. When Mangalathu and Jeon (2020)
transformed the ground motion records into images via
the WT technique, they considered ground accelerograms
only. Therefore, their WT images were expressed in one
channel with the recorded acceleration information of an
earthquake event. However, the previous structural dynamics and
earthquake engineering studies by Riddell (2007) and Chopra
(2012) showed that the seismic responses of stiff and flexible
structures with short, intermediate, and long natural periods are
sensitive to the acceleration-, velocity-, and displacement-related
characteristics of ground motions, respectively. To generate
ground motion images that represent a wide frequency range of
structures, the ground motion records are encoded into AVD
images in three channels, where A, V, and D channels are
transformed from the acceleration, velocity, and displacement
records of an earthquake event. The new technique, TS,
along with two state-of-the-art encoding techniques, RP and
WT, are adopted to encode the AVD ground-motion images
in this section.

Recurrence Plot
The RP technique can be used to visualize the periodic nature
of a trajectory in a phase space and present certain aspects of

the phase space trajectory in a 2D representation (Eckmann
et al., 1987). The RP technique was proposed to encode time
series as images for CNN classification by Debayle et al.
(2018) and was found to outperform the traditional methods
of time-series classification such as support vector machine
(SVM) and the GAF–MTF encoding technique. The RP reveals
times when the phase space trajectory of a dynamic system
fluctuates around a constant phase. For a time series X =

{x1, x2, x3, . . . , xn} with a certain time step, the phase space
trajectory with a time delay embedding τ (multiplier of the time
step) and dimension m is S =

{
s1, s2, s3, . . . , sn−(m−1)τ

}
in

which vector si =
(
xi, xi+τ, . . . , xi+(m−1)τ

)
. The RP can be

mathematically presented in Eq 1,

Rij = θ
(
εi −

∣∣∣∣si − sj
∣∣∣∣) , i, j = 1, 2, 3, . . . , n− (m− 1)τ

(1)
where εi is a threshold value, θ (·) is the Heaviside function, and∣∣∣∣ · ∣∣∣∣ represents the norm of an argument in the bracket. With
the Heaviside function, the 2D squared matrix R only consists
of ones and zeros. Valuable information might be lost by the
binarization of the R-matrix as pointed out by Debayle et al.
(2018). To avoid the information loss, they skipped the Heaviside
function and directly used the norm value

∣∣∣∣si − sj
∣∣∣∣ to form the

2D texture image. In this paper, we follow the same approach to
directly generate the RP images of ground motion records. Note
that the squared RP image size with a time delay embedding τ and
dimension m of the state si is n− (m− 1)τ, where n is the total
number of data points in a time series.

Wavelet Transform
The Wavelet Transform (WT) can compute the temporal
frequency feature of a time series at different locations in
the duration by decomposing the time series into many
wavelets that are localized in time and represent a narrow
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frequency range. There are two forms of WT: discrete wavelet
transform (DWT) and continuous wavelet transform (CWT).
Since CWT is advantageous over DWT in accurately estimating
the instantaneous frequencies of signals with high resolution
(Li et al., 2009), Mangalathu and Jeon (2020) used CWT to
encode earthquake accelerograms as one-channel images for
CNN classification. On the other hand, CWT was utilized to
identify the pulse-like ground motions (Baker, 2007; Yaghmaei-
Sabegh, 2010), where the ground-motion velocity records were
encoded into images to classify near-fault ground motions.
A brief overview of CWT on theoretical and algorithmic features
(e.g., Heil and Walnut, 1989; Daubechies, 1990; Daubechies et al.,
1992) is provided here. The CWT of a general time signal f (t)
with a mother wavelet ψ̄ (·) is defined in Eq 2,

W
(
a, b

)
=

1
√

a

+∞

∫
−∞

ψ̄

(
t − b

a

)
f (t) dt (2)

Where W
(
a, b

)
is the wavelet coefficient associated with a

scale factor a and a time position factor b, and ψ̄ (·) is the
complex conjugate of the mother wavelet. A commonly used
mother wavelet Morse wavelet (Olhede and Walden, 2002) used
by Mangalathu and Jeon (2020) is also adopted in this paper.
The coefficients W

(
a, b

)
are used to form a W matrix and

generate the WT images of ground motion records. Since CWT
computes the wavelet coefficients associated with every integer
value of the scale and position parameters of a signal series
X = {x1, x2, x3, . . . , xn} with length n, the WT image size is
determined by the scale range (frequency range) and length of
the time series.

