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This paper analyzes the impacts of COVID-19 pandemic on the United States air
transportation network between March and August 2020. Despite dramatic reductions
in flight and passenger volumes, the network remained robust and resilient against
perturbation. Although 24% of airports closed, the reduction in network efficiency was
only 5.1%, which means airlines continued to servemost destinations. A deeper analysis of
airport closures reveals that 1) small peripheral airports were the most likely to be closed; 2)
socio-economic and epidemiological factors characterizing the airport’s region such as
income, income inequality, political leaning, and the number of observed COVID cases
were not predictive of airport closure. Finally, we show that high network robustness has a
downside: although emissions from United States air traffic in 2020 fell by 37.4%
compared to 2019, mostly due to the drop in the number of flights, emissions per
passenger doubled in the period April to August 2020 and increased eightfold in the week
of April 5–11. This rise indicates inefficient use of resources by airlines.
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1 INTRODUCTION

The combined effects of social distancing, quarantining, travel restrictions, and apprehension to fly
have led to a sharp decline in revenue, flight volume, and passenger-miles traveled in the
United States air transportation network in 2020. The Air Transport Bureau. (2020) has
predicted a worldwide decrease of approximately 2.89 billion passengers in the aviation system
throughout 2020 compared to 2019. ACI. (2020) reported that by the end of the first quarter of 2020,
the global year-over-year reduction in the supply and demand for commercial air travel was among
the largest declines on record.

Similar trends can be observed in the United States. Figure 1A shows the precipitous drop in the
number of domestic United States flights offered weekly beginning in March. The week ending
Saturday, April 25 experienced the lowest number of domestic flights since the beginning of the
pandemic. Additionally, approximately 400 United States airports that offer commercial flights have
experienced at least short-term closure during the crisis up until the study’s termination. Most of
these are small airports that typically operate fewer than 100 flights per week (Figure 1B).

Understanding the interactions between commercial air travel and the spread of COVID-19 is
crucial to both control the transmission of the virus and to ensure the continued survival of the
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aviation industry. The former has been well studied in recent
months. Chinazzi et al. (2020) employed a disease transmission
model to predict COVID-19 spread and gauge the expected
success of travel restrictions. Zhang et al. (2020) leveraged a
network dynamics model to conclude that, to effectively limit
transmission, travel restrictions must extend beyond hotspot
areas. Finally, Kraemer et al. (2020) showed that voluntary
quarantining and meticulous hygiene are better able to limit
spread than travel restrictions alone.

Our work seeks to model the effects of the pandemic on the
network characteristics of the United States aviation system as
they have evolved during the COVID-19 pandemic through July
2020. More specifically, it 1) models the system’s efficiency and
connectivity over time; 2) quantifies changes in its robustness
and, using percolation theory, measures its resilience to airport
closures and flight reductions; and 3) investigates the factors that
led to the closure of airports in the network.

Despite the sharp decline in passengers and flight volume, our
results indicate that the United States aviation network’s loss in
efficiency was only 5.1%. Additionally, the size of the giant
connected component (GCC), a measure of network
connectivity, dropped 24.3% during these months. Regardless
of week, a giant cluster persisted with few weakly connected
components consisting of small, regional airports. The results
imply that the United States air network is extremely robust and
continues to maintain high connectivity despite significant
reductions in passenger and flight volumes. In other words,
demand has dropped, but airlines have continued to serve
most destinations. Those airports that did close were typically
small airfields on the periphery of the (mathematical) network.
Additionally, our results indicate that the Coronavirus Aid, Relief,
and Economic Security (CARES) Act distributed to airports
through FAA grants is the second-best predictor of airport
closure; however, the importance of FAA Grants in the model
is dwarfed by the best predictor of closure–Number of Flights.
Finally, we suspected that the robustness of the network creates

negative externalities. Despite the reduction in annual emissions
of 58.6 million metric tons of CO2 in 2020, which is more than a
third of CO2 emissions produced by domestic air traffic in 2019,
emissions per passenger increased up to eight times during the
pandemic. The detailed results, methodology, and discussion of
these effects are provided in the following sections.

2 MATERIALS AND METHODS

Bonaccorsi et al. (2020), who analyzed passenger mobility in Italy,
the first European nation to impose mobility restrictions during
the pandemic, provided the motivation for our study. They used
real-time mobility data to calculate the changing efficiency of the
Italian mobility network and the connectivity of the country’s
regions. They correlated these changes to each region’s
socioeconomic attributes to determine which characteristics
are common among those provinces that have experienced the
sharpest declines in mobility. Similarly to Bonaccorsi et al. (2020),
we start by analyzing network connectivity. Analysis of the
network informed our next steps and signaled the need to
both investigate the reasons behind airport closures and how
the network’s evolution has impacted flight emissions. Both these
analyses provide insights into ways the aviation system might
effectively weather future disruption events.

2.1 Network Analysis
Network efficiency is defined as the average of node efficiencies
among the network’s nodes (Latora and Marchiori, 2001). It
can be used to assess the cost-efficiency of a particular network
or to investigate if the network is tolerant to the failures of
nodes or links. The network efficiency E of the network G is
calculated as:

E(G) � 1
n(n − 1) ∑

i≠ j ∈ G

1
dij
, (1)

FIGURE 1 | General Network Observations. (A) Seven-day moving averages of number of domestic flights by day in 2019 vs. 2020 at 1,200 airports in the ASPM
database. (B) Cumulative distribution of average number of domestic flights offered per week in 2019 by all United States airports in ASPM database vs. those
United States airports that closed between May and August 2020. In total approximately 400 airports experienced closure for at least one week during the study period.
Most of these airports are small airfields operating predominantly general aviation flights, the largest of which offers on average 60 ASPM-reported flights during a
typical week. Those airports that closed during the study period were inactive for 11 weeks on average, though it should be noted that some of these airports remained
closed at the study’s termination.
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where dij is the length of the shortest path between nodes i and j.
When there is no connection between nodes i and j, dij � ∞ and
node efficiency equals zero. By measuring efficiency, we can
estimate if reductions in the number of flights impacted
overall network connectivity.

The robustness of a network can be evaluated by calculating
the size of its connected giant component when a random failure
affects a fraction of its nodes (Buldyrev et al., 2010). A giant
component is a segment of a network that contains a large
majority of the network’s nodes. In a network with a giant
component, almost every point is reachable from almost every
other point in the network. By removing a node from the
network, the size of the giant component is not reduced if the
node is not situated in the giant component. If the removed node
is located on the periphery of the giant component, the size of
giant component drops by one. Most interestingly, there are cases
where the removal of a node reduces the size of the giant
component by more than one. In those cases, the removed
node had a high centrality and served as a connection between
a cluster of nodes and the rest of the network. In transportation,
such nodes are called hubs.

The idea of removing nodes to test a network’s characteristics
is the foundation of percolation theory (Albert et al., 2000). The
theory uses the notion of progressive structural deterioration
(Cohen et al., 2000), which tests the network’s robustness to
failure or attack. A failure, as defined in percolation theory, is a
removal of a randomly selected node, while an attack is the
removal of a highly connected node. Hub-and-spoke
transportation networks are particularly vulnerable to attacks.

To test these characteristics, we collected individual flight
records for approximately 1,200 United States airports from
the FAA Aviation System Performance Metrics (ASPM)
database (Federal Aviation Administration, 2020a). These
counts were aggregated to find the total number of weekly
flights between all United States airport pairs from March 1 to
August 7, 2020. In total, data for 22 weeks were used to create 22
networks.

2.2 Analysis of Closed Airports
To better understand patterns among those airports that closed
during the pandemic, a random forest model was implemented to
predict closure based on nine independent variables categorized
in three groups. The first group of variables includes network
characteristics such as airport size (measured in the number of
weekly flights), airport degree, and length of the shortest path to
the closest hub. These metrics are calculated based on traffic data
from ASPM. The second group of variables includes socio-
economic measures associated with the county where an
airport is located. These include household income, income
inequality, political leaning, the number of COVID-19 cases
per capita, and whether the airport received a Federal Aviation
Administration grant to bolster operations (Federal Aviation
Administration, 2020b). We selected income and income
inequality as socioeconomic factors in reference to Bonaccorsi
et al. (2020), who correlated changes in regional network
efficiency with economic variables. We used data collected in
the American Community Survey (ACS) (U.S. Census Bureau,

2019) to estimate county-level household income as well as
income inequality. We included political leanings in our
model because, in a survey of more than 5,000 individuals, de
Bruin et al. (2020) found that self-identified Democrats were
more likely to cancel planned air travel in response to concerns of
COVID-19. This behavior suggests that personal politics could
indicate changes in air travel patterns. Political leaning for each
county was estimated based on the average percent differentials of
votes won in the last four presidential elections (MIT Election
Data and Science Lab, 2018). The differences were transformed
into categorical values:

political leaning �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, Democrat + 15%,
2, Democrat + 5%,
3, Democrat (−5%, 5%),
4, Republican + 5%,
5, Republican + 15%.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2)

We decided to code the variable instead of using continuous
numbers because a small change in the election percentage does
not add information to the model. The data on COVID-19
infections was downloaded from The Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University
(Dong et al., 2020). The descriptions of variables and the sources
of the data can be found in Table 1 and SupplementaryMaterial.

The presented variables were used to train a random forest
model, a method of machine learning which constructs multiple
independent decision trees. In each iteration a subset of samples is
selected to create a tree. The samples that are not selected for that
particular tree are called Out-Of-Bag (OOB). Since OOB samples
are independent of those used to build the tree, error rate
calculated based on the OOB sample is sufficient to train the
model without the need to use a cross-validation or testing sample
(Breiman, 2001). An advantage of using OOB error for training
the model is that the complete original data set is used both for
constructing the random forest classifier and for error estimation,
which results in better performance of the classifier (Janitza and
Hornung, 2018). Random forest is used for many applications
because it is computationally efficient, operates quickly over large
data sets, and is versatile enough to deal with both classification
and regression (Oshiro et al., 2012). In addition, the model
provides a ranking of variables that reflects their relative
importance in predicting the target variable. Variable
importance is the reason we use random forest–to identify the
most relevant factors of airport closure.

Random forest is defined by a set of hyper-parameters, which
define the structure of the trees included in the model (see Biau
and Scornet. (2016) for a theoretical background). The values of
these hyper-parameters influence the performance and accuracy
of the model. The most frequently used method for choosing the
parameters is minimization of the OOB error (Goldstein et al.,
2010). We consider the following hyper-parameters: the number
of trees in the model, the number of features, the maximum depth
of the tree, and the size of the node. To maximize the accuracy of
the model, we created a grid, looped through each hyper-
parameter combination, and evaluated the model. The results
are presented in the next section.
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2.3 Emissions
The Intergovernmental Panel on Climate Change (IPCC)
provides guidelines for the calculation of greenhouse gas
inventories, which include airline emissions (IPCC, 2006). The
guide defines three methods of varying complexity for calculating
the emissions in two stages of flight: the landing and take-off
(LTO) cycle and cruise. The LTO cycle includes all activities
below the altitude of 3,000 feet: taxi-in and out, take-off, climb-
out, approach, and landing. Cruise is the portion of flight at
altitudes above 3,000 feet. The first method of calculation, Tier 1,
estimates emissions by multiplying an emission factor (the
amount of pollutants created by burning a unit of fuel) with
the total quantity of fuel sold for aviation purposes. Tier two
calculations are performed when there is data on the number of
LTO cycles per type of aircraft, but there is no information
available on the distances flown in the cruise stage. The Tier
three methodology, used in this paper, is based on the actual flight
trajectory data. It estimates LTO emissions based on the number
of flights and type of aircraft, while cruise emissions are estimated
based on flying distances. The accuracy of the method depends on
the research question and the level of detail of available data. The
most complex methods calculate fuel consumption based on the
aircraft engine performance, engine thrust, weather, and time
spent in different flying modes. The goal of this paper is to
calculate the change in annual emissions of CO2 and trends in
emissions per passenger in the period of March to August 2020,
which does not require such a level of detail. We use a modified
Tier three calculation for LTO and cruise emissions; instead of
using engine performance characteristics for each individual
flight, we group all flights in five categories based on flying
distance, assign a “reference aircraft” to each category, and
assume that all aircraft have engine characteristics of one of
these five reference aircraft. The aircraft model most frequently
used in a flight category is designated as a reference aircraft. The
emissions are calculated using the following equations:

ELTO[kgCO2] � ∑
c

nc*ELTO,c[kgCO2], (3)

Ecruise[kgCO2] � EI[kgCO2

kgfuel
]*∑

c

∑
a

FCc[kgfuelkm
]pDa,c[km], (4)

where ELTO is the total mass of CO2 emissions during LTO
cycles for all flights, c is aircraft class, nc is the number of
flights in a class, ELTO,c is the mass of CO2 emissions per LTO
cycle per aircraft class, Ecruise is the total mass of CO2

emissions during the cruise stage of flight, a is the flight
within the class, FCc is the fuel consumption of the
reference aircraft in each aircraft class, EI—emission index
is the mass of pollutant produced by burning one unit of fuel,
and Da,c is the flight distance of each flight. The reference
aircraft, values for ELTO,c, FCc, and their sources are presented
in Table 2.

It is assumed that all flights in the same flight class are
conducted by the reference aircraft, and that the fuel
consumption and emission production of the reference aircraft
accurately represent all aircraft within the group. Categorization
into five distance-based groups–commuter, regional, short-haul,
medium-haul, and long-haul flights–is regularly used by airlines.
However, different airlines use different ranges to define these
categories. The ranges presented in Table 2 are an attempt to
reconcile these differences.

Finally, the total amount of LTO CO2 is calculated according
to Eq. 3 by multiplying the number of operations within the
flight group and the estimated CO2 emission per LTO of the
reference aircraft. Cruise emissions (Eq. 4) are calculated by
finding the total fuel consumed in all flights and multiplying it
by the average emission index EI. IPCC estimates that
EI � 3.15 kg CO2/kg fuel (IPCC, 2006). Flight data is
collected from FAA’s Aviation System Performance Metrics
database Federal Aviation Administration. (2020a). The
database returns the number of flights per origin-destination
pair grouped by date. Coordinates of airports, needed for the
calculation of flight distances, were geocoded with the Python
library geopy. The sources of aircraft manufacturers’ data are
presented in Table 2.

TABLE 1 | Variables in random forest model.

Variable name Description Data type

Number of flights Weekly flights at airport Integera

Airport type Size of airport as categorized by FAA {Small, med, large}a

FAA grant Amount of CARES Act funds provided to airport Integerb

Node degree Number of connections to other nodes Integerc

Shortest path Length of shortest path from node i to the closest hub Integerc

Median income Median income in airport’s county Integerd

Income inequality Income of top 10% divided by income of bottom 10% Floatc

COVID-19 cases COVID cases per capita in county Floate

Political leaning County vote differential in presidential elections {1,2,3,4,5}f

Airport closed Airport closed {0,1}a

aFederal Aviation Administration. (2020a).
bFederal Aviation Administration. (2020b).
cCalculated by the authors.
dU.S. Census Bureau. (2019).
eDong et al. (2020).
fMIT Election Data and Science Lab. (2018).

Frontiers in Built Environment | www.frontiersin.org April 2021 | Volume 7 | Article 6422954

Bauranov et al. Resilience of US Aviation During COVID-19

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


3 RESULTS AND DISCUSSION

The ability of a network to maintain its structure when
experiencing local failures is a function of the degree of
connectivity of its nodes. It is well known that the global air
transportation network exhibits the characteristics of a
homogeneous, scale-free network, whereby a few highly
connected nodes are statistically significant and ensure the
network maintains its form (Verma et al., 2014).

The domestic United States network’s global efficiency and
connectivity are depicted in Figure 2. Global efficiency, which
considers the distance between nodes and the numbers and
weights of edges among them, quantifies how readily
information or individuals can travel through the network. It
takes on a normalized value in [0,1]. Although the United States
aviation network’s efficiency drops from March through April,
the loss in efficiency is only 5.1%.

To further validate the network’s strong connectivity, the
evolution of the size and number of clusters/communities over
time was calculated. Regardless of week, a giant cluster persists

with few weakly connected components consisting of small,
regional airports.

Albert et al. (2000) established that scale-free networks are
surprisingly resilient against random error, but vulnerable to
targeted attack. To quantify the aviation network’s ability to
withstand failure, (i.e. airport closure and flight volume
reduction), node percolation was performed.

Figure 3 demonstrates the network’s response to node
removal via three procedures: (a), (d) removing nodes
randomly, (b), (e) removing nodes in order of decreasing
unweighted node degree, and (c), (f) removing and adding
node airports in the sequence in which they closed and
reopened during the pandemic. 1) and 2) show the size of the
largest community RGC as it evolves with respect to f, the
proportion of nodes removed. 3) plots RGC by week of
observed closures. 4), 5), and 6) plot the characteristic cluster
size ~s � ∑s< smax

nss2/N , where ns is the number of clusters
containing s nodes, excluding the largest cluster. In
exponential and non-scale-free networks, the giant cluster
disintegrates at some critical threshold fc. We observe this

TABLE 2 | Flight categories, reference aircraft and their performance. Flights are divided into five categories based on flying distance. An aircraft most frequently used in each
flight category is called a reference aircraft. All flights within the same flight category are assumed to be operated by the reference aircraft.

Flight category Distance range [nm]a Reference aircraft LTO emissions [kg
CO2 per LTO]b

Cruise fuel consumption
[kg fuel per

km]

Commuter <300 Bombardier CRJ700 1,500 2.95c

Regional 300–600 Boeing 737–700 2,460 3.21d

Short-haul 600–1,500 Boeing 737–800 2,780 3.45e

Medium-haul 1,500–3,000 Boeing 767–200 ER 4,620 4.93f

Long-haul >3,000 Boeing 777–300 ER 8,100 8.49g

aWhere nm is nautical mile, 1 nm � 1.852 km.
bICAO (2016).
cAircraft Commerce. (2009).
dBoeing. (2006a).
eBoeing. (2006b).
fBoeing. (2006c).
gBoeing. (2006d).

FIGURE 2 | The Continued Robustness of the Domestic Aviation Network. (A) The evolution of network connectivity illustrated by the size of the giant connected
component by week. The trend is declining until April 18 and increasing through July. (B) Global network efficiency as calculated by Latora and Marchiori. (2001). The
trend is decreasing until May 16 and increasing through July.
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behavior in 5) which corresponds to 10,000 trials of random node
removal, demonstrating that the network is susceptible to
targeted node removal, which corresponds to the closure of
hub airports. As nodes are removed randomly, however, 4)
shows that the network is able to reform clusters,
demonstrating its resilience to error. These methods were
repeated for each weekly flight network between March and
July 2020. No discernible differences in the network’s response
were observed with respect to week, suggesting that even though
flights are removed and airports close, the network has
maintained its resilience to error and susceptibility to attack
throughout the pandemic.

The size of the giant component was reduced by 24.3% in the
worst week of April. Since all airports are a node in the giant
component, the reduction of GC of 24.3% corresponds to the
removal of the same fraction of the total nodes in the network. In
other words, the airports that closed minimally impacted the
connectivity of other nodes in the network. When 24.3% of nodes
are randomly removed from the same network, the size of the
giant component drops by 32.5% (Figure 3A). The size of the
observed giant component is 8.5 percentage points larger that
expected in the case of random removal. This result indicates that
closed airports were less connected than the average node in the
network and that their closures were not random.

To investigate the factors engendering these closures, we
trained a random forest model. The calculation was performed

with the package random Forest in the R software. Nine
variables, presented in Figure 4A, were used to create a
model that predicts whether an airport closes. While a
random forest algorithm does not require testing against
overfitting since the OOB sample is independent,
optimization of hyperparameters requires a validation set to
get an unbiased estimate. The sample containing 1,192 airports
was split into a training set and validation set (80/20 split). Due
to the imbalance of classes in the data, the training set was
undersampled to achieve 1-to−1 balance. The overall
performance of our prediction method was evaluated by
OOB error defined as the fraction of the number of incorrect
classifications over the number of out-of-bag samples. The OOB
error for the optimal combination of hyper-parameters is 12.3%
(number of trees, ntree � 500; number of variables at each split,
mtry � 3, minimum size of terminal node, node size � 1). The
training accuracy of the model, defined as the percent of
accurately classified instances, is 87.7%. The prediction
accuracy of the developed random forest on the validation
set is 82.4%. The accuracy exceeds the accuracy of a model
that predicts according to random chance, quantified by
proportional chance criterion proposed by Morrison. (1969)
of 57.4%.

The most frequently used measures of importance in random
forests–Mean decrease in Accuracy and Gini Index are prone to
overestimation bias when the variables are highly correlated (Strobl

FIGURE 3 | Network Response to Failure and Attack. (A), (B), (D), (E) illustrate the size of the largest component and characteristic cluster size as percolation is
conducted on the network of flights on the week ending April 25, the week with the lowest observed number of flights. (A) and (D) correspond to 10,000 trials of the
random removal of nodes, i.e., random error. (B) and (E) correspond to the removal of nodes by decreasing unweighted degree. (A),(B),(D),(E) are plotted against
parameter f, the fraction of nodes that have been removed. (C) and (F) correspond to the case in which nodes are removed and added as observed during the
pandemic. (A)–(C) show the relative size of the largest component RGC(f) � NGC(f )/NGC(f � 0). As nodes are removed randomly, the giant component disintegrates
slowly and resembles a step function, but sharply as the highest degree nodes are removed first. (D)–(F) show the characteristic cluster size ~s � ∑s< smax

nss2/N
calculated according to Onnela et al. (2007). Typically for non-scale-free networks, at some unique critical threshold fc, as nodes are removed randomly, the largest
component disintegrates and ~s sharply increases. (D) shows that as nodes are removed randomly, the network does not disintegrate at any specific threshold, though
the network rarely deteriorates at values of f below 0.2. At values of f below 0.2, the network is not typically perturbed enough to trigger any major deterioration. However,
(E) shows that as high-degree nodes are targeted, the network fragments quickly and without recovery.
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et al., 2008). This is the case with some of the variables in our
model, as shown in Figure 4A. As a result, instead of traditional
measures of importance, we use conditional variable importance
(Strobl et al., 2008), which is more reliable in reflecting the impact
of each predictor variable in the case of high correlations.
Figure 4B presents the importance plot. The results show that
airport size is by far the most important predictor of closure. FAA
grants are the second best predictor in the model, indicating that
financial aid distributed to airports in some cases made a difference
between their closing and remaining open. The importance
measures of other variables, including network-related, socio-
economic, and pandemic measures are inconsequential
compared to Number of flights. The lack of connection between
socio-economic characteristics of a county and the operations of its
airports indicates that airlines and the FAA are the main decision-
makers, rather than the local governing bodies.

