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One of the most preferred flood mitigation techniques for existing homes is raising the
elevation of the lowest floor above the base flood elevation (BFE). Determination of project
effectiveness through benefit-cost analysis (BCA) relies on the expected avoided flood loss
and the project cost. Conventional construction cost estimates are highly detailed,
considering specific details of the project; however, mitigation project decisions must
often be made while considering only highly generalized building details. To provide a
robust, generalized project cost estimation method, this paper implements data modeling
and mining methods such as multiple regression, random forest, generalized additive
model (GAM), and model evaluation and selection with cross-validation methods to
hindcast elevation costs for existing single-family homes based on average floor area,
increase in floor elevation, number of stories, and foundation type. Project cost data for
homes elevated in Louisiana, United States, between 2005 and 2015 are used in cost
prediction analysis. The statistical modeling results are compared with detailed estimations
for several types of home foundations over a range of elevations. The results show
substantial agreement between regression predictions and detailed estimates using
RSMeans cost data.

Keywords: flood mitigation, Freeboard, cost estimation, regression, random forest, GAM, cross-validation,
foundation cost

INTRODUCTION

Elevating the lowest floor of existing homes is widely considered to be the most effective building-
scale flood mitigation strategy (Bellomo et al., 1999; FEMA 2010; FEMA 2012; Li and van De Lindt
2012; Bohn 2013), in contrast to acquisition and reconstruction. In spite of the effectiveness of
elevation, this construction technique is performed by highly specialized contractors and generalized
cost guidance is not widely available. At the project decision stage, benefit-cost analysis (BCA) must
demonstrate a positive return on investment (FEMA 2011; Orooji and Friedland 2017). Thus,
reasonable cost estimates are needed for comparison with long-term benefits to evaluate the most
economically efficient strategies to achieve overall mitigation goals and provide economic
justification for specific projects (Renn, 1998; Amoroso and Fennell 2008).
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Conventional methods for project cost estimation are unit-
cost and unit-area-cost. Unit-cost is project-specific, with exact
construction quantities and historical unit-price costs, while unit-
area-cost is based on general building attributes such as
occupancy, building type, and other building parameters. In
the absence of proprietary historical cost data, RSMeans
(Waier and Balboni 2018) is commonly used to estimate
construction cost. However, RSMeans data do not include all
necessary construction activities for elevation projects and prices
can vary substantially by contractor (Gair et al., 2011). These and
similar shortcomings limit the ability of stakeholders (e.g.,
federal, state, and local agencies, homeowners) to estimate
elevation project cost effectively.

Acknowledging this issue, elevation cost guidance has been
developed previously. USACE (1993) reported that for a 0.6 m (2
foot) elevation, elevating wood-frame buildings with existing pile,
post, or pier foundations costs $280/m2 ($26/ft2), while elevating
slab buildings costs $320/m2 ($30/ft2) in 1993 dollars.
Considering a 140 m2 (1,500 ft2) house with 0.6-m (2-ft)
elevation, additional costs associated with earthen fill (slab
only), landscaping, engineering design, and contract cost bring
these values to $380/m2 ($35/ft2) for pile, post, or pier
foundations and $450/m2 ($42/ft2) for slab foundations in
1993 dollars. FEMA (1998) reported that for a 0.6- m (2-ft)
elevation, elevating frame buildings with existing basement or
crawl-space foundations onto continuous foundation walls or
open foundations costs $180/m2 ($17/ft2) while elevating frame
or masonry slab buildings costs $510/m2 ($47/ft2) in 1999 dollars.
Newer guidance has moved away from providing elevation costs,
as FEMA (2012) indicates that elevation cost relates to the type of
construction and existing foundation but does not provide
monetary values. In each of these documents, only mean cost
values are reported, limiting consideration of the distribution of
cost data. Most importantly, the effect of number of stories on
elevation project cost is not mentioned in existing guidance.
Thus, it is clear that updated cost guidance for existing home
elevation projects is needed.

Predictive statistical cost modeling has been used in several
construction cost applications (e.g., Herbsman 1986; Adeli andWu
1998; Wilmot and Mei 2005), although not specific to home
elevations. To predict construction cost, Karshenas (1984) used
multiple regression, Skitmore and Ng (2003) used regression and
cross-validation regression, and Kouskoulas and Koehn (1974)
used multiple linear regression and validated the results with
two real building case studies. Lowe et al (2006) used multiple
linear regression, Jrade and Alkass (2007) developed a set of linear
regression models in a computer-based cost estimation program,
and Sonmez (2008) used a combination of linear regression and
bootstrap techniques for construction cost modeling. Additionally,
Shimizu et al. (2014) used switching regression model and
generalized additive model (GAM) to predict the housing price,
and Liu et al. (2018) used random forest and GAM to predict
construction productivity using environmental factors. Specific to
natural hazard mitigation, Jafarzadeh et al (2015) applied multiple
linear regression to establish construction cost models for seismic
retrofit of confined masonry buildings. Although statistical cost
prediction models have been used for highways, commercial

buildings, residential homes, and seismic retrofits, there are no
known studies for existing building elevation cost prediction.

Conventional cost estimation methods are not readily
accessible to decision-makers, and existing elevation cost
guidance is limited and dated. Therefore, the goal of this
paper is to evaluate and improve generalized home elevation
construction cost estimation using predictive statistical modeling.
This is accomplished by developing a robust, generalized cost
estimation method for existing home elevations. Historical home
elevation cost data obtained from the Louisiana Governor’s Office
of Homeland Security and Emergency Preparedness (GOHSEP)
are categorized statistically using 10 regression models, a random
forest model, and five GAMs with 10-fold cross-validation (CV)
RMSE on all tested models. The required assumptions for each
model are tested and the model with minimum prediction error is
selected. Prediction results are compared with costs from USACE
(1993), FEMA (1998), and Gair et al (2011) after modifying and
updating them for time and location.

