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A new numerical method is presented for the solution of initial value problems described

by systems of N linear ordinary differential equations (ODEs). Using the state-space

representation, a differential equation of order n > 1 is transformed into a system of L =
n×N first-order equations, thus the numerical method developed recently by Katsikadelis

for first-order parabolic differential equations can be applied. The stability condition of

the numerical scheme is derived and is investigated using several well-corroborated

examples, which demonstrate also its convergence and accuracy. The method is simply

implemented. It is accurate and has no numerical damping. The stability does not

require symmetrical and positive definite coefficient matrices. This advantage is important

because the scheme can find the solution of differential equations resulting frommethods

in which the space discretization does not result in symmetrical matrices, for example,

the boundary element method. It captures the periodic behavior of the solution, where

many of the standard numerical methods may fail or are highly inaccurate. The present

method also solves equations having variable coefficients as well as non-linear ones. It

performs well when motions of long duration are considered, and it can be employed

for the integration of stiff differential equations as well as equations exhibiting softening

where widely used methods may not be effective. The presented examples demonstrate

the efficiency and accuracy of the method.

Keywords: ordinary differential equations, higher-order, numerical method, analog equation method, linear

equations, non-linear equations, variable coefficients, boundary element method

1. INTRODUCTION

The great majority of problems in engineering and mathematical physics are described by
first-order (parabolic) and second-order (hyperbolic) differential equations, modeling the diffusion
in bodies, the motion of systems, and other responses. A reason that equations of order higher than
the second do not appear often is that many classical mathematical models of the physical world
are derived from Newton’s law of motion. However, there are many phenomena in engineering,
physics, and biology that are described by higher-order equations, e.g., the entry-flow, the variation
of the thyroid hormone, and several other phenomena are described by third-order differential
equations (Padhi and Pati, 2014). Plenty of analytical methods have been developed for solving
higher-order ordinary differential equations (ODEs) of a specific form. Many efficient numerical
methods have also been developed for solving such equations with the Runge–Kutta method and
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its modifications playing an essential role (Butcher, 2000, 2008).
Therefore, the question of why to develop a new numerical
method to solve such equations looks plausible. The answer
comes from the following fact. In recent years, the use
of differential models to describe the dynamic response of
viscoelastic structures leads to discrete ODEs of order higher
than two, whose solution exhibits periodic behavior (Nerantzaki
and Babouskos, 2012; Katsikadelis, 2014, 2016a). It is known
that the periodic response cannot be captured by the available
numerical methods (Simos, 1997) unless they are symmetric
or are adapted to a specific problem. Otherwise, they lead
to inaccurate results. Actually, the motivation for developing
the present method mainly was to cope with such problems.
The proposed method solves efficiently and accurately these
equations, and it is problem-independent.

The initial value problem (IVP) for the n > 0 order linear
ODE is stated as:

y(n) + a1y
(n−1) + a2y

(n−2) + . . . + an−1y
′ + any = f(t),

t ∈ [0,T], T > 0 (1.1a)

y(0) = y0, y′(0) = y′0, y′′(0) = y′′0 , . . . , y
(n−1)(0)

= y
(n−1)
0 (1.1b)

where, a1, a2, . . . an−1, an are N × N real matrices, y = y(t) =
{

y1(t) y2(t) . . . yn(t)
}T

is the vector of the unknown functions,

f(t) =
{

f1(t) f2(t) . . . fn(t)
}T

the vector of external sources, and

y0, y
′
0, y

′′
0 , . . . , y

(n−1)
0 are N × 1 given vectors representing the

initial conditions.
In the presented method, the systems of N linear ODEs

(1.1a) is transformed into a system of L = n × N first-
order ODEs, which is subsequently solved using the numerical
method developed by Katsikadelis for systems of first-order
ODEs (Katsikadelis, 2016b). The latter method is based on the
principle of the analog equation, which converts the L coupled
first-order ODEs equations into a set of L single term uncoupled
first-order ODEs with fictitious sources.

