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New York has become one of the worst-affected COVID-19 hotspots and a pandemic
epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and
the effectiveness of government policies on human mobility by analyzing multiple datasets
available at both macro and micro levels for New York City. Using data sources related to
population density, aggregated population mobility, public rail transit use, vehicle use,
hotspot and non-hotspot movement patterns, and human activity agglomeration, we
analyzed the inter-borough and intra-borough movement for New York City by
aggregating the data at the borough level. We also assessed the internodal population
movement amongst hotspot and non-hotspot points of interest for the month of March
and April 2020. Results indicate a drop of about 80% in people’s mobility in the city,
beginning in mid-March. The movement to and from Manhattan showed the most
disruption for both public transit and road traffic. The city saw its first case on March
1, 2020, but disruptions in mobility can be seen only after the second week of March when
the shelter in place orders was put in effect. Owing to people working from home and
adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and
intra-borough movement. But the risk of spread of infection in Manhattan turned out to be
high because of higher hotspot-linked movements. The stay-at-home restrictions also led
to an increased population density in Brooklyn and Queens as people were not commuting
to Manhattan. Insights obtained from this study would help policymakers better
understand human behavior and their response to the news and governmental policies.
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1 INTRODUCTION

COVID-19 global pandemic has caused unprecedented social, economic, and environmental impacts
(Bashir et al., 2020). New York City, which became a major hotspot in the United States during the
early stages of the pandemic, had more than 500,000 confirmed cases as of January 15, 2021. New
York City observed its first peak during the first week of April. Public policy and implementation of
control measures are essential to support social distancing, which might help slow the spread of
COVID-19 (Kraemer et al., 2020; Lasry et al., 2020). Huang et al. (2020) have shown that mobility
changes correspond well with the declaration of mitigation measures, implying effectiveness.
Abulibdeh and Mansour (2021) found that despite the imposition of policy measures in Global
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South countries, the number of people leaving their homes
increased, leading to more cases. This gives rise to the
question of whether policies are enforced stringently and
followed by the general population. Additionally, a study done
in the United Kingdom analyzed the impact of government
control measures on human mobility reduction and identified
a relationship between human mobility trends and COVID-19
cases (Hadjidemetriou et al., 2020). They found out that
reduction in mobility led to lower COVID-19 related casualties.

This study assesses the impact of the COVID-19 pandemic
and government policies on human mobility for four major
boroughs of New York City. The city was an early epicenter of
the COVID-19 pandemic in the United States (Thompson et al.,
2020). New York City is also one of the most densely populated
cities in the United States, has a well-established intracity public
rail, and diversity in transport options. Studies have shown that
human mobility correlates directly with the number of positive
cases with some time lag (Badr et al., 2020; Cartenì et al., 2020;
Glaeser et al., 2020; Xiong et al., 2020) and disease reproduction
number (Linka et al., 2021). Iacus et al. (2020) found that mobility
alone can explain more than 90% of the initial spread of the
COVID-19 virus. Furthermore, Gatto et al. (2020) have found
that policies restricting population movement in Italy resulted in
lessened mobility and reduced virus transmission by 45%. Yabe
et al. (2020) found that even non-compulsory measures in Tokyo
resulted in a 50% drop in mobility and led to 70% fewer social
contacts. Bönisch et al. (2020) found that the median daily
distance traveled reduced significantly in the lockdown period.
Therefore, understanding the effectiveness of government
policies on reducing human mobility will help shape these
policies and better control any future outbreaks.

Almagro and Orane-Hutchinson (2020) found that crowded
spaces play a more critical role than population density in
spreading the infection. Gao et al. (2020) used Venables
distance as a means to understand the agglomeration of
human activities at the county level for 194 US counties. Li
et al. (2020) classified points of interest (POIs) as hotspots or non-
hotspots and assessed the mobility patterns among them for US
cities. They found that while visits to hotspots decreased in some
cities, some did not show a considerable drop; however, these
studies did not focus on a granular level. Our study focused on
finding these measures at the borough level for New York City to
understand whether boroughs show any disparity in movement
patterns. We aggregated the POIs at the borough level for New
York City to assess the inter-borough and intra-borough hotspot
and non-hotspot mobility trends. This knowledge may enable
policymakers to better manage the control measures for different
boroughs.

Researchers have also analyzed the effect of mobility on
greenhouse gas emissions by the aviation and transport sectors
(Abu-Rayash and Dincer, 2020). For instance, Jiang et al. (2021)
identified the impact of human behavior and mobility on
Singapore’s environment. They also reported a 30% reduction
in mobility leads to about 44–55% reduction in air emissions
related to transportation.

Zhou et al. (2020) used mobile phone data to build an
exposure model for Shenzhen, China, and found that the

reduction in mobility helped flatten the peak number of cases
and lead to a delayed peak.

Studies have looked at mobility data from different sources for
the same dataset but not different types of datasets (Huang et al.,
2021; Iacus et al., 2020; Yabe et al., 2020). To the best of our
knowledge, our research is a first of a kind that incorporates
various datasets, such as population density, aggregated
population mobility, intracity rail use, vehicle use, hotspot and
non-hotspot movement patterns, and human activity
agglomeration. The novelty of our research lies not only in
performing the analysis at a finer scale but also in considering
multiple datasets to reduce the uncertainties and gain multi-
dimensional insights. The goal is to understand how a pandemic
impacts mobility in different sectors, such as
transportation—intracity rail and vehicular traffic. Looking
across six different datasets, we endeavor to answer the
following research questions: 1) How COVID-19 and
government policies to counteract the spread of the virus
influence human mobility within and across New York City
boroughs? 2) How changes in overall mobility are explained
by mobility through different means? 3) Does reduced mobility
lead to reduced high-risk movements? The first research question
gives us insights on how mobility is affected by COVID-19
awareness, state policies, local policies (New York City) and
news (Figure 1) and whether these policies have a significant
impact on mobility. Focusing on different datasets gives a holistic
perspective on human mobility. The second research question
identifies if people switch from high-risk transportation means
(New York City subway) to low risk (vehicle) or show similar
mobility reduction. The third research question gives insights as
to whether reduced mobility causes reduced movements to and
from hotspots, as movements linked to hotspots exhibit high risks
of spreading the infection. Even a small minority of super-
spreader POIs can account for a large number of infections
(Chang et al., 2020).

2 DATA AND PROCESSING

For our study, we obtained mobility data from five sources:
Facebook, the Metropolitan Transportation Authority
database, New York State open data portal (data.ny.gov), and
from studies by Li et al. (2020) and Gao et al. (2020).

From Facebook, we acquired the Facebook Population and
Movement datasets for March and April 2020. Facebook
anonymizes data by adding a small random noise,
implementing spatial smoothing, and dropping small counts.
For these datasets, the metrics were aggregated over each tile
and linked to the center of a tile or a polygon (or a combination of
both). The density dataset consisted of population density, user
count (number of users with the location on), among other
measures for each data point. The mobility dataset consisted
of start and end coordinates and the corresponding movement
associated with the start-end coordinate pair. These datasets were
available at a frequency of 8 h but were aggregated over days for
the movement dataset and at a weekly resolution for the density
dataset. Baseline and crisis values are available for both
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population and movement datasets. Facebook computed the
baseline values in the dataset for each data point using
5–13 weeks of pre-crisis data. Baseline values were calculated
using data from the previous weeks of the pre-crisis period (Maas
et al., 2019). We used crisis and baseline values of population
density for our study. Similarly, we used crisis and baseline values
for movement from the movement dataset from the start-end
coordinate pairs.

We obtained MTA turnstile data from New York State open
data portal for January through April 2020. The turnstile dataset
consisted of the cumulative entry and exit counts for each
turnstile for all subway stations in New York City at an hourly
interval. To obtain the hourly entry and exit count, first the
difference was computed for entry and exit time series. We then
aggregated the entry and exits for these turnstiles at 1-day
intervals. Tunnels and bridges toll data from MTA contained
the number of vehicles (cars, buses, trucks and motorcycles)
crossing it.

Mobility data for 16 US cities (including New York City)
across points of interest classified as hotspots and non-hotspots
were acquired from the study by Li et al. They used SafeGraph
data to map the origin-destination network and identified the
hotspots and non-hotspots on the mapped network. Here,
hotspots represent high-risk zones, and non-hotspots represent
low-risk zones in terms of infection risk (Li et al., 2020). Hotspot
and non-hotspot movement data for New York City were taken
from this study and aggregated at the borough level for our
analysis.

To consider the agglomeration of human activities, we used
data Venables distance data for the study by Gao et al. (2020).
They calculated Venables distance for 193 counties in the
United States by using digital trace data from Mapbox.
Venables distance aggregates the spatial distribution of human
activities of different tiles in a county. It would give insights into

the effectiveness of shelter-in-place/lockdown orders as the
activities get clustered and more localized. For more
information on the calculation of Venables Distance in this
dataset, please refer to Gao et al. (2020). In our study, we
performed the analysis at the borough level for New York City.

Table 1 gives an overview of the datasets used in this paper and
unique insights offered by each of these datasets.

3 METHODOLOGY

This section describes methods used to analyze datasets for
aspects of human mobility and to compute baseline values for
Facebook Movement and subway turnstile dataset. Figure 2
illustrates the steps followed for the analysis in this paper with
further explanation below.

3.1 Baseline Calculation
Datasets other than those acquired from Facebook did not have
baseline values from previous data. To assess the change in
mobility, for Facebook Movement and Metro Turnstile
datasets, the baseline values were computed by taking the
average value of the data from months January and February
as a combined average for both months. We used a 2-month
combined average instead of a day-wise average over the weeks
for two reasons: 1) We did not have sufficient pre-crisis data; 2)
We adopted a 7-day rolling mean approach to assess mobility for
various datasets to remove the variations in mobility on weekdays
and weekends, so a precise averaging was not necessary.

3.2 Population Density
To assess the pandemic-related variation in population density
for March and April, we first extracted the population density
data for four main boroughs of New York City: Brooklyn,

FIGURE 1 | Timeline of policies and COVID-19-related news for the month of March for New York City and New York State.
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Manhattan, Queens, and Bronx. Then, we computed weekly
averages of baseline and crisis values for population density
from March 1 through April 30. After aggregating the data
weekly for each grid point, we estimated the percentage
change in population density with respect to the baseline
values. We then mapped the density change for New York
City for different weeks.

3.3 Aggregated Population Movement
We analyzed inter-borough and intra-borough population
movement using the Facebook Movement dataset, which
represents users’ general mobility patterns based on the
location data of mobile phones. We spatially aggregated the
baseline and crisis values from Facebook Movement data at

the borough level. Each start or end coordinate was assigned
to a borough if it was within that borough boundary. The
resampled data, therefore, instead of capturing start-end
coordinate movements, captured inter-borough and intra-
borough movements. Borough-to-borough movements lacking
enough data points to produce statistically significant results were
discarded. Then movement change time series (7-days moving
average) for inter-borough and intra-borough movement for
March and April were plotted.

A similar approach was adopted for the turnstile data.
Analyzing subway turnstile data gives insights into how
mobility in the subway compares to that observed from the
Facebook Movement dataset, which corresponds to general
mobility trends. MTA does not directly provide turnstile

TABLE 1 | Data description and insights obtained from each dataset.

Data Information Insights

Facebook density Baseline and crisis population density (resident) values at each grid point at
different time instances

Changes in population density with time

Facebook movement Aggregated and anonymized baseline and crisis movement between grid
points in terms of number of trips

Changes in overall movement patterns across different
boroughs

Metro turnstile Subway entry and exit count for each turnstile for all stations in New York City
representing number of people passing each turnstile

Entry and exit count for subway stations in each
borough

MTA tunnels and bridges toll data Number of vehicles passing through toll gates in tunnels and bridges of New
York City

Count of vehicles entering and exiting different
boroughs

Venables distance data Agglomeration of human activities (Venables distance values) across cities at
weekly resolution

Changes in agglomeration of human activities with time
for each borough

POI movement data (hotspots and
non-hotspots)

Patterns of movement across hotspot and non-hotspot in New York City in
terms of aggregated number of trips between them

Movement trends between hotspots and non-hotpots
across different boroughs

FIGURE 2 | The process followed for analyzing human mobility using six datasets.
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location (coordinates). We first obtained a dataset containing the
coordinates of subway stations fromMTA. Then wemerged these
with the primary dataset consisting of turnstile data for each
station using station names as the common joining parameter
(station names). Since these datasets were not produced in the
same year, the station names had minor changes (updated name,
short-form, long-form, etc.). We linked these stations manually to
a coordinate. After geocoding these stations, the entry and exit
data were aggregated over boroughs, applying the same approach
as for the Facebook Movement dataset. The exit numbers were
slightly less than the entry number for each station because
people tend to use emergency exits to exit the station to save
time. We, therefore, considered both entry and exit numbers
separately for this analysis.

3.4 On-Road Movement
Restrictions on public gatherings may have a different impact on
travel via personal vehicles, as they conform to the social-
distancing measures and are safer from the standpoint of
contact than public transport. To assess road traffic, we
considered tunnel and bridge toll data as a proxy to measure
the inter-borough road traffic. Since these bridges or tunnels did
not connect places within a borough, we could not use this dataset
to compute intra-borough vehicle statistics. All of the tunnels and
bridges in New York City link different boroughs, so we grouped
the toll dataset on the basis of the direction of flow and the linked
boroughs. For example, incoming traffic to Brooklyn and
outgoing traffic from Brooklyn were grouped separately. This
gives an idea about the net inflow or outflow of traffic from a
particular borough. The dataset contained the count for vehicles
that pay using an E-Z pass or cash (includes payment by mail).
Because of the pandemic, however, some toll gates did not accept
cash, and the exact date of this transition was not available
publicly, so this study analyzed only total traffic flow and not
the payment methods (contactless or cash). Baseline traffic values
were computed for each toll plaza considering total vehicle traffic.
The percent change in traffic was calculated using the baseline
values for March and April. Time series plots (7-days moving
average) for inbound and outbound traffic for four main
boroughs were plotted for further analysis.

3.5 Hotspot and Non-hotspot Movements
Knowingmovements linked to high-risk zones (hotspots) is crucial
as they might contribute to the faster spreading of the infection
(Almagro and Orane-Hutchinson, 2020). Li et al. (2020) mapped
the Origin-Destination (OD) networks from SafeGraph data as
directed and weighted bipartite networks. They classified POIs
based on a threshold in-flux and out-flux values obtained from the
OD bi-adjacency matrix. For our study, these POI (hotspots and
non-hotspots) datasets from the study by Li et al. (2020) were
reclassified into different boroughs then the movements between
POIs were spatially aggregated borough-wise to obtain the inter-
and intra-borough movement. For each borough movement case
(16 cases, – inter- and intra-borough movement), we obtained
movement patterns for the hotspot to hotspot (HH), hotspot to
non-hotspot (HN), non-hotspot to hotspot (NH), and non-hotspot
to non-hotspot (NN) movements for March and April. This

classification would give additional insights into the
composition of overall movement patterns into high-risk and
low-risk movements, where high-risk movements correspond to
those linked with hotspots and low-risk to non-hotspot.

3.6 Human Activity Agglomeration
While higher population density and movement activity may
correspond to a higher risk of infection, studying the
agglomeration of human activities is also important. Higher
agglomeration would imply that the average distance between
people is less and could lead to a higher risk of disease spread.
This measure takes into consideration the areas (ZIP code or
census tract) where population density might be lower, yet still
show higher agglomeration. Therefore, such areas might have a
higher risk of infection spread than would be expected from
assessing only population density. We obtained more-granular
level data from the study by Gao et al., 2020 for New York City at
the borough level to observe the activity density for Manhattan,
Queens, Brooklyn, and Bronx.

3.7 Venables Distance
Venables distance is calculated by the following equation:

Dv �
∑i≠jai(t) × aj(t) × dij

∑i≠jai(t) × aj(t) (1)

where ak(t) represents the metrics of human activities at tile k at
time t, dij represents the center-to-center distance between tiles i
and j. The numerator represents the weighted distance of these
activities, and, by dividing by the denominator, the value is
normalized, and we obtain the weighted average, or Venables
distance (Louail et al., 2014). Higher Venables distance implies
higher distance between people and therefore reduced risk of
infection spread.

4 RESULTS

We observed the changes in population density for the four
boroughs in New York City by analyzing the weekly aggregated
density data from Facebook. Figure 3 shows the results for the
density change (in percentage) for four boroughs of New York
City—Manhattan, Brooklyn, Bronx and Queens—for March and
April. We observe that in the first week of March (Figure 3A), the
variations in density changes are within five percent. In the
second week of March (Figure 3B), we begin to see a slight
reduction in density inManhattan. From the third week of March
(Figures 3C,D), the changes are more apparent, and it is observed
that there is a significant decrease in population density in
Manhattan and other boroughs show an increase in
population density. For some places in Manhattan, the
reduction is more than 75%. Since Manhattan is a hub for
offices and commercial spaces, results suggest that after a
national emergency was declared on March 13 and office
strength was reduced by 50% on March 18, people started
working from home. The area of Queens showing a decrease
in population density can be attributed to the location of John F.
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Kennedy International Airport. The airport has nearly equal
passengers for both domestic and international travel (New
York City data portal, 2015 data). Due to travel restrictions
put on by many countries after the third week of March,

people traveled less globally and also domestically, leading to
lower footfall in the airport region.

It is observed that in the third week of March, the reduction in
population density is the highest in comparison to previous

FIGURE 3 | Percent resident population density change (with respect to baseline values) timeline for four boroughs of New York City. (A-D) represent the
population density for the first, second, third, and fourth week of March, respectively. Red represents higher population density; blue represents lower population density
compared to baseline.
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weeks; the reduced population density in the last week of March
remains similar for the month of April. The majority of the
change happened in the third week of March, which coincides
with the announcement of a state of emergency and stay-at-home
orders. Moreover, the changed density state remains the same for
the entire month of April (figures are available in the
Supplementary Appendix), which could imply that the
populace effectively followed the guidelines throughout, and a
steady state was achieved.

The above results indicate a reduction in population density
for Manhattan, which may reduce the risk for infection spread.
For other boroughs, which show an increase in population
density, it is not clear whether this increases the risk. We
analyzed the mobility patterns and measured the inter- and
intra-borough movement through Facebook Movement and
subway turnstile data to address this question. Figure 4 shows

the inter- and intra-borough movement patterns for four
boroughs for New York City for general mobility using
Facebook Movement data. Figure 5 shows subway ridership
for each of the boroughs’ stations. Figures 4, 5 show that the
reduction in mobility happens in the third and fourth week of
March.

Figure 4 suggests that the aggregated movement patterns to
and from Manhattan saw a significant drop. Also, movements
from Manhattan to other boroughs reduced by 60–80%, the
largest percentage among the four boroughs. For inter- or
intra-borough movements that are not Manhattan linked, the
reduction was between 50 and 60%. From Figure 5, analyzing the
percent change in entry counts at stations in each of the boroughs,
it is evident that subway ridership dropped by more than 80% for
the four boroughs. Similar to observations from Figure 4,
Manhattan showed the highest drop in subway entry count

FIGURE 4 | Seven-day rolling mean aggregated movement among four boroughs of New York City. Some borough-to-borough movement plots are not shown
due to insufficient data. (A-D) show the movement from Manhattan, Queens, Brooklyn, and Bronx, respectively, to other boroughs.
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(90% reduction). The use of the subway remains reduced for the
month of April. This suggests that people, in general, were
following the recommendations of social distancing, working
from home, and avoiding the use of public transport.
Movements within Bronx, Brooklyn, and Queens were slightly
higher than their inter-borough movements in general, which
may indicate commute for purchase of essential goods. In
contrast, for Manhattan, the intra-borough movement was the
lowest (compared to movement from Manhattan to other
boroughs), which could be due to a reduction in the
population density in Manhattan; therefore, the local commute
by people who come from other boroughs is comparatively less,
though people working with essential services may commute to
Manhattan and back from other boroughs.