Both themethodology and the findings from the statistical model
results are contributions of this research. First, previous statistical
cost prediction research has evaluated limited models such as few
regressions or GAMs; however, the method proposed in this
research evaluates results from three robust statistical techniques,
and external prediction accuracy of the selected models are
examined. Second, the results themselves offer guidance to
predict home elevation costs which enhance the flood mitigation
decision-making and BCA (Taghinezhad et al., 2020a). Although
the model results are applicable to Louisiana, the methodology itself
can be applied for elevation mitigation project cost in other
construction markets. Also, if the predicted elevation costs are
adjusted for time and location, they may be representative of
costs expected for similar buildings in similar construction markets.

BACKGROUND

Elevation project cost varies based on several factors [Eq. 1],
where C is the cost of the elevation project ($), A is the average
floor area (m2) calculated as the total home area divided by the
number of stories, ΔE is the change in first-floor elevation (FFE,
m) calculated using Eq. 2, S is the number of stories, and F is a
categorical variable representing foundation type. The FFE
elevation (NAVD88) represents the top of the lowest floor
(including basement, crawl-space, or enclosure floor) from
elevation certificates, where FFE0 and FFE1 represent the FFE
before and after elevation, respectively.

C � f (A,ΔE, S, F) (1)

ΔE � FFE1 − FFE0 (2)

DATA

Elevation Cost Literature
USACE (1993) calculates total cost of elevation (Ct ; Eq. 3), where
Ce is the cost of elevation; Cl represents the cost of landscaping
excluding trees, bushes, and flowers; Cp is the cost of professional

Frontiers in Built Environment | www.frontiersin.org June 2021 | Volume 7 | Article 6466682

Taghinezhad et al. Flood Elevation Project Cost

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


engineering, and Pc is the contract profit percentage. Landscaping
cost (Cl) is calculated using Eqs. 4, 5, where Al represents the
landscaping area, Cul represents the unit area landscaping cost,
and Wb and Lb are the width and length of the building,
respectively.

Ct � (Ce + Cl + Cp) × (1 + Pc) (3)

Cl � Al × Cul (4)

Al � (Wb + 6.1) × (Lb + 6.1)(m2);
[Al � (Wb + 20) × (Lb + 20)](ft2) (5)

According to USACE (1993) the cost elevation values for 0.6 m
(2ft) additional elevation are as: The Ce for “wood frame building
on piles, posts or piers,” “wood frame building on foundation
walls” “brick building,” and “slab-on-grade building” are $280/m2

($26/sf2), $205/m2 ($19/sf2), $344/m2 ($32/sf2), and $323/m2

($30/sf2), respectively. The Cul, Cp, Pc, and earthen fill are $6/
m2 ($5/yd2), $7,000, 10%, $13/m3 ($10/yd3), respectively. The
slab foundation is assumed to be converted to elevated
foundations; however, cost values for earthen fill are also
provided. Also, it must be noted that values provided in
USACE (1993) are assumed to represent 1993 dollars.

FEMA (1998) simply provides unit costs to elevate existing
buildings to continuous foundation walls or open foundations by
0.6 m (2ft) of $510/m2 ($47/ft2) for frame or masonry buildings
on slab foundations and $180/m2 ($17/ft2) for frame buildings
with basement or crawlspace foundation, assuming 1998 costs.

Gair et al. (2011) evaluated elevation cost for typical 140 m2

(1,500ft2) one-story homes in Louisiana using unit-cost
estimation and 2011 RSMeans residential cost data for slab
and pier and beam foundations, elevated by 0.9 m (3ft), 1.8 m
(6ft), and 2.7 m (9ft). However, because standard RSMeans cost
data do not cover all construction activities required to elevate
homes, Gair et al (2011) obtained unit cost values from a survey of
foundation elevation contractors. Gair et al. (2011) divided the
elevation process into 12 typical activities for Louisiana: push
piling; raise, shore and align; footings; piers; wood stair; sanitary
sewer; water; electrical; driveway and sidewalk pavement;
platform for air conditioning (AC); remove/replace AC; and
insulation below floor framing (per and beam only). Three
additional activities are not typical for Louisiana: exterior wall;
masonry stair; gas. The average cost/unit area/unit elevation for
these three additional activities according to Gair et al. (2011) are
65.6 (1.9), 43.3 (1.2), and 9.0 (0.3), $ m−2 m−1 ($ ft−2 ft−1),
respectively.

Cost Adjustment
Cost information from the literature was normalized to represent
2015 dollars using the Engineering News-Record (ENR) average
annual building cost index (i.e., average index, AI; (Grogan,
2016), which is commonly used by researchers in the
construction industry (e.g., Popescu et al., 2003; Touran and
Lopez 2006; Mikhed and Zemčík 2009). AI values have been
determined considering nationwide changes (i.e., 20 cities) in
labor rates, productivity, material prices, and the competitive
condition of the building marketplace. The AI values (Grogan,
2016) are used to calculate project cost in terms of 2015 dollars

[Eq. 6], where C2015 is cost in 2015, AI2015 is the average index of
the construction cost in 2015, AIi is the average index at time i,
and Ci represents cost at time i (i.e., either project contract date or
year of previous study),. Historical AI values used for 1993, 1998,
2005, and 2015 are 2,996, 3,391, 4,205, and 5,517, respectively.

C2015 � AI2015
AIi

× Ci (6)

National average project costs (CNA) were adjusted to
represent Louisiana costs (CLA) using average location
factor, Pl [Eq. 7], determined by averaging all Louisiana
city RSMeans location factors (RSMeans, 2015). These
factors ranged between 77.8 and 87.5%, with an average of
82.6%. Summarized costs are provided along with the results
of this paper in Table 1

CLA � Pl × CNA (7)

Louisiana Elevation Project Data
Data were collected from scanned GOHSEP documents,
corresponding to single-family homes elevated after major
hurricane and flood events from 15 parishes (counties) in
southern Louisiana between 2005 and 2015. Of the 805 total
building records evaluated, the 666 with missing or spurious data
were discarded from further analysis, thereby leaving 139 projects
for statistical analysis. All cost data were adjusted to 2015 dollars,
using the contract date as the original cost basis.

Seventy-one percent (71%) of the buildings had elevation
certificates, from which elevation data were obtained. For the
remaining buildings, FFE was obtained from other related
building documents rather than the elevation certificate. The
FFE in these documents was assumed to be the top of bottom
floor (including basement, crawl-space, or enclosure floor) as
specified in the elevation certificates.

Statistical summarization of variables used in the prediction
model (Table 2) includes mean elevation cost per average floor
area per unit ΔE ($825/m2/m), with a median of $821/m2/m,
standard deviation of $425/m2/m, and range from $203/m2/m to
$2,151/m2/m.

The correlation matrix and boxplot for each variable enhance
the understanding of collected data. The correlation matrix
(Table 3) reveals the dependence between variables before
statistical analysis. Cost correlates most strongly with number
of stories, followed by ΔE. The elevation project cost boxplot
shows many (13 out of 139) outliers above $500,000 (Figure 1).
Data were weighted toward smaller values, which in turn
indicates that the majority of collected data are associated with
small and medium-sized homes. However, some outliers appear
at the upper tail of the average floor area distribution. The ΔE
boxplot shows that 67 out of 139 buildings (48%) were elevated in
the range of 1.1 m (3.6 ft.) to 2.7 m (8.9ft). Data for ΔE data are
slightly right-skewed but are normally distributed along the
available range of elevation data.

Of the 139 elevation projects, 105 buildings are one-story,
while 34 buildings are two-story. Four initial foundation types
exist in the data: slab (116), crawl-space (2), pier and beam (15),
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and piling (6). Since there were only two levels of building
stories in the data set, this variable was converted to a
categorical variable with levels 0 and 1, representing one-
and two-story buildings, respectively. In addition, slab
foundations were the most predominant foundation type,
with only 23 observations of other foundation types. Thus,
the foundation type variable was also converted to a categorical
variable, with levels 0 and 1, representing other and slab
foundations, respectively.

METHODOLOGY

Multiple Regression
Statistical model prediction depends on the type of regression
model and statistical characteristics of the data, including number
of variables and the data distribution for each variable (Kim et al.,
2004; Sousa et al., 2007; Atici 2011). Determination of the “best”
or most appropriate model depends on the model evaluation
criteria. In this study, these criteria are defined as: variable

significance, goodness of fit, 10-fold CV RMSE, and adherence
to regression assumptions.

Variable Significance
Elevation project cost and averagefloor area data are non-normal and
right-skewed. The elevation change data are slightly right-skewed;
such skewness is reasonably expected to translate to the regression
surface unless the cost values are transformed in the regressionmodel
to satisfy the assumption of normally distributed residuals. Therefore,
the dependent cost variable and independent average floor area
variable were transformed by a log-transformation, which is
supported by other recent studies in construction cost prediction
(e.g., Lowe et al., 2006; Jafarzadeh et al., 2015).

Ten statistical regression models were tested to find the best
predictive model for determination of the estimated cost of
elevation (Ĉ) [Eqs. 8–17], where β̂0 is the estimated intercept,
β̂i represents the estimated coefficient of regressor variable i, A is
the average floor area (m2), ΔE is elevation change (m), S
represents the categorical number of stories variable, and F
represents the categorical foundation type variable.
Model 1.

Ĉ � β̂0 + β̂1A + β̂2ΔE (8)

Model 2.

Ĉ � β̂0 + β̂1A + β̂2ΔE + β̂3S + β̂4F (9)

Model 3.

Ĉ � β̂0 + β̂1 ln(A) + β̂2ΔE + β̂3S + β̂4F (10)

Model 4.

ln(Ĉ) � β̂0 + β̂1A + β̂2ΔE + β̂3S + β̂4F (11)

TABLE 1 | Elevation cost (cost/unit area) comparison between model 5 m and cost guidance, $/m2 ($/ft2).

Slab foundation Other foundation types

ΔE USACE FEMA Gair
et al

Reg.
Model
5 m

USACE FEMA Gair
et al

Reg.
Model
5 m

0.9 m (3 ft) 660 (61) 690 (64) 730 (68) 908 (84) 590 (55) 260 (24) 700 (65) 695 (65)
1.8 m (6 ft) 710 (66) 720 (67) 920 (86) 991 (92) 650 (60) 290 (27) 850 (79) 758 (70)
2.7 m (9 ft) 760 (71) 750 (70) 1,080 (99) 1,081 (100) 700 (65) 320 (30) 920 (85) 827 (77)

Note: USACE, FEMA, and Gair et al. costs were adjusted for Louisiana while regression costs were developed for Louisiana; all costs have been economically adjusted to represent 2015
dollars; there is no fill under any of the foundations in these estimates.

TABLE 2 | Statistical mean, median, standard deviation and range for 139 observations.

Variable Description Mean Median Standard Deviation Range

C Elevation costa $241,160 $179,567 $172,665 [$57,415:$896,044]
A Average floor area, m2 (ft2) 169 (1,820) 160 (1,720) 55 (590) [54:361]

[(580:3,890)]
ΔE Delta elevation, m (ft) 1.9 (6.4) 1.9 (6.2) 0.9 (2.9) [0.6:3.8]

[(2.0:12.3)]
C/A/ΔE Costa/Unit area/Unit elevation, $/m2/m ($/ft2/ft) 830 (24) 820 (23) 430 (12) [200:2,150]

[(6:61)]

aAll costs have been economically adjusted to represent 2015 dollars.

TABLE 3 | Correlation matrix for independent variables in sampled elevated
homes in Louisiana, 2005–2015.

C A ΔE S F

C 1.00*
A 0.37* 1.00*
ΔE 0.40* 0.05 1.00*
S 0.71* −0.13 0.32* 1.00*
F 0.23* 0.16 −0.06 0.12 1.00*

Note: Asterisk in cells shows that correlation coefficient differs significantly from zero at
p < 0.05.
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Model 5.

ln(Ĉ) � β̂0 + β̂1 ln(A) + β̂2ΔE + β̂3S + β̂4F (12)

Model 6.

Ĉ � β̂0 + β̂1A + β̂2ΔE + β̂3(A × ΔE) (13)

Model 7.

Ĉ � β̂0 + β̂1A + β̂2ΔE + β̂3(A × ΔE) + β̂4S + β̂5F (14)

Model 8.

Ĉ � β̂0 + β̂1 ln(A) + β̂2ΔE + β̂3ln(A × ΔE) + β̂4S + β̂5F (15)

Model 9.

ln(Ĉ) � β̂0 + β̂1A + β̂2ΔE + β̂3(A × ΔE) + β̂4S + β̂5F (16)

Model 10.

ln(Ĉ) � β̂0 + β̂1 ln(A) + β̂2ΔE + β̂3ln(A × ΔE) + β̂4S + β̂5F (17)

Model 1 was fit only with continuous variables, and Model 2
expands Model 1 with the addition of both S and F. Model 3 is
the same as Model 2, but with logarithmic transformation of the
continuous independent variable A, while Model 4 is the same as
Model 2 but with logarithmic transformation of the response
variable, also known as an exponential model. Model 5, known
as a log-semi-log model, is the same as Model 3 with logarithmic
transformation of the response variable and A. Models 6
through 10 are the same as the first five models, with the
addition of a term representing the interaction between A
and ΔE, which is transformed logarithmically in Models 8
and 10. Coefficient estimates, standard errors, and p-values
were determined using R (www.r-project.org) for each of the
ten models.

Regression Assumptions
For multiple linear regression, three main assumptions were tested:
homoscedasticity, multicollinearity, and normality of the residuals.
Homoscedasticity was tested through the Breusch-Pagan test
(Breusch and Pagan 1979), with multicollinearity tested using the
variance inflation factor (VIF). In models that consider interaction,
multicollinearity always exists, and the VIF was not evaluated.
Normality was tested using the Shapiro-Wilk test (Shapiro and
Wilk 1965). Violation of the normality assumption decreases the
robustness of regression results when the sample size was not large
enough (Lumley et al., 2002). In some cases the violation of
regression assumptions can be resolved by nonlinear
transformations of regression variables (Montgomery et al., 2015)
and by trimming problematic observation outliers (Andersen, 2008).

Before removing model outliers, each problematic observation
was evaluated for any distinguishing features, leverage, r-student
residual, and Cook’s distance. An outlier with a large leverage
value is an influential point because it can change the regression
results. Cook’s distance is another statistical measure that
measures the influence of each observation in the model.

The coefficient of determination (R2) is a statistical parameter
that indicates goodness of fit between predicted and observed values;
however, to compare the goodness of fit for multiple models that
consider non-equal numbers of independent variables, the R2 can be
misleading because the value increases as the number of regressor
variables increase. Therefore, to better represent goodness of fit for
model comparison, the adjusted R2 (R2

adj) was calculated.

10-Fold Cross-Validation Root Mean
Square Error
The RMSE was used to measure the error rate of prediction
models. In order to obtain the RMSE, a prediction model was

FIGURE 1 | Boxplots of continuous variables for elevated homes in Louisiana, 2005–2015, cost normalized to 2015 dollars.

Frontiers in Built Environment | www.frontiersin.org June 2021 | Volume 7 | Article 6466685

Taghinezhad et al. Flood Elevation Project Cost

http://www.r-project.org/
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


constructed on training data and was then used to predict data for
the test set. The RMSEwas obtained by examining the test set data
on a training set fitted model [Eq. 18], where n is the number of
observations for prediction of the test set data, Ŷ t is the predicted
value of observation t in the test set data, and Yt is the actual value
of observation t in the test set data.

RMSE �
���������������
1
n
∑ n

t�1 (Ŷ t − Yt)2
√

(18)

Sometimes RMSE values resulting from only one training and
one test set become sensitive to the selection of data for each set.
Therefore, obtaining RMSE with K-fold CV (K > 2) is preferable
(Zhang et al., 2011). Based on the recommendation of Kohavi
(1995), this paper uses 10-fold CV for multiple regression to
select the best prediction model. In each fold, the prediction
error RMSEi was calculated, and the mean of all prediction
errors (E) is the 10-fold CV RMSE for the prediction model
(Priddy and Keller, 2005), where RMSEi is the RMSE for fold i
[Eq. 19].

E � 1
10

∑ 10
i�1 RMSEi (19)

Random Forest
Random forest (Breiman, 2001) is a robust data mining
model used for both prediction (i.e., regression) and
classification. This ensemble method was constructed
based on the equal averaging of many random trees in the
classification and regression tree (CART) method (Breiman,
2001) to obtain a model with reduced variance. In the
random forest, every tree was created by a bootstrap
sample from the training data, and the tree grows to a
maximum depth without pruning (Breiman, 2001; Cutler
et al., 2007). The random forest algorithm selects regressor
variables randomly at each node. Additionally, the random
forest is useful for ranking regressor variables by their
importance in prediction. The “randomForest” package in
the R program was used for random forest analysis in
this study.

Generalized Additive Model
The GAM is used to identify the relationship between input and
output variables in nonlinear models. It relaxes the strictly linear
relationship between the response and the regressors, allowing
regressors to have a general and flexible relationship to the
response, but maintains additive or non-interactive structure
(Moore et al., 2011; Shimizu et al., 2014; Larsen, 2015;
Taghinezhad et al., 2020b). Although we do not consider it
here, GAMs can additionally accommodate non-normal
responses with added flexibility through a nonlinear link
function (Xiang, 2001; Han et al., 2009; Calabrese and
Osmetti, 2015). This study used the “gam” package (Hastie,
2020) in the R program to fit the GAM. The smoothing
function of spline fit on continuous variables of A and ΔE is
applied to the model. To obtain the optimum fit with the lowest
RMSE, the models are varied based on applying the logarithmic

transformation on C and A variables and also changing the
degrees of freedom in spline fit smoothing functions (i.e., 4, 2,
and 1) because changing degree of freedom tunes the flexibility in
the regressors, and is thus explored as a hyperparameter. In GAM
Models 11–15, g represents the identity link with normal
response, ŝ represents the smoothing function of spline fit, and
df represents the degree of freedom.

TABLE 4 | Parameter estimate, standard error, and p-value for multiple regression
models.

Model # Coefficient Parameter Estimate Std. Error p-value

1 β̂0 Intercept −92,079 48,266 0.058
β̂1 A 1,110 230 <0.001 *
β̂2 ΔE 75,292 14,296 <0.001*

2 β̂0 Intercept −155,123 32,080 <0.001*
β̂1 A 1,397 141 <0.001*
β̂2 ΔE 30,492 9,078 0.001*
β̂3 S 284,495 18,765 <0.001*
β̂4 F 38,510 20,613 0.064

3 β̂0 Intercept −110,7306 114,089 <0.001*
β̂1 ln(A) 233,401 22,712 <0.001*
β̂2 ΔE 34,503 8,898 <0.001*
β̂3 S 282,077 18,420 <0.001*
β̂4 F 33,822 20,366 0.099

4 β̂0 Intercept 1.056E+01 9.470E-02 <0.001*
β̂1 A 5.862E-03 4.161E-04 <0.001*
β̂2 ΔE 1.003E-01 2.680E-02 <0.001*
β̂3 S 9.474E-01 5.539E-02 <0.001*
β̂4 F 2.643E-01 6.085E-02 <0.001*

5 β̂0 Intercept 6.641 0.340 <0.001*
β̂1 ln(A) 0.964 0.068 <0.001*
β̂2 ΔE 0.118 0.026 <0.001*
β̂3 S 0.935 0.055 <0.001*
β̂4 F 0.247 0.061 <0.001*

6 β̂0 Intercept −52,487 109,178 0.631
β̂1 A 877 621 0.160
β̂2 ΔE 56,872 47,733 0.236
β̂3 (A × ΔE) 108 266 0.686

7 β̂0 Intercept −45,595 69,118 0.511
β̂1 A 791 367 0.033*
β̂2 ΔE −19,244 29,281 0.512
β̂3 (A × ΔE) 286 160 0.077
β̂4 S 288,621 18,757 <0.001*
β̂5 F 31,394 20,832 0.134

8 β̂0 Intercept −1,123,570 119,220 <0.001*
β̂1 ln(A) 271,491 81,704 0.001*
β̂2 ΔE 55,847 44,864 0.215
β̂3 ln(A × ΔE) −38,662 79,641 0.628
β̂4 S 282,645 18,510 <0.001*
β̂5 F 32,388 20,637 0.119

9 β̂0 Intercept 1.051E+01 2.064E-01 <0.001*
β̂1 A 6.172E-03 1.096E-03 <0.001*
β̂2 ΔE 1.257E-01 8.744E-02 0.153
β̂3 (A × ΔE) −1.459E-04 4.777E-04 0.760
β̂4 S 9.453E-01 5.601E-02 <0.001*
β̂5 F 2.680E-01 6.221E-02 <0.001*

10 β̂0 Intercept 6.638 0.355 <0.001*
β̂1 ln(A) 0.970 0.243 <0.001*
β̂2 ΔE 0.121 0.134 0.368
β̂3 ln(A × ΔE) −0.005 0.237 0.982
β̂4 S 0.935 0.055 <0.001*
β̂5 F 0.247 0.061 <0.001*
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Model 11.

g(Ĉ) � β̂0 + ŝ(A, df � 4) + ŝ(ΔE, df � 4) + β̂1S + β̂2F (20)

Model 12.

g[ln(Ĉ)] � β̂0 + ŝ(ln(A), df � 4) + ŝ(ΔE, df � 4) + β̂1S + β̂2F

(21)

Model 13.

g[ln(Ĉ)] � β̂0 + ŝ(ln(A), df � 2) + ŝ(ΔE, df � 2) + β̂1S + β̂2F

(22)

Model 14.

g[ln(Ĉ)] � β̂0 + ŝ(ln(A), df � 2) + β̂1ΔE + β̂2S + β̂3F (23)

Model 15.

g[ln(Ĉ)] � β̂0 + β̂1ln(A) + ŝ(ΔE, df � 2) + β̂2S + β̂3F (24)

Model 11 is the GAMwith four degrees of freedom on smoothing
functions, Model 12 includes a logarithmic transformation of the
response variable and A with inclusion of smoothing function on
the continuous variables of A and ΔE. Model 13 is the same as
Model 12 but with two degrees of freedom on smoothing
functions. Finally, Models 14 and 15 are the same as Model 13
but with smoothing function on only A or ΔE, respectively. It
must be noted that the response variable in all the GAMs have
identity link function with normal response.

RESULTS

Multiple Regression
The parameter estimate, standard error, and significance p-value
of each variable for all ten models are shown in Table 4. The
results indicate that the p-values of all selected variables inModels
1, 2, 3, and 6 are less than the significance level of 0.05, indicating
that all variables in these four models have significant impacts on
the dependent cost variable. The standard error shows the
variability of each parameter estimate applicable to the
regression model. Of these, only Models 4 and 5 show
significance of all independent variables with low standard errors.

The criteria for selecting the best among the ten proposed
models are the fulfillment of the statistical regression
assumptions, p-value significance for all independent variables,
adjusted R2, and minimization of 10-fold CV RMSE. According
to Table 5 the only models passing the main assumptions of
multiple linear regression are the exponential models (i.e., Models
4 and 9 with log transformation of dependent variable C).

Although Model 4 appears to be the preferred model for the
first three criteria, Model 5 has a lower 10-fold CV RMSE with
equal adjusted R2. However, regression assumptions of normality
and homoscedasticity of residuals were not satisfied. In the
residual plots of normal Q-Q, scale location, and residuals vs.
leverage (Figure 2), observations numbered 77, 100, and 101 were
detected as problematic observations (2% of total).

Examination of the corresponding buildings for these
observations revealed that they are extraordinary projects with
an unusual A or E (Table 6). For instance, observation #77 has a
very low building cost while the building area is large. Therefore,
in Model 5m, these three observations were excluded fromModel
5, which then satisfied the regression assumptions (Figure 3).

Table 7 provides the estimated coefficients, standard errors,
and p-values for the Model 5 mm parameters. The p-values are
significant for all parameters in the model and the high R2 and
adjusted R2 values of 0.86 and 0.85, respectively, indicate a good
fit between data andmodel. Additionally, the 10-fold CV RMSE is
decreased and changed to 61,542. The results for the Model 5 m
reveal no violation of tested assumptions (i.e., the p-value of the
Shapiro-Wilk test for the normality assumption is 0.063, the
p-value of the Breusch-Pagan test for the homoscedasticity
assumption is 0.559, and the VIF results for all regressor
variables are less than the threshold of 10 [VIFA � 1.06,
VIFΔE � 1.14, VIFS � 1.18, VIFF � 1.04]).

Random Forest and Generalized Additive
Model
The random forest model out-of-bag (OOB) error decreased
dramatically with the first 50 trees, after which the test-error
becomes nearly constant (Figure 4). Therefore, random forest is
applied with 800 trees to obtain the best results. The random forest
variable importance option indicates that S, A, ΔE, and F are the
most important variables in the random forest model, in order.

TABLE 5 | Model evaluation results for multiple regression models.

Model # Homosceda-sticity Multicollin-earity Normality R2 Adjusted R2 10-Fold CV
RMSE

1 F p F 0.28 0.27 133,324
2 F p F 0.75 0.74 86,447
3 F p F 0.76 0.75 85,436
4 p p p 0.82 0.81 70,393
5 F p F 0.82 0.81 63,618
6 F NA F 0.28 0.27 134,127
7 F NA F 0.76 0.75 86,138
8 F NA F 0.76 0.75 87,216
9 p NA p 0.82 0.81 71,070
10 F NA F 0.82 0.82 64,127

Note: p � pass, F � fail, NA � not applicable.
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The 10-fold CV RMSE for the random forest model is 72,843,
which is greater than the best regressionmodel. The RMSEs for five
GAMs on Models 11–15 are: 89,728, 68,080, 65,182, 64,641, and
64,200, respectively. The results show that Model 15 with
logarithmic transformation of response and A variables and
spline smoothing on ΔE variable with two degrees of freedom
has the best RMSE among all the other GAMs. The partial residual
plots of this model show the nonlinear effect of regressors ln(A)
and ΔE (Figure 5). We find that ΔE is essentially linear in nature,
whereas the ln(A) effect requires mild flexibility.

The 10-fold CV RMSEs in the statistical cost estimation
models show that the regression Model 5 m (10-fold CV

RMSE � 61,542) has the best prediction capability. Therefore,
this model is selected to use in this research to compare with the
elevation costs on the literature. The cost predictions by this
model are shown in Appendix Table A1. Figure 6 shows the

FIGURE 2 | Model 5 residuals plots of normal Q-Q, scale location, and residuals vs. leverage.

TABLE 6 | Outlier observations in model 5 with the description of the issue.

N C A E S F Issue Leverage R-student Cooks D

77 $71,051 206 0.9 0 0 Low cost; big size 0.07 −2.97 0.12
100 $111,767 54 1.9 0 0 Very small size 0.11 4.03 0.36
101 $172,775 99 3.4 0 0 Very high elevation 0.08 2.56 0.11

FIGURE 3 | Model 5 m residuals plots of normal Q-Q, scale location, and residuals vs. leverage (Model 5 after deleting observations 77, 100, and 101).

TABLE 7 | Parameter estimate, standard error, and p-value for multiple regression
model 5 m.

Coefficient Parameter Estimate Std. Error p-value

β̂0 Intercept 6.062 (3.495) 0.319 (0.467) <0.001 *
β̂1 ln(A) 1.080 0.063 <0.001 *
β̂2 ΔE 0.096 (0.029) 0.024 (0.007) <0.001 *
β̂3 S 0.969 0.049 <0.001 *
β̂4 F 0.268 0.057 <0.001 *

Note: The values in parentheses reflect U.S. units.

FIGURE 4 | Random forest OOB error based on the number of trees.
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predicted project cost calculated using the Model 5 m based on
A and ΔE for homes with one-story and slab foundation. The
other choices of S and F have exactly the same surface, but
shifted vertically. The additive structure, and that perhaps
GAMs, although having similar structure (see partial residual
plots), are overfitting the smooth relationship and thus mildly
suffers with external prediction.Comparison With Cost
Literature

In this section, the regression Model 5 m predictions are
compared with the USACE (1993), FEMA (1998), and Gair
et al (2011) estimates previously described. As a fair basis for
comparison, all estimates are adapted to 2015 dollars using Eq. 6
and Louisiana location using Eq. 7. In both Gair et al. (2011) and
USACE (1993), the general contractor’s charge for overhead and
profit is considered to be 10% of the estimated final costs
according to the recommendations by these two guidelines.
Additionally, Gair et al (2011) estimates include a 5.9% charge
for insurance and a 20% contingency factor due to the uncertainty
and any unpredicted issue that may happen during the
construction work. According to instructions for USACE

(1993) estimates, the professional engineering design and
landscaping costs must be added to original represented costs
in USACE (1993) for elevation.

Table 1 shows the elevation cost based on USACE (1993),
FEMA (1998), and Gair et al (2011) cost guidance and regression
prediction for one-story buildings in six specific case studies. In
all examined case studies, elevation of buildings with existing slab
foundations is more expensive than elevation of buildings with
other foundation types.

Figure 7 demonstrates graphically the difference between the
predicted elevation cost using regression models and cost
guidance estimates. The results indicate that USACE (1993)
and FEMA (1998) estimates are lower than those in Gair et al.
(2011) and regression approaches employed here.

DISCUSSION

The statistical prediction model is based on the generalization
from real and completed elevation projects; therefore, it gives a
more realistic estimation with actual cost varieties in the market.
Additionally, because a wide range of buildings with different
conditions was used in the statistical prediction model, it is able to
predict cost based on simple achievable building attributes. The
elevation cost comparison in Table 1 and Figure 7 shows that
elevating other foundation types is considerably less expensive
than elevating slab foundations. Also, for slab foundation
elevation, USACE and FEMA guidance underpredict Louisiana
elevation costs; for other foundations, FEMA continues to
underpredict, but USACE is closer to Louisiana costs.

The partial plot of the selected GAM model shows that cost
has a nonlinear relationship with building average floor area.
Therefore, the previous cost guidance (USACE, 1993; FEMA,
1998; Gair et al., 2011) that estimates elevation cost only with a
single building size, and then generalizes the cost based on that
case study, biases results in buildings with different average floor
area. Furthermore, the random forest model shows that the
number of stories is the most important variable in prediction
of elevation project cost, but this variable is not included in
current elevation cost guidance.

FIGURE 5 | Model 15 partial residual plots.

FIGURE 6 | Three-dimensional plot of the Model 5 m prediction based
on A and ΔE for one-story homes with slab foundations.
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However, none of the three above-mentioned guidelines have
evaluated the effect of important variables such as the building
average floor area and number of stories. The USACE (1993) and
FEMA(1998) estimates are lower than the newer estimates byGair et al
(2011) and statistical prediction models. The differences may come
from changing the construction techniques and equipment over time,
and the inherent error in cost adjustment over time. This result suggests
that the USACE (1993) and FEMA (1998) guidelines do not have
advantages over the newer estimates by Gair et al. (2011) and the
statistical predictionmodels described here. TheGair et al. (2011) study
is more conservative than other cost guidance because it considers the
25% contingency factor for any unpredictable construction activities.

Among the tested regression models, Model 5 has the best external
prediction ability, with all significant coefficient variables, higher
adjusted R2, and lower 10-fold CV RMSE. But unlike Model 4,
which satisfies all regression assumptions, the normality and
homoscedasticity assumptions may be violated based on the
p-values of these tests, which fall below the significance level of 0.05.
Therefore, this study suggests using the modified Model 5 (i.e., Model
5m) with trimmed outliers, because it passes all regression
assumptions. However, the trimmed otliers did not considerably
change the trendline of Model 5 as the plots of Models 5 and 5m
are nearly identical (Figure 6). The random forest andGAMprediction
accuracy are inferior to that of regression Models 5 and 5m.
Accordingly, the regression Model 5m has a better prediction
ability for C among all the models and is selected for use in this
study. Also, the regression models are preferable to random forest and
GAM in ease of interperation and prediction of the results because the
equation and estimated coefficents can be used easily to estimate the
dependent variable without using sophisticated computer programs.

The cost as calculated in statistical predictions can change based on
variables that do not exist in the current guidelines.However, regression
Model 5m shows a substantial agreement between its predictions and
the guidelines. For instance, there is a difference of between 0.1 and
24.4% in the Model 5m estimates vs. Gair et al. (2011) case studies.
Therefore, the results suggest that project cost predictionwith regression
Model 5m enhances future BCA for flood-mitigated properties.

CONCLUSION AND SUMMARY

To provide a series of building elevation project cost case studies
based on cost guidance, this study adjusted the costs in the available
guidance to represent those in year 2015 for a Louisiana location.
According to the cost guidance results for single-family homes with
three levels of elevation and three disparate cost analyzing
methods, the occupancy phase elevation cost with USACE
estimation is between $590/m2 ($55/ft2) and $760/m2 ($71/ft2),
with FEMA estimation falling between $260/m2 ($24/ft2) and
$750/m2 ($70/ft2), and the Gair et al. (2011) method suggesting
between $700/m2 ($65/ft2) and $1,100/m2 ($99/ft2).

To find an appropriate statistical predictionmodel, ten regression
models along with one random forest model and five GAMs were
studied for cost modeling. The correlation matrix prior to regression
analysis shows the existence of correlation between cost and all
independent variables. However, according to the random forest
variable importance function, elevation cost is most strongly affected
by the number of stories ─ an attribute that has been neglected in
previous elevation cost guidance ─ and change in elevation.

The regression 10-fold CV RMSE results suggest that a log-
semi-log model without an interaction term and with trimmed
outliers (i.e., Model 5 m) has the lowest RMSE among the tested
regression models. In addition, this model makes all independent
variables significant with no violation of statistical assumptions
and high goodness of fit with R2 of 0.85. Therefore, the results
suggest that regression models can be used successfully in project
cost prediction for elevation projects to address the cost issue in
BCA and to overcome barriers in existing cost guidance methods.