The investigation of the stability of the numerical scheme
results in the condition that the coefficient matrices of the
equation must satisfy. Besides, well-corroborated numerical
examples show the accuracy and convergence of the method.
The method is simply implemented, self-starting, and accurate.
The stability does not demand symmetrical and positive
definite coefficient matrices a1, a2, . . . an−1, an. This advantage
is important because the scheme can find the solution of
differential equations resulting from methods in which the
space discretization does not result in symmetrical coefficient
matrices but only satisfies the stability condition, for example,
the boundary element method. Moreover, it captures the
periodic behavior of the solution, where many of the standard
numerical methods may be ineffective or highly inaccurate. The
present method also solves equations having variable coefficients,
i.e., a1(t), a2(t), . . . an−1(t), an(t), as well as non-linear ones.
The efficiency of the method is illustrated by solving several
equations, including linear and non-linear benchmark ODEs.

2. LINEAR EQUATIONS

The n-th Order Linear ODE
We consider now the n-th order ODE, Equation (1.1). If we set:

x1 = y

x2 = x′1 = y′

x3 = x′2 = y′′

· · · = · · · · · · · · ·
xn = x′n−1 = y(n−1)

(2.1)

Equation (2.1) is reduced to the system of L = n × N
first-order ODEs:



















I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · I 0

0 0 0 · · · 0 I





















































x′1
x′2
x′3
...

x′n−1

x′n



































+



















0 −I 0 · · · 0 0

0 0 −I · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −I

an an−1 an−2 · · · a2 a1





















































x1
x2
x3
...

xn−1

xn



































=



































0

0

0
...
0

f



































(2.2)

Equation (2.2) is of the form:

Cu̇ +Ku = p (2.3)

where now,

C =



















I 0 0 · · · 0 0

0 I 0 · · · 0 0

0 0 I · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · I 0

0 0 0 · · · 0 I



















L×L

K =



















0 −I 0 · · · 0 0

0 0 −I · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −I

an an−1 an−2 · · · a2 a1



















L×L

(2.4a,b)

u =



































x1
x2
x3
...

xn−1

xn



































L×1

p =



































0

0

0
...
0

f



































L×1

(2.4c,d)

Frontiers in Built Environment | www.frontiersin.org 2 April 2021 | Volume 7 | Article 621037

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Katsikadelis Solution of Higher-Order ODEs

TABLE 1 | Algorithm for the numerical solution of the linear equations n-th order

ODEs in the interval [0,T ].

A. Data for Cu̇+ Ku = p(t):
Read: n, N, a1,a2, . . .an−1,an, f(t), y0, y′0, y

′′
0, . . . , y

(n−1)
0 , T and formulate the

matrices u0, C, K, p(t)

B. Initial computations

Choose: h = 1t and compute jmax

Compute: u̇0 = C−1(p0 − Ku0)

Formulate U0 =
{

u̇0 u0

}T

Compute: A =





C K

− h
2 I I





−1 



0 0

h
2 I I



, b =





C K

− h
2 I I





−1 



I

0





C. Compute solution

for j : = 1 to jmax

Un = AUn−1 + bpn
End

Then, the method presented in Katsikadelis (2016b) is used to
solve Equation (2.3) with initial conditions.

u0 =



































x1(0)
x2(0)
x3(0)
...

xn−1(0)
xn(0)



































=







































y0
y′0
y′′0
...

y
(n−2)
0

y
(n−1)
0







































L×1

(2.5)

Table 1 shows the solution algorithm.

Stability of the Numerical Scheme
As it was proved in Katsikadelis (2016b), the numerical scheme
in Table 1 is stable if all eigenvalues λi of the matrixK have a non-
negative real part. In the following, it is proved that this condition
is satisfied if the N roots of the n-th order polynomial,

5(λ) = Iλn − A1λ
(n−1) + A2λ

(n−2) − · · · + (−1)nAN (2.6)

have a non-negative real part. A1,A2, · · · ,AN are the diagonal
matrices of the eigenvalues of a1, a2, . . . an−1, an.

Proof
According to Katsikadelis (2016b), the numerical scheme is stable
if the eigenvalues of the matrix K̂ = C−1K, where C and K

are defined by Equations (2.4a,b), have a non-negative real part.
Apparently, since C = I, it is K̂ = K. For convenience, we
illustrate the proof with second-order ODE. Then, the proof is
easily extended to the n-th order ODE.