Results from the Facebook Movement data and Metro
turnstile data indicate that while subway usage dropped by
more than 80% for all the major boroughs, the overall
movement within and across different boroughs showed a
drop between 50 and 80%. For movements not liked with
Manhattan, this reduction was only about 60%. This suggests
that other means of travel might result in a lesser reduction in the
overall movement than observed from the Facebook Movement
data. One aspect that we have not considered yet is people
traveling via road. People may resort to traveling by personal
vehicles for essential shopping or for jobs exempt from having
reduced workforce capacity. Analyzing mobility through roads
may give additional insights into the observed difference.

The above results give insights into the total movement patterns
andmobility through the subway system. But people involved with
essential facilities may commute through roads for work, or people
may travel to shop for essentials. We analyzed the tunnels and
bridge toll data to observe if decreased ridership in the subway leads
to an increased flow of vehicles. Figure 6 shows traffic through the
tunnels and bridges connecting the boroughs. We used tunnels and

bridges toll data as a proxy to study road movement. The results
indicate that incoming traffic to Manhattan from the boroughs
showed a drop of 70%. Incoming traffic to Queens and Bronx
boroughs was reduced by about 60%. Outbound traffic to boroughs
other thanManhattan shows a drop of 50–70%. These results show
that the traffic towards Manhattan shows the highest decrease, and
in general, we see about 60% less movement through roads to other
boroughs.

We observe similar mobility reduction patterns in road
movement as observed before for different boroughs, but the
magnitude of reduction is not as much as that observed with
Metro ridership. This could be because commuting by car is a
safer means of transportation vis-à-vis possible contagious
diseases as compared to public modes of transportation.
Moreover, people employed in the operation of critical
facilities or emergency response would still need to commute.
Additionally, this dataset accounts only for the number of
vehicles that pass through a toll plaza, and there is no
information about the number of passengers per vehicle. If
people shared rides before the pandemic, they may not do so
anymore, which could implicate slightly higher than the observed
movement of cars per passenger.

Our analysis so far only accounted for mobility patterns and
trends for different boroughs. While it may be true that reduced
mobility may mean lesser risk if there are still significant
movements that are linked with hotspots, there may be some
movement types that contribute to the spread of the infection. In
order to determine whether reduced mobility leads to a reduction
in high-risk movements, we investigated the HH, NH, HN, and
NNmovement patterns for the four main boroughs for New York
City. Figure 7 shows the HH, NH, HN, and NN movement
patterns between Manhattan, Bronx, Queens, and Brooklyn
(more borough to borough movement results can be accessed
in the Supplementary Appendix section).

FIGURE 5 | Seven day rolling mean of percent change of Metro ridership in four boroughs of New York City. (A,B) represent the percent change in entry and exit
counts respectively for Manhattan, Queens, Bronx, and Brooklyn.
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FIGURE 6 | Seven-day moving average of (A) incoming traffic for Manhattan, Queens, and Bronx; and (B) outgoing traffic from Queens, Bronx, and Brooklyn.

FIGURE 7 | HH, HN, NH, NN movement patterns across four boroughs of New York City at weekly resolution. (A–D) show the movements from Manhattan to
Manhattan, Manhattan to Queens, Bronx to Brooklyn, and Queens to Brooklyn, respectively. (For all figures, please refer to the Supplementary Appendix section 2).
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Results indicate that movement towardsManhattan involved a
high number of HH movements. In contrast, movement from
Manhattan to other boroughs involved a higher number of NN
movements. Intra borough movements showed declining trends
for HH movements and had low HN movements except for
Manhattan. In other inter and intra-borough movements, NN
movements were in higher numbers but did not show a
significant drop in activity. This suggests that even though
Manhattan saw the highest reduction in mobility, the risk of
infection is still high as hotspot linked movements are higher in
comparison to other movement pairs. Moreover, the HN type
movement does not show a declining trend implying that people
from hotspots, if infected, may infect people in non-hotpots.
Other inter and intra-borough movements have dominated NN
type of movement, which is favorable if traveling cannot be
avoided. NN type of movement corresponds to the least risk
travel, compared to other movement types in terms of likelihood
of spreading the infection.