Finally, the aircraft emissions analysis presented in Figure 5A
indicates that total CO2 emissions produced by the United States
domestic air traffic dropped in 2020 compared to 2019 by 37.4%,
from 156.9 – 98.3 million metric tons of CO2. However, per-
passenger emissions spiked eightfold in the week of April 5–11
and stabilized in the late summer at double the rate of the pre-
COVID-19 level. These inefficiencies can be explained by several
factors. First, airlines establish long-term lease agreements with
airports, specifying the ways terminal facilities and airfields are
used and funded. Under such long-term agreements airlines are
obliged to operate leased facilities at a certain percent of the time.
Due to the pandemic, certain amendments to the existing airport-
airline agreements had to be made, which required time. Second,
airlines submit their official schedules in advance, which
prevented them from rapidly changing their operations due to
low demand. Finally, some airlines were hesitant to cancel flights

FIGURE 4 | Random Forest results. (A) Correlation matrix with significant correlations p< 0.05 (*) between model variables. Positive correlations are visualized in
shades of blue and negative correlations in shades of red. Correlations are ordered by hierarchical clustering. (B) Importance of variables expressed by conditional
variable importance. If a variable is “important,” its addition to the model reduces classification error by the largest amount. The “important” variable does not necessarily
need to be highly correlated with the target variable (closed airports) since they do not need to have a linear relationship.

FIGURE 5 | United States air traffic CO2 emissions produced during the pandemic. Domestic air traffic (A), and Emissions per passenger (B). Although total CO2

emissions in 2020 dropped by 37.4% (58.6 Mton) compared to 2019, emissions per passenger have dramatically increased. The air traffic network remains robust
because airlines continue flying aircraft with lower load factors. The cost of robustness is an increase in per-passenger emissions.
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and adjust the schedules as they feared that they would lose
landing slots. According to the FAA’s slot usage requirement,
airlines are required to use allocated slots at least 80% of the time
at slot-controlled airports such as John F. Kennedy International
Airport (JFK), LaGuardia Airport (LGA), and Ronald Reagan
Washington National Airport (DCA). Although the FAA
eventually waived minimum slot-use requirements at slot-
controlled airports, it took some time for these adjustments to
be implemented. In the end, the highly structured and regulated
nature of the network proved to be both a virtue and a drawback
in the pandemic. The robustness of the network enabled high
connectivity even in times of low traffic, but also created a lack of
flexibility hindering adjustment to new conditions and more
efficient allocation of resources.

4 CONCLUSION

This paper analyzes the network characteristics of the
United States domestic air transportation system as they have
evolved during the COVID-19 pandemic. Despite the precipitous
fall in passengers and flight volumes, our results indicate that the
United States aviation network’s loss in efficiency was only 5.1%
and that a giant cluster persisted with few weakly connected
components consisting of small, regional airports, which means
that the United States air network is extremely robust and
continues to operate effectively. The percolation analysis
shows that the random removal of nodes from the network
would shrink the size of the giant component by 8% more
than was actually observed. This result indicates that closed
airports were less connected than the average node in the
network and that their closures were not random. Indeed, we
find that closed airports were small airports on the periphery of
the (mathematical) network. Finally, as suspected, the robustness
of the network creates negative externalities. We find that
emissions per passenger in the domestic United States air
transportation network increased eightfold during the pandemic.

There are two main avenues of research we would like to
explore in the future. The first includes the analysis of the

resilience of air networks during the pandemic in different
geographies. The United States government provided financial
support to ensure the continued operation of some airports and
airlines. These funds prevented major disruptions in
United States air traffic and led us to conclude that the
United States air network was robust. Are other air traffic
networks equally robust, even without financial support? The
analysis of airline markets outside the United States might
provide insight. The second research theme includes airline
emissions. The airlines in the United States increased per-
passenger emissions by using their resources inefficiently. Did
the government miss an opportunity to demand reductions in
emissions in exchange for financial support? Several European
countries imposed such conditions. The analysis of those policies
and their effects could provide creative solutions for curbing ever-
growing airline emissions.
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