For the second order ODE, it is:

K =
[

0 −I

a2 a1

]

(2.7)

The pertinent eigenvalue problem for K is:

[

K11 − λI K12

K21 K22 − λI

]{

x1
x2

}

=
{

0

0

}

(2.8)

The matrix in Equation (2.8) is transformed to an upper
triangular matrix by employing Gauss elimination. To avoid
inversion of the singular matrix(K11 − λI), Equation (2.7) is
rewritten as:

K12x2 + (K11 − λI) x1 = 0

(K22 − λI)x2 + K21x1 = 0

}

(2.9)

which after elimination of x2 from the second equation gives:

[

K12 K11 − λI

0 −(K22 − λI) K̂
−1
12 (K11 − λI) + K21

]

{

x2
x1

}

=
{

0

0

}

(2.10)

The characteristic polynomial of the matrix in Equation 2.10 is:

5(λ̂) = detK12 det
[

−(K22 − λI)K−1
12 (K11 − λI) + K21

]

= 0

(2.11)

which by virtue of Equation (2.7) becomes:

5(λ̂) = det(−I) det
[

−(a1 − λI)(−I)−1 (0− λI) + a2

]

= 0

= det
[

Iλ2 − a1λ + a2
]

= 0 (2.12)

We apply now the spectral decomposition for the matrix a1:

A1 = X−1
1 a1X1 (2.13)

where A1 represents the diagonal matrix of the eigenvalues
α1i (i = 1, 2, . . . ,N) of a1 and X1 (det(X1) 6= 0) the matrix of
its eigenvectors.

Thus, Equation (2.12) may be written as:

5(λ̂) = det(X−1
1

[

Iλ2 − A1λ + a2
]

X1) = 0

= det
[

Iλ2 − A1λ + X−1
1 a2X1

]

= 0 (2.14)

The matrices X−1
1 a2X1 and a2 are similar. Therefore, they have

the same eigenvalues, i.e.,

A2 = X−1
2 (X−1

1 a2X1)X2 = X−1
2 a2X2 (2.15)

where A2 represents the diagonal matrix of the eigenvalues
α2i (i = 1, 2, . . . ,N) of a2 and X2 (det(X2) 6= 0) the matrix of
its eigenvectors.

Based on Equation (2.15), Equation (2.14) is written as:

5(λ̂) = det(X−1
2

[

Iλ2 − A1λ + X−1
1 a2X1

]

X2) = 0
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= det
[

Iλ2 − A1λ + A2

]

= 0 (2.16)

Equation (2.16) yields a set of 2 equations:

λ2i − α1iλi + α2i = 0, i = 1, 2 (2.17)

Each of the Equations (2.17) has two roots, λi1, λi2, which have a
non-negative real part if the sum of the roots and their product
are non-negative, that is:

λi1 + λi2 = α1i ≥ 0 and λi1λi2 = α2i ≥ 0 (2.18)

For the n-th order ODE, the eigenvalue problem for the matrix
K reads:

(K− λIL×L) =



















−λI −I 0 · · · 0 0

0 −λI −I · · · 0 0

0 0 −λI · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −λI −I

an an−1 an−2 · · · a2 a1 − λI



















=



































0

0

0
...
0

0



































, (L = n× N) (2.19)

Using Gauss elimination, reordering the columns to avoid
inversion of singular matrices, and working as for the second-
order equation, we obtain the following n-th order eigenvalue
problem corresponding to Equation (2.16):

5(λ̂) = det
[

Iλ̂n − α1λ̂
(n−1) + α2λ̂

(n−2) − · · · + (−1)nαn

]

= 0

(2.20)

where Ak, k = 1, 2, . . . , n are the diagonal matrices of the
eigenvalues aki, i = 1, 2, . . . ,N of the coefficient matrix ak.