To further understand the perturbed state where we have
reduced mobility, we investigated the Venables distance for
these boroughs to get insights into how clustered the activities
are with respect to distance. Figure 8 shows the Venables
Distance for four boroughs of New York City. The results
suggest that the clustering of human activities increased
significantly by twenty percent for Manhattan in the first
2 weeks of March. Other boroughs showed small increments
till the end of March then had a gradual decline. This indicates
that Manhattan showed the most clustering of activities in
comparison to other boroughs. Gao et al., 2020 found that at
the county level for the US, the average increase in Venables
distance for social ties was about 15%. For Bronx, Brooklyn and
Queens boroughs, the change in Venables distance was less than
the US average. Combining insights from hotspot linked
movement to Manhattan, results suggest that even though
the distance between people is increasing, it may not reduce

the risk substantially as movements linked to hotspots
dominate. Even though clustering of activities is observed for
Manhattan, the borough has a substantial number of
movements that are linked with hotspots. This would not
help much to reduce the risk as these clusters could still get
infected by a large number of hotspot to hotspot, hotspot to
non-hotspot and non-hotspot to hotspot type of movements.
Other boroughs like Queens, Bronx, and Brooklyn show only a
marginal increase in Venables distance.

These results indicate that the average distance between people
did not change significantly for boroughs other than Manhattan.
When people started working from home, they did not commute
to their offices in Manhattan; hence, the Venables distance
increased by roughly twenty percent only for Manhattan. For
other boroughs, it is unclear why Venables distance only increases
marginally. It may be because of the balancing effect of increased
population density and a reduced number of trips within a
borough.

5 DISCUSSION

This study shows how human mobility was affected by the
pandemic and how the influence exerted by the first COVID-
19 positive case, government policies, and major news had on
them. The estimates of aggregate flows of people can help officials
understand which policies are most effective (Buckee et al., 2020).
The news of the first case of the COVID-19 in New York City and
the declaration of the state of emergency did not have much
impact on mobility. There is marginal decline in mobility a few
days after a state of emergency is declared in the state of New
York, but there is a significant decrease in mobility only after a
local emergency is declared. We see a steep decrease in mobility
only when the curfew is imposed on restaurants and bars, and
schools are closed by the Governor of New York. We see that in
March, inter- and intra-borough movement of population
declines, and towards the end of March, it reduces to a
60–90% lower value that continues until the end of April. The
highest drop in mobility is observed for Manhattan since it is a
business hub and has a smaller number of residential complexes.
After the ban on all non-essential gatherings, there is still a
declining trend in mobility. Still, when the voluntary lockdown is
extended by one month on 29th March, the mobility had already
reached its lowest, and no further decline is observed. This trend
of decrease in mobility is consistent across different datasets, but
we observe slight variations in the magnitude. This variation
could be because data from Facebook relies on users who keep
their location services enabled.While it may give valuable insights
into the movement trends, we can expect some variations as they
do not represent all the people. Moreover, the dataset captures
general mobility trends and does not specify whether this
movement is associated with traveling via road, subway,
bicycle, or walking.

Subway turnstile data results indicate that the reduction in
subway ridership is 10% more for Manhattan and 20–30% more
for other boroughs. Overall, the reduction in subway ridership is
more than 80% for all the boroughs, indicating the effectiveness of

FIGURE 8 | Venables distance time series for four boroughs of New York
City.
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government control measures. Vehicular mobility shows similar
patterns to that of general mobility patterns, but for boroughs
other than Manhattan, the reduction is slightly more. Venables
distance shows high variation only for Manhattan because it is
dominated by office space and has a relatively small percentage of
the residential population. When the workforce started to work
from home, only these areas showed clustered activities. Higher-
density areas in Manhattan may be associated with residential
areas. Moreover, people did not commute to work to Manhattan,
which contributed to an increased average distance among
people. Although we see an increase in population density for
boroughs like Queens, Brooklyn, and Bronx, the mobility remains
between 60 and 90%: low for both inter- and intra-borough
movement. This suggests that people were commuting less
frequently and strictly following the stay-at-home orders. This
is substantiated by a reduction in subway ridership did not
increase vehicle traffic, which showed a similar reduction in
movement. But the risk of infection in Manhattan is not
reduced significantly, as hotspot-linked movements still
dominate even after a significant drop in overall mobility.
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