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Urban air pollution poses a major threat to human health. Understanding where and when
urban air pollutant concentrations peak is essential for effective air quality management
and sustainable urban development. To this end, we implement a mobile monitoring
methodology to determine the spatiotemporal distribution of particulate matter (PM) and
black carbon (BC) throughout Philadelphia, Pennsylvania and use hot spot analysis and
heatmaps to determine times and locations where pollutant concentrations are highest.
Over the course of 12 days between June 27 and July 29, 2019, wemeasured air pollution
concentrations continuously across two 150mile (241.4 km) long routes. Average daily
mean concentrations were 11.55 ± 5.34 μg/m3 (PM1), 13.48 ± 5.59 μg/m3 (PM2.5), 16.13 ±
5.80 μg/m3 (PM10), and 1.56 ± 0.39 μg/m3 (BC). We find that fine PM size fractions (PM2.5)
constitute approximately 84% of PM10 and that BC comprises 11.6% of observed PM2.5.
Air pollution hotspots across three size fractions of PM (PM1, PM2.5, and PM10) and BC
had similar distributions throughout Philadelphia, but were most prevalent in the North
Delaware, River Wards, and North planning districts. A plurality of detected hotspots found
throughout the data collection period (30.19%) occurred between the hours of 8:00 AM–9:
00 AM.
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INTRODUCTION

Air pollution is a major environmental threat for urban populations, affecting the health of 9 out of
10 urban residents (World Health Organization, 2018). Within urban environments, locally high
concentrations of air pollutants are common (Strosnider et al., 2017). As populations continue to
migrate to urban areas (United Nations, 2019), air pollution will prove a persistent and growing
threat to urban populations; this threat is pronounced for subsets of the population who are of lower
socioeconomic status or are physiologically vulnerable to air pollutants due to age or pre-existing
conditions, as these groups are disproportionately impacted by the negative health impacts of air
pollution (Perlin et al., 1999; Zhou et al., 2011; Gray et al., 2013). In order to attenuate negative health
impacts of air pollution in the future, it is imperative that we accurately assess the spatiotemporal
distribution of air pollution in urban environments. Comprehensive air pollution monitoring is
crucial to understanding where, and how, to focus efforts to attenuate air pollution and its associated
health risks in cities equitably.
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PM consists of heterogeneous mixtures of organic (Tsapakis
et al., 2002) and inorganic components (Kelly and Fussell, 2012)
that vary in size, shape, composition, and origin within the urban
environment (City of Philadelphia, 2019; Shakya et al., 2019).
Coarse size fractions (PM2.5–PM10) of PM largely originate from
crustal sources, whereas fine PM (PM0.1–PM2.5) derive mainly
from industrial emissions, non-renewable power generation, and
vehicle exhausts (United States Environmental Protection
Agency, 2015). BC is a major component of PM that results
from the incomplete combustion of fossil fuels and other organic
matter. As such, the presence of BC is often used as an indicator of
urban traffic pollution (Targino et al., 2016). Quantifying the
abundance and distribution of various PM sizes in urban
environments is of particular interest to public health
(Dominici et al., 2006), as prolonged exposure to PM is
associated with increased rates of mortality (Dockery et al.,
1993); smaller particles, especially those within finer size
fractions, can easily deposit in the lungs (Miller et al., 1979),
leading to a number of negative health outcomes including
reduced lung function (Shakya et al., 2016), asthma
(Rabinovitch et al., 2006), cardiovascular and respiratory
disease (Paul et al., 2019), and pathogen exposure (Cao et al.,
2014; Stewart et al., 2021).

Many studies have investigated urban air quality, but such
studies typically rely on a small number of stationary points of
measurement (Vallius et al., 2005; Zhang and Cao, 2015) and
interpolation (Burke et al., 2001; Zhang et al., 2013) to characterize
air pollution across an entire city. While these methods are
effective at capturing temporal trends in local pollutant
concentrations, they are less able to capture fine-scale spatial
variation in air pollution throughout urban environments. This
is crucial in urban areas, where emissions sources are not
uniformly distributed and pollutant dispersal patterns change
over short distances due to differences in vegetation (Brantley
et al., 2014; Gromke & Ruck, 2012; Salmond et al., 2013; Xing &
Brimblecombe 2019) and urban structure (Abhijith and Gokhale,
2015; Gallagher et al., 2015; Hagler et al., 2012). In recent years,
mobile monitoring has emerged as a novel method with which to
study the spatial and temporal distribution of air pollutants (Van
Poppel et al., 2013; Deville Cavellin et al., 2016; Targino et al.,
2016; Apte et al., 2017; Shakya et al., 2019; Sm et al., 2019; deSouza
et al., 2020). As mobile monitoring methods are capable of
collecting data at finer spatial scales than is feasible with
stationary monitoring (Van den Bossche et al., 2015; Shakya
et al., 2019), mobile monitoring is capable of providing more
accurate and meaningful information about air quality in
Philadelphia and can identify areas where pollutants with
detrimental health impacts pose the greatest risk to human health.

In this study, we employ vehicular mobile monitoring of PM
across 24 different size fractions between 0.25–10 μm and BC
throughout the urban landscape of Philadelphia, Pennsylvania
during the summer of 2019. Mobile monitoring allows us to
observe the spatiotemporal distribution of air pollutants and
discern patterns in variation at a fine spatial scale (Gozzi
et al., 2016), and in doing so, identify times and locations in
an urban environment such as Philadelphia where high
concentrations of air pollutants are prevalent. Using Getis-Ord

Gi* hot spot analysis, we identify where and when hotspots of air
pollution occur to determine where statistically significant high
air pollutant concentrations appear consistently. With a more
fine-scale, holistic assessment of urban air pollution, cities can
determine where air quality improvements are most needed, and
better develop strategies intended to reduce ambient air pollution
through future urban planning and development.

METHODS

Site Description
Philadelphia, Pennsylvania is the sixth-largest city in the
United States and the largest city in the state of Pennsylvania,
with an estimated population of 1,584,138 in 2018. With an area
of 143 mi2 (370 km2), Philadelphia is dominated by a dense urban
center surrounded by predominantly low-rise residential and
commercial districts, city parks, and industrial sectors. The
city’s eastern border is defined by the Delaware River, which
flows southward to the Delaware Bay and Atlantic Ocean; the
city’s other major river, the Schuylkill River, flows southward to
the Delaware through the western neighborhoods of
Philadelphia. The southern and eastern parts of the city house
heavy industry along both riverbanks (Lower Southwest, Lower
South, and River Wards Planning Districts), while large park
areas are found in the western and northern areas of the city
(Lower Northwest, Upper Northwest, and Central Northeast
Planning Districts) (Figure 1).

Sampling Description
A van, equipped with two global positioning system (GPS) units
(Trimble Juno 3 B fitted with Trimble R1 GNSS receivers) and
instrumentation measuring PM1, PM2.5, and PM10

concentrations along with mass values for 24 different size
fractions (Grimm Portable Laser Aerosol Spectrometer, Model
11-C) and BC (MicroAeth MA200), was driven along the two
predetermined routes (∼150 miles/∼241.4 km each) in
Philadelphia (Supplementary Table S1). The Grimm
spectrometer was factory calibrated prior to the monitoring
campaign. Air pollution instrumentation was placed inside a
box attached to the roof of a van (∼1.5 m), and the inlets of
the instrumentation were connected to an isokinetic sampling
probe of diameter 1.5 mm. The instrumentation used is ideal for
mobile monitoring studies (Hussein et al., 2008; Yu et al., 2016);
in addition to being lightweight and battery-operated, the
monitoring equipment provides data with high temporal
resolution. To maintain continuous measurements in the face
of satellite reception issues and equipment malfunction, the two
GPS units were used simultaneously. Data was captured at
different temporal resolutions; GPS data was recorded for
every 1 s interval, while BC data was recorded every 5 s and
PM data was recorded every 6 s.

The driving routes were developed using a stratified random
selection of points representing different combinations of urban
structure to provide a representative sample of Philadelphia.
Additionally, selected points of interest, such as United States
Environmental Protection Agency (U.S. EPA) Toxics Release
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Inventory (TRI) sites, EPA air pollution monitoring station sites,
Philadelphia Water Department’s green infrastructure sites, and
census tracts with high rates of asthma were included in route
development. The optimized driving route, which passed through
the selected sample points, was created using ESRI ArcGIS 10.7.1
Network Analyst, and the resulting 300 mile (482.8 km) route was
then split into two near-equal length segments of approximately
150 miles each, with each segment being drivable in a single day
(Figure 1). Occasional road closures in Philadelphia created
slight variability in the routes traveled from day to day
(Supplementary Figure S1).

Measurements were conducted over a period of 12 days
between June 27 and July 29, 2019; sampling occurred on days

where inclement weather (i.e. rain) did not pose a risk to the
monitoring equipment. Measurement began between the hours
of 6:00 AM and 7:00 AM on one of the two routes and continued
until the entirety of the route was travelled; the sampling period
on any given day ranged from about 8 to 10.5 h (Supplementary
Table S2). The average daily speed of the vehicle ranged from
23.3–29.9 km/h (14.5–18.6 mph), estimated by dividing the
length of the routes by the sampling times.

Data Processing/Analysis
Instrument reported air pollutant concentrations and GPS data
were joined by time to create a database of geolocated air
pollution data. For each day, the top and bottom 0.5% of air

FIGURE 1 | Map of study area, including routes traveled for mobile air pollution monitoring and Philadelphia planning districts. Abbreviations on the map denote
each planning district in Philadelphia.
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pollution measurements were removed to account for outliers in
the dataset. Pollution data lacking geolocation information due to
instrument error was not considered for spatial analysis in this
paper. One day (July 15, 2019) is entirely excluded from spatial
analysis as a result of GPS malfunction that resulted in a
significant amount of missing geolocation data. Though
emissions from nearby vehicles can influence instantaneous
measurements of pollutant concentrations, we choose not to
filter these out, as these can offer valuable insights regarding
traffic density in Philadelphia, the impact of vehicles on ambient
concentrations of pollutants at large, and the exposure of nearby
pedestrians to high pollutant concentrations. Further, the
quantity of data points obtained coupled with data aggregation
ensures that average concentrations are accurately represented
despite the potential for differences in local conditions from day-
to-day (Van den Bossche et al., 2015).

Spatial analysis was conducted in ESRI ArcGIS Pro 2.4. Point
datasets were projected into the Pennsylvania State Plane South
projected coordinate system. Air pollution data was spatially
joined to a systematic grid of 120 m2

fishnet cells overlaid on
Philadelphia, which has previously been used to generalize and
characterize urban landscape and ecosystem function
(Hamstead et al., 2016; Shakya et al., 2019; Stewart et al.,
2021). All points falling within a given cell were averaged to
determine the average concentration of pollutants in that
120 m2 area. For each day of data collection, PM1, PM2.5,
PM10, and BC hotspots with statistical significance at a 95%
confidence level were identified using the Hot Spot Analysis
(Getis-Ord Gi*) tool. Hot spot analysis allows for the
identification of statistically significant locations in a study
area where features with high or low values cluster within
the context of its neighborhood (Getis and Ord, 1992). Each
point in the dataset is assigned a Gp

i value, given by the following
equation, where wi,j is the spatial weight between two
observations, xi and xj, x is the average of all observed
values, and n is the sample size (Getis and Ord, 1992):

Gp
i �

∑n
j�1 wi,jxj − x∑n

j�1 wi,j��������∑n
j�1 x

2
j /n√

− (x)2p
��������������������������[n∑n

j�1 w
2
i,j − (∑n

j�1 wi,j)2]/n − 1

√
The neighborhood threshold radius for all hot spot analyses was

set at the minimum distance to ensure that for each day,
observations for all pollutants measured had at least one other
feature designated as a neighbor (615 m). The inverse distance
squared conceptualization of spatial relationships was used for this
analysis, which sees the influence (spatial weight) of an observation
on its spatial neighbors decrease significantly with increasing
distance. False discovery rate correction was applied to correct
for false positives. To compare the locations of hotspots across the
days of data collection, significant hotspots (p < 0.05) for each day
were spatially joined with the fishnet grid. Hotspots within a given
cell were averaged to determine the mean pollution concentration
of the hotspots in each cell for each day.

Statistical analysis was conducted in R (3.6.1). Combination
violin and boxplots were produced to show the range and
distribution of air pollutants across all days. In this study, we

collected a large amount of data (“big data”) based on counts,
which leads to overdispersion of datapoints and zero-inflation
(Aitchison and Ho, 1989) that are replicated across multiple days.
To account for this, data collected in this study were analyzed
using ecological methods (Gotelli and Ellison, 2004) that are well-
suited for count based spatiotemporal data. Significance of daily
variation in overall pollutant concentrations was tested using
pairwise Mann-Whitney tests with Bonferroni correction on
mass concentrations for the PM1, PM2.5, PM10 size
fractions–chosen as representatives of the fine-to-coarse PM
size fraction gradient–and BC. The contribution of BC to
PM2.5 was tested for each day with Bonferroni corrected
Spearman correlations, which are useful in identifying non-
linear relationships. Correlation between BC and PM2.5 across
all days at once was assessed using permutational (n � 999)
Procrustes rotations to assess the relationship between the
pollutants at a larger temporal scale. This test compares a
collection of multidimensional shapes by transforming them
into a state of maximal superimposition and resulting in a
correlation coefficient, m2 (Ten Berge, 1977). The correlation
coefficient is bound by −1 and 1, where the direction and
magnitude of the value correspond to how PM and BC
covary. We also examined how much fine PM is composed of
BC throughout Philadelphia by dividing the average daily
concentration of BC for each cell by the average daily
concentration of PM2.5.

Day-to-day and within-day temporal variation in mass
values for PM across size fractions during core times (times
where data overlaps on all days) was visualized using heatmaps
on a log10 scale at 4 min intervals. Heatmaps were annotated
with red boxes spanning the fine PM size fractions, which
representing PM2.5 hotspots that cover times greater than a
2 min period. K-means clustering was used to determine
differences in times of day based on air pollution
concentrations (Zhang and Zhou, 2005), where an a priori
number of clusters are found based on similarities between
the means of data points. K-means clustering works by placing
values into a set number of binds to identify trends and
classifications (Likas et al., 2003). The number of clusters
(two for all pollutants) were identified through a variance-by-
number-of-cluster plots, where a bend in the plot indicates that
a suitable number of clusters are defined to explain the data.

RESULTS

The average daily mean concentrations observed throughout the
measurement period were 11.55 ± 5.34 μg/m3 for PM1, 13.48 ±
5.59 μg/m3 for PM2.5, 16.13 ± 5.80 for µg/m3 PM10, and 1.56 ±
0.39 μg/m3 for BC. The annual recommended mean for PM2.5

was exceeded on 8 of 12 sampling days, while the annual
recommended mean for PM10 was exceeded on 3 of 12
sampling days; throughout the data collection period, the
average daily mean for PM2.5 exceeds the recommended mean,
while the average daily mean for PM10 is within one standard
deviation of exceeding the recommended mean (Figure 2).
Observed PM and BC concentrations had roughly Poisson
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distributions (Figures 3A–D); lower concentrations were
observed much more frequently than higher concentrations.
The lowest concentrations of PM and BC in Philadelphia are
found in Philadelphia’s Lower North (LNO), West Park (WP),
and West (W) planning zones. The highest concentrations of PM
across all size fractions are found in Philadelphia’s North
Delaware (NDEL), River Wards (RW), and North (NOR)
planning zones (Figures 3A–C), while BC concentrations are
highest in the RW, Lower Far Northeast (LFNR), and Upper Far
Northeast (UFNE) planning zones (Figure 3D). We found that
fine PM2.5 comprises approximately 83.6% of the observed PM10

in Philadelphia, while BC accounts for about 11.6% of fine PM2.5

in Philadelphia (Figure 4). BC was strongly correlated with PM2.5

concentrations at the multivariate level when considering their
relationships across all days (Figure 5B, Procrustes, m2 � 0.9249,
p � 0.043), and significant (p < 0.05) positive correlations between
BC and PM2.5 were observed on 10 of the 12 days of data
collection (Supplementary Figure S2). Among days where we
found a significant correlation between PM2.5 and BC, weak to
moderate relationships were observed (Supplementary Figure
S2, Spearman’s ρ: 0.215-0.616).

Statistically significant hotspots were found on all days across
all measured size fractions of PM and BC throughout
Philadelphia. The average concentrations of hotspots

(Figure 6) within a given cell ranged from 8.7 ± 4.6 μg/m3 for
BC; 18.7 ± 7.1 μg/m3 for PM1; 28.0 ± 8.8 μg/m3 for PM2.5; and
46.0 ± 17.3 μg/m3 for PM10. All pollutants measured had hotspots
that exhibited a tendency to recur in the same locations across
multiple days; hotspots for PM1 appeared in the same cell on as
many as six separate days throughout the data collection period,
while hotspots for PM2.5, PM10, and BC appeared in the same cell
on up to five different days.

Concentrations for all pollutants exhibited variation from day-
to-day, with variation resulting from differences in weather
conditions, traffic conditions, and slight deviations from the
planned routes resulting from road closures (Figures 2, 7;
Supplementary Tables S3–S6). All observations indicate the
presence of PM 5 µm in diameter or smaller. PM exceeding
5 µm in diameter is not as ubiquitous throughout the data
collection period, with larger particles not being detected at
times throughout each day. Mass values observed for particles
1.6 µm diameter and larger generally demonstrated the greatest
variation throughout each day, with particles with a diameter
0.5 µm and smaller also showing less within-day variation
(Figure 7). The number, duration, and timing of PM2.5

hotspots (Figure 7) varied from day to day; however, they
were most consistently seen from 8:00–9:00 AM (30.19% of all
hotspots) in complement with other studies where air pollutant

FIGURE 2 | Daily mean concentrations of PM1, PM2.5, PM10, and BC. Error bars represent standard deviations from the daily mean for each pollutant. The red
horizontal line at 10 μg/m3 and the green horizontal line at 20 μg/m3 reflect World Health Organization guidelines for the lowest annual mean concentrations of PM2.5 and
PM10, respectively, at which cardiopulmonary and lung cancer mortality increase with more than 95% confidence (World Health Organization, 2006).
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concentrations peak during the morning hours (Zhao et al., 2009;
Tunno et al., 2012).

DISCUSSION

Air pollution in Philadelphia is dominated by fine PM (PM2.5).
The PM2.5/PM10 ratio observed throughout the data collection
period (83.6%) marks an increase relative to a stationary PM
monitoring study that found that PM2.5 only comprised 75% of
PM in Philadelphia during the summers of 1992–1993 (Burton
et al., 1996). The dominance of fine PM is reflected in the number
of days that pollutant concentrations exceed their maximum
annual recommended concentrations; while PM10 exceeds
recommended concentrations (20 μg/m3) on just 3 of the 12
sampling days, PM2.5 exceeds its recommended concentration
(10 μg/m3) on 8 sampling days. The prevalence of fine PM in
Philadelphia suggests that anthropogenic sources are becoming
increasingly large contributors to urban air pollution. Part of this
increase may be due to the nature of on-road sampling itself; areas
closer in proximity to roads tend to have higher concentrations of
fine PM and lower concentrations of coarse PM relative to
background sites due to the prevalence of traffic-related

emissions (Barzyk et al., 2009; Karner et al., 2010; Yu et al.,
2016). The increased proportion of finer PMmay also result from
changes within Philadelphia over time, such as urban
development or increased traffic, that attenuate and/or remove
potential sources of coarse PM while increasing potential sources
of fine PM.

As BC and PM2.5 are significantly correlated, the proportion of
BC to overall fine PM in the air is helpful in determining the role
of combustion processes in local pollution trends (Ni et al., 2014;
Kim et al., 2017; Xu et al., 2017), which can in turn offer valuable
information about potential sources of air pollutants in specific
areas of urban environments. While the relationship between BC
and fine PM in Philadelphia varies spatially (Figure 4) and
temporally (Supplementary Figure S2), the overall BC/PM2.5

ratio (11.6%) is comparable to BC/PM2.5 ratios observed in other
major cities, which range from 5–20% (Yu et al., 2015) and
references therein). BC makes up a greater proportion of the
measured PM2.5 (Figure 4) in the North Delaware (NDEL)
planning district, where heavy traffic conditions, proximity to
major roads such as Interstate 95 (I-95), and local industry likely
contribute to elevated BC concentrations. BC also makes up a
significant fraction of PM2.5 in the areas surrounding the
Northeast Philadelphia Airport in RFNE and The Philadelphia

FIGURE 3 | Violin plots and maps for (A) PM1. (B) PM2.5. (C) PM10, and (D) BC. Violin plots show the distribution of all observed air pollutant concentrations on a
log10 scale, while maps show the overall average concentration of each pollutant in each 120 m2 cell sampled over the data collection period.
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International Airport in LSW, as landings and takeoffs by
aircrafts at airports have been shown to increase local BC
concentrations in the atmosphere (Agarwal et al., 2019).
Pairwise comparison of BC and PM2.5 concentrations revealed
that the relationship between the two pollutants was generally
variable from day to day (Supplementary Figure S2); variation in
this relationship from day to day is due in part to the
heterogeneity of emission sources and the urban landscape
(Van den Bossche et al., 2015).

PM1, PM2.5, and PM10 are spatially heterogenous and have
similar spatial distributions throughout Philadelphia (Figure 3).
The similarities that the PM2.5 and PM1 distributions share with
the PM10 distributions further demonstrate that most PM
variation in Philadelphia can be characterized by changes in

fine PM. Likewise, while there is slight variation in the
location of hotspots among the different pollutants, the overall
spatial distribution of hotspots throughout Philadelphia is similar
across the three PM size fractions and BC (Figure 5). The areas
with the highest frequency and concentration of hotspots are
highly trafficked areas that are home to large public utility
properties and heavy industry, which are likely significant
sources of PM in this area (Philadelphia City Planning
Commission, 2021). Relatively few hotspots were found in
northern and western Philadelphia, which are located well
outside of Philadelphia’s urban core. More open spaces have
been shown to have a positive impact on air quality (Merbitz
et al., 2012), and a previous study on air pollution in Philadelphia
revealed associations between open spaces and low PM

FIGURE 4 | Daily average of the ratio of BC to fine PM (PM2.5) in each 120 m2 cell. BC/PM ratios are classified using quantiles.

Frontiers in Built Environment | www.frontiersin.org May 2021 | Volume 7 | Article 6486207

Cummings et al. Monitoring Air Pollution in Philadelphia

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


concentrations (Shakya et al., 2019). Traffic and industrial activity
are less prominent in these areas relative to Philadelphia’s urban
core, and a greater abundance of vegetation may curb air
pollution primarily by uptake via leaf stomata and particle
deposition (Beckett et al., 2000; Nowak et al., 2006).

The recurrence of hot spots in specific locations suggests that
there are areas in Philadelphia where pollutant concentrations are
consistently elevated relative to the surrounding area. A notable
cluster of cells in the NDEL, RW, and NOR planning zones
contain high concentration PM hotspots across multiple days.
Other clusters of recurring hotspots are found within the
University Southwest (USW) and LFNE planning zones. These
hotspots are likely attributed to primary particles emitted from
morning rush-hour traffic, where the number and density of
vehicles on the road is higher relative to the rest of the day. The
presence of hot spots outside the morning trend may be
attributed to areas closer to industrial sites as in Chow et al.,

1994, such as those located along the Interstate 676 (I-676) and I-
95 corridors. While a substantial fraction of PM in urban areas
originates from combustion engines, increased solar radiation
during the summer months likely enhances the contribution of
secondary particles formed from photooxidation of precursor
molecules (Claeys et al., 2004; Shakya and Griffin, 2010) during
the afternoon.

Temporal trends are evident in the concentration and
distribution of PM1, PM2.5, and PM10 from day to day (p <
0.05, Supplementary Tables S3–S5). Conversely, BC
concentrations did not exhibit strong temporal variation
(Supplementary Tables S6). The PM2.5 size fraction
(Figure 5D) clustered into two distinct time periods separated
at approximately 11:08 AM, which complements our finding of
BC clusters at approximately 10:56 AM (Figure 5C). Larger
(PM10) and smaller size (PM1) fractions varied in their
separation of peaks by time. PM1 displayed less discrete

FIGURE 5 | (A)Heatmap showing the log10 concentration of BC across time (x-axis) and different days (y-axis). The black line reflects the log10 mean concentration
of BC averaged across all days. (B) Procrustes rotation ordination of correlation between BC and PM2.5 on all days with correlation coefficient (m

2) and a p-value. (C) Plot
of log10 mean BC concentration over time, colored by cluster, determined by k-means clustering. (D) Plot of log10 mean PM2.5 concentration over time, colored by
cluster, determined by k-means clustering. (E) Plot of log10 mean PM1 concentration over time, colored by cluster, determined by k-means clustering. (F) Plot of
log10 mean PM10 concentration over time, colored by cluster, determined by k-means clustering.
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temporal clustering (Figure 5E), with a break in clustering at
approximately 10:08 AM. A cutoff was not found for PM10. The
lack of temporal clustering for PM10, as seen in our results as well

as a previous mobile monitoring study (Peters et al., 2013),
affirms that coarse PM emission is relatively stochastic
throughout the day, and may be attributed to the prevalence

FIGURE 6 |Maps displaying the locations and average concentrations of hotspots for PM1 (top-left), PM2.5 (top-right), PM10 (bottom-left), and BC (bottom-right) in
Philadelphia within each 120 m2 cell sampled. Empty cells indicate that no hotspots were detected at that location.

Frontiers in Built Environment | www.frontiersin.org May 2021 | Volume 7 | Article 6486209

Cummings et al. Monitoring Air Pollution in Philadelphia

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


of crustal sources (e.g. dust resuspension) in areas that were
sampled. These results complement findings in (Hankey and
Marshall 2015), where PM size fractions were found to exhibit
different concentrations in the morning and afternoon.

Limitations
Our analysis is limited by relatively few repetitions of routes over
the course of a month in the summer. As our sampling occurs
entirely on Philadelphia roadways, it should be noted that our
measurements may be slightly different relative to ambient air
further away from roads. More extensive sampling would allow
for additional confidence in observed trends and provide
opportunities to observe air pollution patterns at other
temporal scales; sampling during late afternoon and evening
hours would provide additional insight into air pollution
trends throughout the day, while increased repetition of
measurements both within and across seasons would allow for

a seasonal analysis of air pollution trends (Liu et al., 2018).
Likewise, we do not examine the precise impacts of wind
speed/turbulence (Yang et al., 2020), temperature (Kalisa et al.,
2018), and vegetation (Ottosen and Kumar, 2020) on air pollution
distribution; discerning the influence of these factors on air
pollution will further inform environmental policy and
sustainable urban planning and design.

CONCLUSION

In this study, we demonstrate the potential for a mobilemonitoring
approach to assess the fine-scale spatiotemporal distribution of air
pollutants throughout a major city. Our findings demonstrate the
heterogeneity of PM and BC concentrations in space and time and
show that finer PM comprises the majority of PM pollution in
urban environments. Thus, measures that target fine PM emissions

FIGURE 7 |Heatmap of log10 PMmass values across 24 fine and coarse size fractions throughout each day of data collection. Time of day is denoted on the x-axis.
Hotspots for PM2.5 fraction covering >2 min periods are identified by vertical red boxes. July 15, 2019 was excluded from hot spot analysis; as such, no hotspots are
identified. As this is a large multi-panel image, we encourage the reader to download and zoom in if interested in particle mass concentrations of specific size fractions.
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are paramount to reducing exposure to air pollution for residents
of Philadelphia and other urban environments. Regulations and
other efforts geared toward lowering PM emissions should be
implemented on a city-wide scale, though hot spot analysis of PM
and BC data reveal specific locations in Philadelphia (North, North
Delaware, and RiverWards planning districts) and times (morning
hours) at which air pollution poses the greatest and most persistent
threat to human health and wellbeing. These planning districts and
the areas surrounding them merit further study throughout the
year; as the recommended annual mean PM2.5 concentration is
exceeded on most sampling days, it is in the interest of public
health to ascertain whether or not this trend is limited to the
summer months. Should fine PM pollutant concentrations be
chronically high throughout the year, individuals who are
constantly exposed to the polluted air become more susceptible
to cardiovascular and pulmonary damage. Additional
consideration should be given to areas within these planning
districts that are home to higher percentages of physiologically
vulnerable (e.g. young, elderly, individuals with pre-existing
conditions) and socioeconomically disadvantaged residents. It is
crucial to address air quality problems in an environmentally just
fashion to promote equitable urban sustainability, and further
study in these areas can provide insight that can reduce
disparities in the environmental health burden and improve
overall human health in urban environments.

Though our analysis reveals spatiotemporal variation in PM and
BC, along with possible causes of this variation, it stops short of
estimating the contributions of specific sources to this variability; as
our air pollution measurements covary in space and time, it is
difficult to quantify the extent of variation resulting from spatial
influences (locations of point sources, movement of non-point
sources) and temporal influences (temporally sensitive
atmospheric processes, random events) separately. Future analyses
should consider the influence of urban composition and structure on
air pollutant concentrations throughout cities. Cities can be quite
different from each other compositionally and structurally, and the
roles of urban structure (Cárdenas Rodríguez et al., 2016) and land
use (Weng and Yang, 2006; Shakya et al., 2019) are important drivers
of variation in urban air pollution. Cities can also vary significantly
with regard to the regional climate; future studies of air pollution in
Philadelphia and other urban environments should ascertain the

influences of climate, specifically prevailing winds and temperature,
on the spatiotemporal distribution of air pollutants. These analyses
can be used to supplement existing knowledge regarding where and
when air pollution may have the greatest adverse impacts on human
and environmental health, which is essential to sustainable and
equitable air quality management in our ever-expanding urban
environments.
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