Equation (2.20) yields the set of N equations:

λn − a1iλ
(n−1) + a2iλ

(n−2) − · · · + (−1)nani = 0,

i = 1, 2, . . . ,N (2.21)

The stability of the scheme demands that all roots of Equations
(2.21) have a non-negative real part. Because this procedure
requires the evaluation of the eigenvalues of thematricesAk, k =
1, 2, . . . , n, and the subsequent examination of the sign of the real
part of the roots of the Equations (2.21), it is more convenient

for large coefficient matrices to establish first the coefficients of
the characteristic polynomial of the matrix K using the Faddeev–
LeVerrier algorithm, and then examine the sign of the real part
of the eigenvalues using the Routh–Hurwitz criterion (Lambert,
1991).

Numerical Examples
Based on the developed numerical scheme, MATLAB codes
have been written and various example problems have been
solved. Note that the exact solutions, where no reference is
made, have been obtained using the inverse method developed
by Katsikadelis and employed in Katsikadelis (2016b). According
to this method, a solution is assumed, which yields the
corresponding source after inserting it into the equation. It is
avoided to show the inefficiency of the available methods to solve
the higher-order ODEs under consideration in this paper because
this might be a deviation from the main purpose of the paper.

Example 1. Second-Order ODE.

One-Degree-of-Freedom System
In this example, the IVP is studied:

y′′ + a1y
′ + a2y = f (t), t ∈ [0,T], T > 0 (2.22a)

y(0) = y0, y′(0) = y′0 (2.22b)

where a1 ≥ 0, a2 > 0. Obviously, the stability criterion
is satisfied.

Apparently, the following five cases may be considered:
Case (i): a1 = 0, a2 = 25, f (t) = 0 y0 = 1, y′0 = 0

In this case, Equation (2.22a) represents free undamped
vibrations of a system with one-degree-of-freedom. The problem
admits an exact solution (Katsikadelis, 2020).

y(t) = y′0
ω

sinωt + y0 cosωt, ω = √
a2 (2.23)

The solution and its derivative are shown in Figure 1A together
with the errors e = y − yex and e = y′ − y′ex. Moreover, the
response of the system for a long duration is shown in Figure 1B.
The scheme shows no amplitude decay and negligible period
elongation [(PE = 0.048%) for h = 0.001].

Case (ii): a1 = 0.5, a2 = 25, f (t) = 0 y0 = 1, y′0 = 0
In this case, Equation (2.22a) represents free underdamped
vibrations of a system with one-degree-of-freedom. The problem
admits an exact solution (Katsikadelis, 2020)

y(t) =
[

y′0 + y0ξω

ωD
sinωDt + y0 cosωDt

]

e−ξωt (2.24)

whereωD = ω
√

1− ξ 2, ξ = a1/2ω < 1,ω = √
a2. The obtained

solution together with the error e = y−yex is shown in Figure 1C.
The motion is oscillatory.
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FIGURE 1 |
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FIGURE 1 | (A) Solution in Example 1, case (i). (B) Response for long duration in Example 1, case (i). (C) Solution in Example 1, case (ii). (D) Solution in Example 1,

case (iii). (E) Solution in Example 1, case (vi). (F) Solution in Example 1, case (v).

Case (iii): a1 = 10, a2 = 25, f (t) = 0 y0 = 1, y′0 = 0
In this case, it is ξ = a1/2ω = 1, and Equation (2.22a) represents
the motion of an one-degree-of-freedom system with critical
damping. The problem admits an exact solution (Katsikadelis,
2020)

y(t) =
[

y0 + (y0ω + y′0)t
]

e−ωt , ω = √
a2 (2.25)

The obtained solution together with the error e = y−yex is shown
in Figure 1D. The motion is non-oscillatory.

Case (iv): a1 = 15, a2 = 25, f (t) = 0 y0 = 1, y0 = 0
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In this case, it is ξ = a1/2ω = 1.5, and Equation (2.22a)
represents the free motion of an overdamped one-degree-
of-freedom system. The problem admits an exact solution
(Katsikadelis, 2020).

y(t) =
(

y0 cosh�t + y′0 + y0ξω

�
sinh�t

)

e−ξωt ,

� = ω
√

ξ 2 − 1,

ω = √
a2 (2.26)

The obtained solution together with the error e = y − yex is
shown in Figure 1E. The motion is non-oscillatory.

Case (v): a1 = 0, a2 = 25, f (t) = f0H(t) y0 = 1, y′0 =
0 (f0 = 5)
where H(t) is the Heaviside step function. In this case, Equation
(2.22a) represents the forced undamped vibrations of an one-
degree-of-freedom system subjected to a suddenly applied load
f0 at t = 0. The problem admits an exact solution (Katsikadelis,
2020).

y(t) = y′0
ω

sinωt + y0 cosωt +
f0

a2
(1− cosωt),

ω = √
a2 (2.27)

Figure 1F shows the obtained solution together with the error
e = y− yexact .

Example 2. Second-Order ODE.

Three-Degree-of-Freedom System
In this example, we solve the IVP:







y′′1
y′′2
y′′3







+





2.0090 0.6166 2.0863
0.3798 0.9195 0.2483
1.1996 1.1998 4.5136











y′1
y′2
y′3







+





9.4479 3.3772 1.1120
4.9086 9.0005 7.8025
4.8925 3.6925 3.8974











y1
y2
y3







=







f1(t)
f2(t)
f3(t)







(2.28a)

y0 =
{

1 0 0
}T

, y′0 =
{

0 2 0.2
}T

(2.28b)

The matrix K, [see Equation (2.4b)] and its eigenvalues are:

K =
[

0 −I

a3 a2

]

6×6

, (2.29a)

eig(K) =































λ1
λ2
λ3
λ4
λ5
λ6































=































3.0431 + 0.0000i
1.2844 + 2.9891i
1.2844 − 2.9891i
0.6193 + 2.1419i
0.6193 − 2.1419i
0.5915 + 0.0000i































(2.29b)

We observe that Re(λi) > 0. Hence, the stability criterion is
satisfied and the proposed method can be applied.

Equation (2.28a) for







f1(t)
f2(t)
f3(t)







=







0.2224t + 9.6811 cos t + 4.7454 sin t + 0.41726
1.5605t + 6.7476 cos t + 15.6212 sin t + 0.04966
0.77948t + 7.2921 cos t + 6.1854 sin t + 0.90272







(2.30)

admits the exact solution yex =
{

cos(t) 2 sin(t) t/5
}T

. Figure 2
shows the solution as compared with the exact one as well as the
error e = y− yex.

Example 3. Third-Order ODE. Two-Degree-of

Freedom System
In this example, we solve the third-order IVP:

{

y′′′1
y′′′2

}

+
[

4.0735 0.6350
4.5290 4.5670

]{

y′′1
y′′2

}

+
[

0.6323 0.2784
0.09754 0.5468

]{

y′1
y′2

}

+
[

0.9575 0.1576
0.9649 0.9706

]{

y1
y2

}

=
{

f1
f2

}

(2.31a)

y0 =
{

0 2
}T

, y′0 =
{

1 −1
}T

, y′′0 =
{

−1 −1.5
}T

(2.31b)

The matrix K and its eigenvalues are:

K =





0 −I 0

0 0 −I

a3 a2 a1





6×6

, (2.32a)

eig(K) =































λ1
λ2
λ3
λ4
λ5
λ6































=































5.9076 + 0.0000i
2.6155 + 0.0000i
0.0209 + 0.5037i
0.0209 − 0.5037i
0.0378 + 0.4432i
0.0378 − 0.4432i































(2.32b)

We observe that Re(λi) > 0. Hence, the stability criterion is
satisfied, and the proposed method can be applied.

Equation (2.31a) for

f = e−0.5t

[

−4.6069 cos t − 1.3023 sin t/4
30.2989 sin t/5 − 178.439 cos t/25

]

(2.33)

admits an exact solution:

yex = e−0.5t

{

sin t
cos t

}

(2.34)

Figure 3A shows the computed solution for h = 0.01 as
compared with the exact one. Figure 3B shows the error of the
solution and its derivatives for h = 0.01. Moreover, Figure 3C
shows the error max

∣

∣yk(ti)− (yex)k(ti)
∣

∣, (k = 1, 2, 0 < ti ