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The time history analysis is used to estimate the peak responses of structures subjected to
stationary and nonstationary winds. The time histories of the fluctuating wind processes at
multiple points can be simulated based on the spectral representation method for given
target auto and cross power spectral density (PSD) functions. As the number of the
processes of interest increases, the computation time for the simulation increases
drastically. For the stationary homogeneous or nonhomogeneous wind fields, this
problem can be overcome by using the frequency-wavenumber PSD function to
simulate the stochastic propagating waves or fields. In the present study, a technique
to simulate the amplitude modulated and frequency modulated nonstationary and
nonhomogeneous stochastic propagating wind fields is presented. The technique
relies on representing the nonstationary wind velocity by amplitude modulating a
process that is time transformed from a stationary process. It is based on the
established relations between the PSD functions of the nonstationary and of the
stationary wind velocity. Simple to use and implement equations to carry out the
simulation for one-dimensional line wind velocity field and two-dimensional
nonstationary and nonhomogeneous wind velocity field are presented. The use of the
developed technique and its adequacy is illustrated through numerical examples.
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INTRODUCTION AND BACKGROUND

Structures such as tall buildings, long bridges, and wind turbines are sensitive to wind actions (Simiu and
Scanlan, 1996; Strommen, 2010). The time history of wind velocity at a point on a structure can be
represented by the sum of the mean and fluctuating wind components. The fluctuating winds can be
characterized by using the power spectral density (PSD) function such as the Davenport spectrum,
Kaimal spectrum, and von Karman spectrum. A common characteristic of these spectra is that they can
be expressed in terms of reduced frequency orMonin coordinate, which is proportional to the turbulence
length scale and inversely proportional to the mean wind velocity. The relation between two fluctuating
wind velocity time histories at two spatial points is modelled using the coherence function (Davenport,
1967; Mann, 1994; Krenk, 1996; Simiu and Scanlan, 1996; Solari and Piccardo, 2001; Peng et al., 2018).

The estimation of the structural responses to the wind loading can be carried out in the frequency
domain or time domain. It is well recognized that the use of the frequency domain approach to estimate
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the peak responses for simple structures can be very efficient for
linear elastic systems (Simiu and Scanlan, 1996). The use of the
time domain approach becomes increasingly popular because of
the availability of powerful time-history structural analysis
software and computer science and engineering advances. The
use of time-domain analysis also facilitates the evaluation of
nonlinear inelastic structural responses and reliability by
considering wind loading (Vickery, 1970; Hong, 2004; Hong,
2016) or earthquake loading (e.g., Hong and Hong, 2007). For
the time history analysis, the synthetic wind velocity fields need to
be generated. The simulation of wind velocity can be carried out
using one of the several available methods, including the spectral
representation method (SRM) (Shinozuka and Jan, 1972; Li and
Kareem, 1991; Shinozuka and Deodatis, 1996; Di Paola, 1998;
Spanos and Zeldin, 1998; Huang and Chen, 2009), auto-regressive
moving-average (ARMA) model (Samara et al., 1985); the
empirical mode decomposition (Xu and Chen, 2004); proper
orthogonal expansion (Chen and Kareem, 2005; Carassale et al.,
2007; Solari et al., 2007), and application of wavelet transform
(Gurley and Kareem, 1999).

For the fluctuating wind modelled as a stationary process
defined by its PSD function, the most popular method to simulate
the time histories of wind velocity is SRM. As the PSD function of
fluctuating wind velocity is a function of the mean wind velocity
(Simiu and Scanlan, 1996), the PSD function becomes dependent
on both the frequency and time. In such a case, the coupling of
time and frequency in the PSD function is such that the
factorization of the time-frequency-dependent PSD function as
a function of time and a function of frequency could be difficult
(Hong, 2016) if it is not impossible. To simplify the task of
simulating the nonstationary wind velocity, some researchers
(e.g., Chay et al., 2006; Chen and Letchford, 2007; Li et al.,
2017) assumed that the square root of the whole evolutionary
PSD (EPSD) function can be treated as the amplitude modulation
function. The assumption is very practical but may not agree with
the requirement that the amplitude modulation for an
evolutionary process must be a slowly varying function
(Priestley, 1965). Hong (2016) proposed the use of a
uniformly amplitude modulated and frequency modulated
(AM/FM) process to model nonstationary fluctuating wind. In
other words, the nonstationary fluctuating wind velocity is
represented by amplitude modulating a process that is
nonlinearly time transformed from a stationary process. For
the fluctuating winds at multiple points in space, this model
describes the fluctuating winds with advection according to their
corresponding time-varying mean wind velocity.