Time-Series Segmentation
The RP and WT imaging techniques need to process the raw
ground motion records and represent the recurrence values
and wavelet values in texture images, respectively. As stated by
Debayle et al. (2018), valuable information might be lost in the
process of ground motion records. On the other hand, the size
of WT time-series images is partially determined by the length
of the time series. For a ground motion record whose strong
motion over the 5–95% Arias Intensity duration could last for
more than 200 s (s for second) with a sampling rate of over
50 Hz (Raghunandan and Liel, 2013), the length of the ground
motion record can be more than ten of thousands data, which
can make CNN training time-consuming because of the need
for large-scale WT images. The accelerogram duration used in
Mangalathu and Jeon (2020) was 30 s. Since the ground motion
duration plays an import role in the collapse capacity of a
structure (Raghunandan and Liel, 2013), it is not desirable to
artificially reduce the ground motion duration to compensate
for large scale data processing. Therefore, we propose the TS
technique to encode ground motion records as texture images
that can maintain their long duration while reducing their image
size. Time-series segmentation has been widely used in time series
analysis and mining (e.g., Chung et al., 2004; Lemire, 2007; Liu
et al., 2008; Isensee et al., 2018). In this paper, we evenly divide
the ground motion record into M pieces, each having a length N.
M and N can be flexible when the 2D images are encoded and our
examination shows that the overall classification accuracy is close

when different Ms and Ns are used in the case study of section
“Case Study of a Benchmark Building”. However, since square
images (M = N) are usually adopted in existing deep learning
CNN architectures like VGG-Net and ResNet because square
images are easier to cope with the convolutional kernel and stride
size, we encode the square 2D ground-motion images in this way
as well. Thus, the raw acceleration, velocity, and displacement
values can be stored in the matrix form and encoded as texture
images for CNN training and validation. Note that it does not
matter which orientation to stack these pieces into the matrix
because the CNN model will scan the images both horizontally
and vertically. The segmentation of the ground motions can
significantly downsize the texture images while maintaining a
long duration of the ground motion. For example, a ground
motion record with 100 s duration and a sampling rate of 100 Hz
has 10,000 data points. The texture image size can be only
100 × 100 if the original record is divided into 100 pieces. The
formula of TS image is defined in Eq 3.

X = {x1, x2, . . . , xM×N}

encoding
→


x1 x2 · · · xN

xN+1 xN+2 · · · x2N
...

x(M−1)∗N+1

...

· · ·

. . .
...

· · · xM×N

 (3)

Acceleration, Velocity, and Displacement
Images by RP, WT, and TS
The datasets from the UCR time series archival (Chen et al.,
2015) used by Debayle et al. (2018) had a longest length of 637
points in Lightning2 time series. They adopted the time delay
embedding τ = 4 and dimension m = 3 to encode 28 × 28,
56 × 56, and 64 × 64 RP images (very small). The ground
motion acceleration records which were encoded with the WT
by Mangalathu and Jeon (2020) were only 30 s long, of which the
scale number and transition number were not given. As a matter
of fact, the ground-motion image sizes can always be customized
and uniformed according to the sampling parameters of the
regional seismograph station in real engineering applications. In
this paper, the proposed AVD images of ground motion records
are encoded with RP, WT, and TS techniques in size of 500× 500,
1,000 × 100, and 100 × 100, respectively. The acceleration,
velocity, and displacement records of a ground motion with 100
s in duration and a sampling step of 0.01 s are transformed to
the three-channel AVD images as shown in Table 1. Note that the
length of the ground motion records reaches 10,000. When the
RP technique is adopted, the time delay embedding τ = 95 and
dimension m = 101 to significantly downsize the RP images for
CNN training. When the WT technique is adopted, the ground
motion records are resampled with a frequency of 10 Hz (0.1 s)
to reduce the length to 1,000 and 100 scales from 0.05 to 50 with
a 0.5 increment are used to generate the WT images. Since they
have different durations and lengths, the ground motion records
can be cut, resampled, or padded to make their length suitable
for the pre-selected image size. Since the ground motion duration
plays an important role in structural collapse (Raghunandan and
Liel, 2013), we choose to resample the record with a different
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sampling frequency. In Table 1, the memory size of one image
is also given with the unit of MegaByte (MB). It is evident that
the TS AVD image takes the least memory space. To make a fair
comparison between these techniques, we will also encode AVD
images with 100 × 100 size via RP and WT in the case study of
section “Case Study of a Benchmark Building” to investigate their
performance for CNN seismic damage evaluation.

CASE STUDY OF A BENCHMARK
BUILDING

The Benchmark Building and Ground
Motion Records
The CNN ground motion classifier with different image
encoding techniques are investigated and compared using a
reinforced concrete moment-frame (RCMF) benchmark building
designed by Haselton et al. (2008) in compliance with the
2003 International Building Code (IBC). This code-conforming
building is located in a high seismic zone in California. The
rectangular building with 4 × 6 bays resists lateral loads

through four moment-resisting frames around its perimeter. The
elevation view of the perimeter frame is shown in Figure 3. Given
that the lateral forces on the building are mainly resisted by the
perimeter frames, the entire building is simplified into a 2D-
frame structure. The perimeter frame in Figure 3 is simulated
in the software OpenSEES (McKenna, 2011), where the columns
and beams as described in Table 2 are represented by distributed-
plasticity fiber elements. Nonlinear hysteretic characteristics of
the element cross sections are captured by the uniaxial materials
in OpenSEES, i.e., Concrete02 material model for unconfined and
confined concrete (nominal compressive strength 35 MPa), and
Steel02 material model for Grade 60 steel reinforcement (nominal
yield strength 460 MPa), respectively. The columns of the frame
structure are fixed on the ground. The modal analysis shows
that the simplified structure has a fundamental period of 0.724 s.
Details of the structural and non-structural design, and the more
sophisticated computational model are referred to the original
report (Haselton et al., 2008).

The structural model in Figure 3 is subjected to a suit
of ground motions in NLTHA to generate their ATC-40
tags associated with various degrees of structural damage

TABLE 1 | Acceleration, velocity, and displacement (AVD) images of ground motion records by different image encoding techniques.

Ground motion records

Acceleration channel Velocity channel Displacement channel Image size

Original record

Encoding technique

RP 500 × 500

WT 1000 × 100

TS 100 × 100

FIGURE 3 | The elevation view of the benchmark structure (1 ft = 3.3 m).
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TABLE 2 | Column and beam dimension and reinforcement properties (1 inch = 25.4 mm, bot. = bottom).

Section tag Beam Column

BS2 BS3 BS4 BS5 CS1 CS2 CS3 CS4 CS5 CS6

Depth h (inch) 42 36 32 32 30 40 33 34 30 28

Width b (inch) 24 24 24 24 30 30 30 30 30 24

Longitudinal bar # 9 9 9 9 9 10 9 8 9 8

Steel ratio ρg (%) 1, top 1, top 0.9, top 0.8, top 2.7 1.8 2.4 1.2 1.8 1.6

0.8, bot. 0.8, bot. 0.6, bot. 0.5, bot.

(Applied Technology Council, 1996). To obtain enough training
samples for each damage tag, i.e., green, yellow, and red, a
total of 1,993 ground acceleration records with a peak ground
acceleration (PGA) of higher than 0.15 g (g = 9.81 m/s2)
are selected from the Pacific Earthquake Engineering Research
Center (PEER) database1. When code-conformed with the most
stringent seismic design requirements, the frame structure
experiences severe damage only under a few of the 1,993
historical ground motion records. Therefore, the ground motion
records are scaled by 2–10 times in amplitude with an increment
of 1, as commonly adopted in the seismology community (Luco
and Bazzurro, 2007). In addition, 2,500 synthetic accelerograms
are generated based on a spectrum- and energy-compatible
algorithm (Li et al., 2017), totaling the 22,430 ground acceleration
records collected. These ground acceleration records are inputted
into the frame model and labeled with the green, yellow, and
red tags based on their resulting maximal interstory drift ratio
(MIDR). According to the analysis results of Haselton et al.
(2008), the benchmark frame would experience a MIDR of
0.005–0.02 under design ground motions with 10% probability
of exceedance in 50 years, which meets the design code
requirements. The MIDR at collapse would be in the order
of 0.07–0.12. The solution for MIDR beyond 0.12 is deemed
unrealistic due to the dynamic instability of the collapsed
structure and the corresponding ground motion records are thus
excluded from further analysis. This decision is also supported by
the conclusion drawn by Luco and Bazzurro (2007) as excessive
scaling of the ground motion records would introduce bias to
the seismic NLTHA results. Next, the ground motion records
are labeled with a green, yellow, and red tag when they result
in MIDR < 0.02, 0.02 ≤ MIDR < 0.05, and 0.05 ≤ MIDR,
respectively. The selection of 0.05 as a lower bound MIDR for the
red tag corresponds to an approximate mean minus three times
standard deviation of 353 MIDR data points in the range of 0.07–
0.12. Finally, a balanced dataset of 3,201 ground motion records,
each class containing 1,067 samples, is obtained to ensure that the
adequate and equal training samples are fed to the CNN model.

Convolutional Neural Networks Training
and Results
The RP, WT, and TS techniques are applied to the 3,201 ground
motion records to generate 3,201 AVD ground-motion images
and are fed to the CNN model for training and validation. The
3,201 images are split into two sets for training and validation.
The training set consists of 2,250 images, each class including 750

1https://ngawest2.berkeley.edu/

images. The validation set contains 951 images, each class having
317 images. The validation set is meant to test the performance
of the CNN model on unseen data to avoid overtraining. All
trainings are carried out on the MATLAB platform (MATLAB,
2018) using a workstation with Intel (R) Xeon (R) Gold 6148 CPU
@2.4 GHz, 2 GPU NAVID Quadro P5000, and 192G memory.
As illustrated in Figure 2, the CNN architecture is comprised
of three convolutional layers and two max pooling layers that
are alternated to extract features, and two fully connected
layers to predict the class of ground-motion images. The three
convolutional layers have 128, 64, and 32 channels, respectively.
For each convolutional layer, the convolution windows have a size
of 3 × 3 and a stride of 2. The two intermediate pooling layers
contain a pooling window of 2 × 2 and a stride of 2. The loss
function of categorical crossentropy and the optimizer rmsprop
are adopted. Since it remains an open problem to find the optimal
CNN parameters (Debayle et al., 2018), the CNN parameters in
this study are determined mainly based on their performance
on the validation dataset and the guidance from the computing
platform. After the CNN architecture is built, the RP-based AVD
images with a size of 100 × 100 and 500 × 500, the WT-based
AVD images with a size of 100 × 100 and 1,000 × 100, and the
TS-based AVD images with a size of 100 × 100 are, respectively,
fed to the CNN model for proper training. An example of the
TS-based CNN training history is shown in Figure 4. The total
training goes through 8 training epochs of 35 iterations each
using a single GPU and a learning rate of 0.0001. The total
training time is 33 s. The performance of the CNN model rapidly
converges in the first few epochs, and training is stopped when
the validation loss starts to increase to avoid the overtraining
of the CNN model. If overtrained, the CNN model will lose
performance on the unseen data of future ground motions.

Figure 5 shows the classification results of the training and
validation datasets from the trained TS-based CNN model.
Consider the validation dataset of 951 AVD images as shown
in Figure 5B. The confusion matrix includes a total of 951
prediction classes, each row for one prediction class and each
column for one true class. In the second row of the validation
matrix, the CNN model predicts 299 images as yellow tags
(ground motion images), including 100 false positive cases (42
for green tags and 58 for red tags). The true positive ratio in
the second row is 66.6%, known as precision ratio p−ratio. In the
second column of the validation matrix, among 317 true yellow
tags, 199 samples are correctly classified while 44 are misclassified
as green cases, and 74 as red cases. The correct classification ratio
in the second column is 62.8%, known as recall ratio r−ratio. Given
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FIGURE 4 | Accuracy and loss histories of the TS-based CNN model. For both training and validation datasets, the loss histories are decreasing, indicating that the
CNN model is properly trained without overfitting. One epoch means all training samples are fed to the CNN model once before the next training iteration starts.

Training dataset Validation datasetA B

FIGURE 5 | Classification results summarized in confusion matrices for: (A) the training dataset; (B) the validation dataset.
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in the right bottom corner of the matrix, the overall classification
accuracy of the TS-based CNN model is 76.8%, which represents
a ratio of the correctly classified cases and the 951 cases in the
whole validation dataset. A compound index F−measure of the
p−ratio and r−ratio, and the overall classification accuracy are
thus used to evaluate the performance of the CNN model. The
F−measure is defined as Eq 4,

F−measure =
(
1+ β2) p−ratio · r−ratio

β2p−ratio + r−ratio
(4)

Where β indicates that r−ratio is β times as important as p−ratio.
We set β = 1 because in the task of seismic damage evaluation,
most true positive cases in each damage class should be identified
without raising too many false alarms.

In Figure 5, the classification results indicate that the CNN
model performs better on the training dataset than the validation
dataset, which matches the observation in Figure 4. This is
because the samples in the training dataset have already been
fed to the CNN model and have been specifically learnt by
the model. The validation data is more representative of future
data, as the model has not seen them. Therefore, the F−measure
and accuracy of the validation dataset are used to evaluate and
compare the performance of various CNN models based on
different image encoding techniques in section “Results and
Discussion.” A F−measure and accuracy closer to 1 means better
classification results.

RESULTS AND DISCUSSION

The five CNN models taking the RP-based AVD images with a
size of 100 × 100 and 500 × 500, the WT-based AVD images
with a size of 100× 100 and 1,000× 100, and the TS-based AVD
images with a size of 100× 100 are compared among themselves
and with two state-of-the-art machine-learning models: logistic
regression (LR) and decision tree (DT). This is because the LR
algorithm is highly accurate and efficient while the DT algorithm
is less efficient but easier to interpret (Xu et al., 2020b). In their
study, Xu et al. (2020b) also recommended several IMs from a
pool of 48 IMs to be used in the machine-learning models for
effective damage evaluation, including the spectral acceleration
at the fundamental period of a target structure, effective peak
acceleration, Housner intensity, effective peak velocity, and peak
ground velocity, that are used in this study to train the LR and DT
machine learning models. Figure 6 presents the F−measure values
and the overall accuracy of the validation dataset corresponding
to the classification results of the five CNN models and the two
machine learning models. The CNN model based on the WT
1,000 × 100 AVD images and the machine-learning LR model
predict the best classification results or generate the two highest
values in Figure 6. The CNN models based on the RP 500 × 500
and TS 100 × 100 AVD images and the machine-learning DT
model generate the second-best results. The CNN models based
on WT 100× 100 and RP 100× 100 AVD images perform worst
in classification. Further examination on the two most accurate
models indicates that the features of ground motion records
automatically extracted by the CNN architecture with the WT
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FIGURE 6 | Classification performance comparison of different models according to the F-measure of each damage class and overall accuracy. The overall accuracy
(79.5%) of the CNN model trained with WT 1,000 × 100 AVD images is slightly higher than that (79.4%) of the IM-based machine learning LR model.

TABLE 3 | Computational efficiency comparison of convolutional neural networks (CNN) models trained with different AVD images.

Image size WT 1,000 × 100 WT 100 × 100 RP 500 × 500 RP 100 × 100 TS 100 × 100

Encoding time for 3201 AVD images 94 s 41 s 428 s 21 s 7 s

Training time for 2250 AVD images 225 s 31 s 600 s 30 s 33 s

Validation time for 951 AVD images 3.94 s 0.33 s 10 s 0.35 s 0.34 s

Average validation time for each AVD image 4.14 ms 0.35 ms 10 ms 0.37 ms 0.36 ms

Validation accuracy 79.5% 71.7% 75.8% 71.6% 76.8%
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1,000× 100 AVD images (in contrast to the machine-learning LR
model) can lead to a slightly more accurate damage classification
on the post-earthquake structural damage states. Therefore, the
proposed CNN architecture with far less learnable parameters can
achieve the same or better classification results. Additionally, the
smaller size of learnable parameters is promising for large-scale
regional seismic evaluation that requires models to be saved and
run in real time.

Table 3 shows the time spent in CNN model training with
different AVD images. The entire training process is completed
on the MATLAB platform using a workstation with the same
CNN parameter setting as previously mentioned in section
“Convolutional Neural Networks Training and Results”. It is
evident from Table 3 that the larger the AVD image size, the
more costly the computational time to encode the image and train
its corresponding CNN model. While the validation accuracy
(76.8%) of the TS 100 × 100 encoding technique is lower than
that (79.5%) of the WT 1,000× 100 technique, the TS 100× 100
technique is most computationally efficient in encoding, training,
and testing. The WT 1,000× 100 and the TS 100× 100 encoding
methods are thus recommended for future study. Note that the
prediction of each AVD image only consumes 4.14 ms for the WT
encoding technique and 0.36 ms for the proposed TS technique.
Therefore, once the CNN models of target structures are well
trained, they can be used to run near real-time damage evaluation
for future earthquake events.

CONCLUSION

Automatic feature extraction from a large set of complex
ground motion data and proper encoded image size
(width × height × channel) are important in CNN-based
seismic damage evaluation. A new TS image encoding technique
has been developed to transform acceleration, velocity, and
displacement ground motion records into an AVD image of
the ground motion event for seismic classification evaluation.
The new TS has been compared with two state-of-the-art
image encoding techniques, namely RP and WT. While the
classification accuracy of the CNN trained with 2,250 ground
motion images slightly decreases from 79.5% when using the
WT 1,000× 100 image encoding technique to 76.8% when using
the TS 100 × 100 encoding technique, the validation time for
951 AVD images is reduced by 11.6 times from 3.94 to 0.34 s.
Both classification accuracies are comparable to 79.4% from the
IM-based LR model.

For small-scale training with limited structures or ground
motion records, we recommend WT 1,000 × 100 for better
accuracy. For large-scale training, we recommend TS 100 × 100
for higher efficiency while maintaining the same order of
accuracy. With an increasing AVD image size, it costs more
time to encode the ground motion and train the corresponding
CNN model with more learnable parameters. Overall, the CNN-
based seismic damage prediction of each AVD image only costs
less than 5 ms. Once the CNN models of target structures are
well trained, they can be saved to run near-real-time damage
evaluation for future earthquake events.

The objective to explore suitable image encoding techniques
and corresponding image sizes for CNN-based seismic damage
evaluation based on a specific code-conforming benchmark
building is achieved in this study. However, more research must
be conducted to understand the effect of different types of
structures (e.g., bridges) on CNN training and validation, and
in particular the influences of material, geometry, and structural
capacity uncertainties on the CNN classification accuracy. Even
so, the three-channel WT-based AVD images with a size of 1,000
(width)× 100 (height) and TS 100× 100 show great potential for
CNN-based seismic damage evaluation.
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