The regression study shows that for projects undertaken in
Louisiana with adjusted costs to 2015 dollars, the elevation costs for
slab foundations are $908/m2 ($84/ft2) to elevate 3 ft, $991/m2 ($92/ft2)
to elevate 6ft, and $1,081/m2 ($100/ft2) to elevate 9ft. The elevation
costs for other foundation types are $695/m2 ($65/ft2) to elevate 3ft,
$758/m2 ($70/ft2) to elevate 6ft, and $827/m2 ($77/ft2) to elevate 9ft.

In recent decades new data collection technologies make data
more available for analysis in machine learning prediction models.

FIGURE 7 | Average cost/m2 to elevate a one-story home with slab foundation (left) and other foundation types (right).
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The results suggest that statistical data predictionmodels in this study
can be used successfully in cost estimation for construction projects,
especially for estimation of project costs in natural hazard mitigation
projects. However, the statistical modeling of cost in this study
suggests that proper model selection is important for improving
model prediction. For instance, the RMSE in regressionmodeling can
be improved substantially by choosing proper independent variables
and transformation on regression variables specifically when the
variables are not distributed normally. The random forest error is
decreased by selection of the proper number of trees and the RMSE in
GAM analysis can be improved by transformation of variables,
applying the smoothing functions on proper variables, and
changing the degrees of freedom for smoothing functions.

In future studies, the same methodology can be used for
prediction of elevation cost for new buildings during the
construction phase. Such information would be useful for
adjusting economically the elevation mitigation benefits for
new buildings and comparing that estimate with elevation cost
in the occupancy phase. Additionally, by knowing the additional
cost of elevation in new construction, builders could offer the
choice of freeboard (elevation higher than BFE) to the owners as
an option for construction in floodprone areas. Also in future
studies, the mitigation cost can be predicted by statistical methods
for other types of mitigation projects, such as hurricane and
tornado wind mitigations.
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APPENDIX A. ELEVATION PROJECT COST
ESTIMATES

Table A1 | Elevation project cost estimates by the selected regression model (Model 5 m).

One-story; slab foundation

ΔE (m)

A (m2) 0.5 1 1.5 2 2.5 3 3.5 4

50 $40,255 $42,234 $44,311 $46,490 $48,776 $51,174 $53,690 $56,330
100 $85,100 $89,285 $93,675 $98,281 $103,113 $108,183 $113,503 $119,084
150 $131,859 $138,342 $145,145 $152,282 $159,769 $167,625 $175,867 $184,515
200 $179,905 $188,751 $198,032 $207,769 $217,985 $228,704 $239,949 $251,748
250 $228,931 $240,188 $251,998 $264,389 $277,389 $291,029 $305,339 $320,353
300 $278,754 $292,461 $306,841 $321,929 $337,758 $354,366 $371,790 $390,071
350 $329,248 $345,438 $362,423 $380,244 $398,941 $418,557 $439,137 $460,730
400 $380,325 $399,026 $418,646 $439,231 $460,829 $483,488 $507,261 $532,204

Two-story; slab foundation

ΔE (m)

A (m2) 0.5 1 1.5 2 2.5 3 3.5 4

50 $106,084 $111,300 $116,773 $122,515 $128,539 $134,859 $141,490 $148,447
100 $224,265 $235,292 $246,862 $259,000 $271,735 $285,097 $299,115 $313,823
150 $347,488 $364,574 $382,501 $401,309 $421,041 $441,744 $463,465 $486,254
200 $474,104 $497,416 $521,875 $547,536 $574,458 $602,705 $632,340 $663,433
250 $603,305 $632,970 $664,093 $696,747 $731,007 $766,951 $804,662 $844,228
300 $734,603 $770,724 $808,621 $848,381 $890,096 $933,863 $979,782 $1,027,958
350 $867,671 $910,335 $955,097 $1,002,059 $1,051,331 $1,103,026 $1,157,262 $1,214,166
400 $1,002,274 $1,051,556 $1,103,262 $1,157,510 $1,214,426 $1,274,140 $1,336,790 $1,402,521

One-story; other foundations

ΔE (m)

A (m2) 0.5 1 1.5 2 2.5 3 3.5 4

50 $30,791 $32,305 $33,894 $35,560 $37,309 $39,143 $41,068 $43,087
100 $65,094 68$,294 $71,653 $75,176 $78,872 $82,750 $86,819 $91,088
150 $100,860 $105,819 $111,022 $116,481 $122,209 $128,218 $134,522 $141,137
200 $137,611 $144,377 $151,476 $158,924 $166,739 $174,937 $183,539 $192,564
250 $175,111 $183,722 $192,755 $202,233 $212,177 $222,610 $233,556 $245,040
300 $213,221 $223,705 $234,705 $246,246 $258,354 $271,057 $284,385 $298,369
350 $251,845 $264,228 $277,220 $290,851 $305,153 $320,157 $335,900 $352,416
400 $290,914 $305,218 $320,226 $335,972 $352,491 $369,824 $388,008 $407,087

Two-story; other foundations

ΔE (m)

A (m2) 0.5 1 1.5 2 2.5 3 3.5 4

50 $81,144 $85,134 $89,320 $93,712 $98,320 $103,155 $108,227 $113,548
100 $171,542 $179,977 $188,826 $198,111 $207,852 $218,073 $228,795 $240,046
150 $265,796 $278,866 $292,578 $306,964 $322,058 $337,894 $354,508 $371,939
200 $362,646 $380,478 $399,186 $418,814 $439,408 $461,014 $483,682 $507,465
250 $461,473 $484,163 $507,970 $532,947 $559,153 $586,647 $615,492 $645,757
300 $561,903 $589,532 $618,520 $648,933 $680,842 $714,319 $749,443 $786,293
350 $663,688 $696,322 $730,561 $766,483 $804,171 $843,713 $885,199 $928,725
400 $766,647 $804,344 $843,894 $885,388 $928,924 $974,599 $1,022,521 $1,072,799
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