Given a PSD or EPSD matrix of the fluctuating winds at
multiple points in space, the time histories of turbulent winds
at these points can be modelled using SRM (Shinozuka and
Deodatis, 1996). As the number of the processes defined by the
matrix increases, the use of SRM for the simulation of the processes
is inefficient since it involves the decomposition of the matrix at
many frequencies and the application of the fast Fourier transform
(FFT) to improve the computational efficiencymay not be possible
unless approximations are considered (Li et al., 2017).

Rather than simulating nonstationary wind processes at
multiple points, Deodatis and Shinozuka (1989) proposed an

efficient technique to simulate the stochastic waves (or fields) for
a given frequency-wavenumber PSD (FW-PSD) function, which
is an extension of SRM (Di Paolo, 1998). The use of the FW-PSD
function based simulation for multi-dimensional random field is
much more efficient than the use of multiple points based
simulation for vector processes since the former avoids the
decomposition of the power spectral density function at many
frequencies. For the simulation of the one-dimensional
homogeneous wind field, Benowitz and Deodatis (2015) showed
that the FW-PSD function could be obtained from the auto PSD
and cross PSD (XPSD) Functions of homogeneous fluctuating
winds for two points in space. They modified the technique given
in Deodatis and Shinozuka (1989) by using FFT to gain additional
computational efficiency and showed the adequacy of the
simulated wind field for a bridge deck represented as a
horizontal line-like exposed structure. Chen et al. (2018) and
Song et al. (2018) investigated the simulation of homogeneous
and nonhomogeneous wind fields in two spatial dimensions by
considering that the inhomogeneity is originated from the height
varying mean wind velocity. In their study, the coherence is
considered to depend only on the separations in the horizontal
and vertical directions or Euclidian distance but independent of the
coordinate of the points in space. It is noted that the simulation of
nonstationary and nonhomogeneous wind fields by using the FW-
PSD function has not been addressed in the literature. The
nonstationary fluctuating wind could arise from time-varying
mean wind speed due to thunderstorm events, while the
inhomogeneity could be caused by the topographic effects or
characteristics of the winds that vary with the height or the
coherence that depends on the spatial coordinate and
separation. These problems are often encountered in evaluating
wind-induced responses of bridges (King, 2003), transmission
tower and tower-line systems (Momomura et al., 1997; Yang
and Hong 2016; Yang et al., 2017), and tall buildings (Irwin, 2009).

The main objective of the present study is to develop a simple
technique to simulate the AM/FM and nonhomogeneous
stochastic propagating wind velocity fields. It is considered
that the nonstationary fluctuating winds at multiple points are
represented by AM/FM processes (Hong, 2016). The remaining
sections of the present study are organized as follows. Simulation
of an Amplitude Modulated Evolutionary Stochastic Field section
summarizes the essential theoretical formulation given in
Deodatis and Shinozuka (1989) to simulate an amplitude
modulated evolutionary stochastic propagating waves or fields.
Simulation of Nonstationary and Nonhomogeneous Propagating
Stochastic Field section describes the theoretical development
leading to the formulation for simulating AM/FM and
nonhomogeneous propagating stochastic fields. Numerical
Examples section presents the numerical example applications.

SIMULATION OF AN AMPLITUDE
MODULATED EVOLUTIONARY
STOCHASTIC FIELD
Consider that a stochastic propagating wave or field in time and
n-dimensional space, Y( x.), can be expressed based on
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the evolutionary theory (Priestley, 1965; Deodatis and Shinozuka,
1989),

Y( x.) � ∫∞

−∞
A( x., f

.)ei2π x
.· f.dZ( f.) (1)

where x
. � (t, x1, ..., xn) is a 1 × (n + l) vector with the time variable

t and n space variables (x1, ..., xn); f
. � (f , k1, ..., kn) is a 1 × (n + l)

vector containing the frequency f (Hz) and nwave numbers ki (that
has the unit of the inverse of the distance); f corresponds to time,

and ki corresponds to space variable xi;A( x., f
.) is a slowly varying

amplitude modulating function, Z( f.) is a random process in f
.

and has orthogonal increments; and the FW-PSD function S( f.)
defined by E

∣∣∣∣∣∣∣Z( f.)
∣∣∣∣∣∣∣2[ ] � S( f.)d f..

The FW-PSD function of Y( x.), SY( x., f
.), is given by,

SY( x., f
.) �

∣∣∣∣∣∣∣A( x., f
.)∣∣∣∣∣∣∣2S( f.) (2)

Based on this amplitude modulated stochastic field model,
Deodatis and Shinozuka (1989) (see also Shinozuka and
Deodatis, 1996) showed that Y( x.) can be simulated using,

Y( x.) � �
2

√ ∑Nt

jt�1
∑N1

j1�1
...∑Nn

jn�1

∑
It�1, Im�±1
m�1,2...,n

���������������������������
2A2[x., f

.(jt , j1, ..., jn, It , I1, ..., In)]√

×
�������������������������
S[ f.(jt , j1, ..., jn, It , I1, ..., In)]Δ f

.
√

× cos[2π f.(jt , j1, ..., jn, It , I1, ..., In) · x.
+ ϕ(jt , j1, ..., jn, It , I1, ..., In)]

(3)

where S( f.) in this equation is two-sided PSD,

f
.(jt , j1, ..., jn, It , I1, ..., In) � (jtΔf , j1Δk1, ..., jnΔkn)Θ(It , I1, ..., In)

(4)

Θ is an element by element multiplication operator,
Δ f
. � ΔfΔk1/Δkn, a symbol following Δ represents the

increment of the symbol, and ϕ(jt , j1, ..., jn, It , I1, ..., In) is the
random phase angle between 0 and 2π.

SIMULATION OF NONSTATIONARY AND
NONHOMOGENEOUS PROPAGATING
STOCHASTIC FIELD

Adopted Time-Frequency-Dependent
Power Spectral Density Function
The application of Eq. 3 to simulate the wind field is simple,
provided that S( x., f

.) and A( x., f
.) are given, and the slowly

varying property of A( x., f
.) is ensured. For the nonstationary

and nonhomogeneous propagating wind velocity fields, the
problem is to find realistic and justifiable models to represent
their spatiotemporally varying characteristics. Many of the

commonly used PSD function of the fluctuating wind velocity
at height z (m) above the ground surface could be expressed in the
following mathematical form (Solari and Piccardo, 2001),

S0f (f ) � A0ζ
a0
0(1 + B0ζ
b0
0 )c0 (5)

where S0f(f) denotes the PSD function, f (Hz) is the frequency, A0,
B0, a0, b0, and c0 are model parameters, ζ0 � fz/U(z) denotes the
reduced frequency, and U(z) is the mean wind speed. The
integration of S0f(f) over the frequency domain equals the
variance. An example of Eq. 5 is the Kaimal spectrum where
a0 � 0, b0 � 1, and c0 � 5/3 (Simiu and Scanlan, 1996).

Based on the type of PSD function shown in Eq. 5 such as the
Kaimal spectrum and the concept of time transformation
(i.e., frequency modulation) (Yeh and Wen, 1990), the AM/
FM model for the nonstationary fluctuating winds proposed in
Hong (2016) is adopted in the following. The adopted model
considers that the wind velocity is represented by the sum of the
mean wind velocity U(pj, t) and fluctuating wind velocity u(pj, t)
at a point in space pj, where pj � (x1j, x2j) in which x1j and x2j
represent the coordinates of the horizontal and vertical axes,
respectively. u(pj, t) is given by,

u(pj, t) � σ(pj, t)~uj(τ j) (6)

and,

τ j � τj(t) � 1
x2j

∫t

0
U(pj, t̂)dt̂ (7)

where the time-varying standard deviation of the nonstationary
process σ(pj, t) represents the amplitudemodulation function, τj is
introduced to represent the nondimensional time that is used to
define the frequency modulation, and ~uj(τj) is a stationary process
in the domain of τj, denoted as τ-domain, (but nonstationary in the
t-domain). Based on Eq. 5, it is considered that the PSD function
S~u,jj(ζ) equal to S~u(ζ) (one-sided spectrum),

S~u(ζ) �
A0ζ

a0

(1 + B0ζ
b0)c0 (8)

where A0 in this equation is a normalization constant to ensure
that the integration of S~u(ζ) over nonnegative value of ζ equal
to one. By considering a0 � 0, b0 � 1, c0 � 5/3, A0 � 2K/3, and
B0 � K � 50, Eq. 8 becomes,

S~u(ζ) �
2
3

K

(1 + Kζ)5/3 (9)

which represents the normalized Kaimal spectrum with the
variance equal to one.

The nondimensional quantity τj viewed as the “time” variable
could also be viewed as a “space” variable, depending on the
preference of the user. Viewing as the “space” variable, the wind
in this model is treated as a frozen wind with its time variation
described by advecting the wind with a constant mean wind
velocity in the τ-domain. It is homogeneous except for amplitude
modulation. The PSD function of u(pj, t), Su,jj(f , t), is given by,
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Su,jj(f , t) � [σ(pj, t)]2 × 1

τ′j(t)
S~u⎛⎝ f

τ′j(t)
⎞⎠ (10)

where τ′j(t) � U(pj, t)/x2j is the time derivative of τj(t) and f (Hz)
is the frequency. This indicates that u(pj, t) represents a
nonstationary process with the amplitude modulation σ(pj, t)
and frequency modulation f /τ′j(t) � ζ , which is based on the time
transformation defined in Eq. 7. In other words, u(pj, t) is
obtained through modulating the process that is mapped from
the stationary process ~uj(τj). Since a key assumption of the
evolutionary process (see Eq. 1 for definition) (Priestley, 1965)
is that the amplitude modulation function is a slowly varying
function, the treatment of the square root of Su,jj(f , t) shown in
Eq. 10 as the amplitudemodulation functionmay be questionable
unless such a slowly varying characteristic of Su,jj(f , t) is
validated. To overcome this, one could simulate the stationary
process ~uj(τj) and map it to the t-domain through the use of
Eqs. 6, 7.

In order to deal with multiple processes, each representing the
wind velocity at a spatial point, define two stationary processes,
~uj(τ) at pj and ~uk(τ) at pk, with their XPSD function, S~u,jk(ζ),
given by,

S~u,jk(ζ) � [S~u,jj(ζ)S~u,kk(ζ)]1/2 × c~u,jk(ζ , pj, pk) (11)

in which

c~u,jk(ζ , pj, pk) � exp[− ζ × h(pj, pk)] (12)

h(pj, pk) � [C2
x1(x1j − x1k)2 + C2

x2(x2j − x2k)2]1/2
⎡⎢⎢⎢⎢⎣ 2( 1

x2j
+ 1
x2k
)⎤⎥⎥⎥⎥⎦

(13)

S~u,jj(ζ) � S~u(ζ) � S~u,kk(ζ), and Cx1 and Cx2 and are model
coefficients. As will be seen, Eq. 13 represents the use of the
weighted mean wind speed rather than the simple average mean
wind speed. By mapping [~uj(τ), ~uk(τ)] to [u(pj, t), u(pk, t)]
using Eqs. 6, 7, it was shown that the XPSD function u(pj, t)
and u(pk, t), Su,jk(f , t), is given by,

Su,jk(f , t) � σ(pj, t)σ(pk, t)
τ jk′ (t) exp

[ − i2πf
τ j(t) − τk(t)

τ jk′ (t) ]S~u,jk( f
τ jk′ (t))

(14)

where τjk′ (t) � [τj′ (t) + τk′ (t)]/2. For j � k, Eq. 14 reduces to Eq.
10. It can be shown that the lagged coherence for u(pj, t) and
u(pk, t), cu,jk(f , pj, pk), is given by,

cu,jk(f , pj, pk) � c~u,jk[f/τjk′ (t), pj, pk]
� exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −
f [C2

x1(x1j − x1k)2 + C2
x2(x2j − x2k)2]1/2

[U(pj , t)
x2j

+ U(pk , t)
x2k

]/(1/x2j + 1/x2k)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(15)

This function differs from the lagged coherence function given
by Davenport (1967) (see also Simiu and Scanlan, 1996; Hong,
2016) on how the mean wind speed is averaged. For fixed points,
the lagged coherence decreases as the mean wind velocity
increases. The lagged coherence also decreases with increasing
frequency or separation. The vertical coordinate plays a minor
role in controlling the lagged coherence.

Formulation for Simulating AM/FM and
Nonhomogeneous Propagating Wind Field
As u(pj, t), j � 1,. . ., n, shown in Eq. 6 that represent the
nonstationary processes in nonhomogeneous field are obtained
by mapping stationary processes in the nonhomogeneous field,
they can be simulated based on SRM as shown in Hong (2016). It
requires to carry out Cholesky decompose of the n × n spectral
matrix formed by S~u,jk(ζ) in a sequence of frequencies, identify
the sub-processes based on the lower diagonal matrix, simulate
the stochastic processes ~uj(τ) as the superposition of the
subprocesses and map ~uj(τ) into u(pj, t). This can be efficient
and effective if n is small and a large number of samples of u(pj, t)
is to be simulated because the decomposition of the spectral
matrix only needs to be carried out once. For n more than a few
hundred or thousand, the computing cost of decomposing the
spectral matrix at multiple frequencies increases drastically. In
other words, its use to obtain wind histories is inefficient for a
very large n such as the case where the high spatial fidelity
alongwind velocity field acted normal to a long span bridge
deck or a horizontal line-like exposed structure. Note that by
assuming that the value of x2j for all points of interest equals z,
Eqs. 11–13 becomes,

S~u,jk(ζ) � S~u(ζ) × exp⎡⎣ −ζ × ∣∣∣∣∣∣∣∣∣∣Cx1(x1j − x1k)
z

∣∣∣∣∣∣∣∣∣∣⎤⎦ (16)

where the use of the one-sided PSD function of ~uj(τ) at any point
in the space equal to S~u(ζ) is made, and positive ζ is considered.

The FW-PSD function, SFW~u(ζ , k1), is obtained by applying
the Fourier transform to Eq. 16,

SFW~u(ζ , k1) � ∫∞

−∞
S~u(ζ) × exp(−ζ × ∣∣∣∣Cx1s/z∣∣∣∣)exp(−i2πk1s)ds (17)

By carrying out the integration, this equation simplifies to
(Gradshteyn and Ryzhik, 1994; Benowitz and Deodatis, 2015;
Chen et al., 2018),

SFW~u(ζ , k1) � S~u(ζ)
2ζCx1/z

(ζCx1/z)2 + (2πk1)2
(18)

If instead of considering the lagged coherence shown in Eqs. 12,
13 for x2j and x2k equal to z [i.e., Davenport coherence function
c~u,jk(ζ , pj, pk) � exp(−ζ × |Cx1s/z|) as shown within Eq. 16], one

could also use other available coherence functions. In particular,
by using the coherence function given by Krenk (1996),

c~u,jk(ζ , pj, pk) � (1 − 0.35|s|ζ z)exp(−0.7|s|ζz), (19)

Frontiers in Built Environment | www.frontiersin.org May 2021 | Volume 7 | Article 6368154

Hong and Hong Simulating Nonstationary Nonhomogeneous Wind Field

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


where ζz �
�����������������
(2πζ)2 + (z/1.34Lu)2

√
/z and Lu is the integral length

scale and |s| denotes the distance betweenPj and Pk, Eq. 17 becomes,

SFW~u(ζ , k1) � S~u(ζ)∫∞

−∞(1 − 0.35|s|ζ z)exp(−0.7|s|ζz)exp(−i2πk1s)ds
which can be solved analytically as shown in Benowitz and
Deodatis (2015).

The simulation of the stationary homogenous wind field
~u(p, τ) defined by the FW-PSD function shown in this
equation for x2j � z can be carried out using Eq. 3, resulting in,

~u(p, τ)∣∣∣∣x2j�z � �
2

√ ∑Nt

jt�1
∑N1

j1�1
∑

I1�±1

���������������������
SFW~u(jtΔζ , I1j1Δk1)ΔζΔk1√

× cos[2π(jtΔζτ + I1j1Δk1x1) + ϕ(jt , j1, 1, I1)] (21)

The simulated nonstationary wind field u(p, t)∣∣∣∣x2j�z is then
obtained for x2j � z through the mapping defined by Eqs 6, 7
which is re-written as,

u(p, t) � I(p, t)U(p, t)~u[p, 1
z
∫t

0
U(p, t̂)dt̂] (22)

where I(p, t) is the time-varying turbulence intensity
(i.e., coefficient of variation) defined as σ(p, t)/U(p, t).

As shown in Benowitz and Deodatis (2015), Eq. 21 can be re-
written by using FFT and its inverse for computational efficiency.
In such a case, the sampled values of ~u(τ, x1) in the τ-domain are
given for evenly spaced τ values. This leads to the mapped values
of u(p, t) in the t-domain are given for evenly spaced t values only
if the time transformation between t and τ is linear (i.e., the mean
wind velocity is time-invariant). Otherwise, if the samples of
u(p, t) for evenly spaced t values are of interest and the
transformation between t and τ is nonlinear, one could only
take advantage of FFT and its inverse for a fixed τ value, which is a
function of t. This leads to,

~u(p, τ)∣∣∣∣x2j�z � �
2

√
Re∑Nt

jt�1
[IFFTk1{B1[jt , τ(t)]} + FFTk1{B−1[jt , τ(t)]}]

(23)

where the notation τ(t) instead of τ on the right-hand side of the
equation is used to emphasize that it is a function of t,

BI1(jt , τ(t)) � ���������������������
SFW~u(jtΔζ , I1j1Δk1)ΔζΔk1√

ei{2π[jtΔζτ+ϕ(jt ,j1 ,1,I1)]}
(24)

and the operators FFT( ) and IFFT( ) denotes the FFT and its
inverse, the subscript associated with FFT and IFFT indicates the
domain that the operation is carried out.

The random field characterized based on Eqs. 11–13 is
nonhomogeneous in space because its lagged coherence
depends not only on the separation between pj and pk along
the horizontal and vertical directions but also on the vertical
coordinates of pj and pk. This is the case for the random field
characterized based on Eqs. 14, 15 as well. Also, Eq. 15 indicates
that (1/x2j + 1/x2k) represents the sum of the weights used to
average themeanwind velocity. Therefore, to avoid the difficulty in

dealing with this position-dependent inhomogeneity, as a simple
pragmatic approach to simulate two-dimensional wind velocity
field, one could replace (1/x2j + 1/x2k) by 2/zav, where zav
represents a weighted average height for a considered exposure
area of a structure for a wind engineering application where the
vertical dimension is much smaller than the horizontal dimension.
For example, one could consider zav equal to the height of the
geometric center of the exposure area or the height of the point
where the resulting static wind load for a structure is applied. By
using this weighted average, h(pj, pk) in Eq. 13 is replaced by,

h(pj, pk) � [C2
x1(x1j − x1k)2 + C2

x2(x2j − x2k)2]1/2/zav, (25)

and the velocity field defined based on Eqs 11–13 becomes
orthotropic in space. In such a case, the FW-PSD function,
SFW~u(ζ , k1, k2), is given by,

SFW~u(ζ , k1, k2) � ∫∞

−∞
∫∞

−∞
S~u(ζ)

× exp[ − ζ × (C2
x1s

2
1 + C2

x2s
2
2)1/2/zav]

exp(−i2πk1s1 − i2πk2s2) ds1ds2

(26)

By carrying out the integral, this equation is simplified to
(Mantoglou and Wilson, 1982; Song et al., 2018),

SFW~u(ζ , k1, k2) � S~u(ζ)
2π

Cx1Cx2

1

(ζ/zav)2{1 + (zav/ζ)2[(2πk1/Cx1)2 + (2πk2/Cx2)2]}3/2.
(27)

The simulation of the stationary wind field ~u(p, τ) in two-
dimensions is then carried out using,

~u(p, τ) � �
2

√
Re∑Nt

jt�1
∑N1

j1�1
∑N2

j1�1∑
I1�± 1,I2�± 1

������������������������������
SFW~u(jtΔζ , I1j1Δk1, I2j2Δk2)ΔζΔk1Δk2√

× cos[2π(jtΔζτ + I1j1Δk1x1 + I2j2Δk2x2)
+ ϕ(jt , j1, j2, 1, I1, I2)]

(28)

The samples of u(p, t) is then obtained through the mapping
defined by Eq. 21. Again, as the time transformation between t
and τ is nonlinear for the nonstationary processes, for a given
value of t, the evaluation of Eq. 28 can be carried out by taking
advantage of FFT resulting in,

~u(p, τ) � �
2

√
Re∑Nt

jt�1

{ IFFTk1(IFFTk2{B1,1[jt , τ(t)]}) + FFTk1(IFFTk2{B−1,1[jt , τ(t)]})
+ IFFTk1(FFTk2{B1,−1[jt , τ(t)]}) + FFTk1(FFTk2{B−1,−1[jt , τ(t)]})}

(29)
where

BI1 ,I2[jt , τ(t)] �������������������������������
SFW~u(jtΔζ , I1j1Δk1, I2j2Δk2)ΔζΔk1Δk2√

ei[2π(jtΔζτ)+ϕ(jt ,j1 ,j2 ,1,I1 ,I2)]
(30)
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NUMERICAL EXAMPLES

Three examples are presented in this section. In the first example,
the one-dimensional horizontal wind velocity field is simulated
by considering the mean wind velocity that varies along the
horizontal line because of the topographic effect. The second
example is the same as the first one, except that the mean wind
velocity is assumed to vary with time as well. Finally, the
simulation of two-dimensional nonstationary and
nonhomogeneous wind fields is carried out. In some cases,
multiple simulation runs are carried out, and the auto and
cross PSD functions and lagged coherence function are
evaluated by using the simulated wind fields and their
expected values are compared to the PSD and target coherence
functions.

Example 1: Consider that the simulation of wind along the
main span of a bridge across a canyon is of interest. For the
simulation, it is considered that U(p, t) is time-invariant and
equals Umax p(x1), where the maximum mean wind speed Umax

equals 40 m/s and the wind profile along the horizontal main
span, p(x1) � [sin(πx1/450) + 7]/8, is illustrated in Figure 1. For
the numerical analysis z � 40 m, K � 50 (see Eq. 9), the FW-PSD
given by Eq. 18 with Cx1 � 20, and I(p, t) � 0.12 (see Eq. 22) are
used. For the sampling, it is considered Δζ � 1/600
[i.e., � z/(TUmax) � 1/600, T � 600 s], Nt � 6,000, Δt � 0.1 s,
Δk1 � 1/450 (i.e., � 1/L where the main span length L equals
450 m), and N1 � 512 (see Eqs. 23, 24).

The obtained samples of the one-dimensional horizontal
wind field at a few selected points are illustrated in Figure 2.
Figure 2A illustrates the time histories for selected points,
where the mean wind velocity is included in the plot,
showing that the time histories of the wind velocity near
the middle of the main span of the bridge are associated
with greater fluctuating winds than those near the pylons.
The plot of the line wind field for selected times that

are depicted in Figure 2B shows that the line wind field for
a given time follows the assigned horizontal wind profile.
Finally, the propagating line wind fields are shown in
Figure 2C.

For assessing the adequacy of the simulated fluctuating
wind, the simulation is run 25 times. The average PSD
function of the simulated fluctuating wind velocities at three
selected points along the bridge deck are evaluated and
shown in Figure 3. The PSD functions calculated from the
simulated samples compares well to the target PSD function
at the considered sites.

In addition to the above, the lagged coherence of the wind
velocities for simulated records at three pairs of points is
calculated. The evaluation of the lagged coherence is carried
out in the τ-domain rather than the t-domain, so the
calculated values are independent of time. A comparison of
the calculated lagged coherence from the samples to the
targets shown in Figure 4 indicates that the match is
excellent for the target lagged coherence value greater than
0.4. For cases where the target lagged coherence is less than
about 0.3, the lagged coherence from the simulated records
is higher than that of the target value. This is expected since it
is well-known that the lagged coherence even for the
simulated white noise is in the order of about 0.2 (Bendat
and Piersol, 1971).

Example 2: This example is the same as the previous example
except that the mean wind is considered to be equal to
Umaxp(x1)[sin(πt/600) + 5]/6, where Umax equals 40 m/s.
Typical samples of one-dimensional nonstationary and
nonhomogeneous horizontal wind field at a few selected
points are illustrated in Figure 5A. The line wind fields for a
few selected t values and the propagating wind fields are shown in
Figures 5B,C, respectively. A comparison of the results shown in
Figures 2, 5 indicates that they are similar except that the time-
varying aspect of the results is presented in Figure 5. Similar to

FIGURE 1 | Spanwise fluctuating alongwind: for bridge deck: (A) illustrates the dimension of the main span of a bridge, and (B) shows the mean wind profile along
the bridge deck.
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FIGURE 2 | Typical simulated nonhomogeneous propagating wind field (the plots include the mean wind velocity): (A) shows simulated wind velocity plus the mean
wind velocity at a few selected locations, (C) represents the wind velocity field at a few selected time, and (B) shows the propagating wind field along the bridge deck.

FIGURE 3 | Comparison of the estimated power spectral density function (m2/s2) at three points along bridge deck by using 25 runs: (A) at the left pylon, (B) at
200 m from the left pylon and (C) at 400 m from the left pylon.
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Example 1, spectral analysis carried out by using the simulated
samples of the propagating wind field indicates that the auto and
cross PSD function calculated using the samples in the τ-domain
match well their target values.

Example 3. In this example, the two dimensional AM/FM
and nonhomogeneous propagating wind fields are simulated for
the area shown in Figure 6A. The bottom line of the area is 25 m
above the ground surface, and the height of the area equals 30 m,
and the width equals 450 m. The profile of the mean wind velocity
is defined by,

U(p, t) � 30 × ( z
10
)0.12

× 1
8
[7 + sin(πx1

450
)] × 1

2
[1 + sin( πt

600
)]
(31)

which is shown in Figure 6B.
For the fluctuating winds, the FW-PSD shown in Eq. 27 is

applicable with Cx1 � 20 and Cx2 � 16, zav �(25 + 30)/2 � 27.5 m
and S~u(ζ) given by Eq. 9with K � 50. The typical simulated wind
time histories and fields for a few selected points and time by
applying Eqs. 29, 30 are presented in Figure 7. As expected, the
plots of the time histories in each row that are for a fixed
horizontal location resemble well since their vertical
separations are relatively small. As the separation in the
horizontal direction increases the similarity of the time
histories decreases, which is expected since the lagged

coherence decreases with increased horizontal separation.
The plots of wind fields in the figure illustrate that the
application of the proposed technique can simulate the
nonstationary and nonhomogeneous fluctuating winds with
very refined mesh. The total wind velocity of the propagating
wind field at a given time is simply equal to the mean wind
component plus the fluctuating wind component (as shown
in Figures 6, 7).

CONCLUSION

In the present study, a simple technique to simulate AM/FM and
nonhomogeneous propagating wind fields is presented. The
technique is based on the theoretical development indicating
that the nonstationary wind velocity can be represented as
amplitude modulated and frequency modulated stationary
wind where the frequency modulation is achieved through the
nonlinear time transformation.

Simple to use and implement equations to carry out the
simulation for AM/FM one-dimensional line wind velocity
field and two-dimensional wind velocity field are presented by
incorporating the fast Fourier transform for computational
efficiency. The use of the developed technique and its
adequacy is illustrated through numerical examples.

FIGURE 4 | Variation of the lagged coherence for different separation by considering 25 simulation cycles: (A) Separation equal to 1.76 m, (B) Separation equal to
3.53 m, and (C) Separation equal to 7.06 m.
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FIGURE 5 | Simulated nonstationary and nonhomogeneous line wind field, including the mean wind velocity: (A) shows simulated wind velocity plus the
mean wind velocity at a few selected locations, (C) represents the wind velocity field at a few selected time, and (B) shows the propagating wind field along the
bridge deck.

FIGURE 6 | Definition for the simulation of two-dimensional wind fields: (A) shows the exposure area (not to scale), and (B) shows the mean wind profile in time
and space.
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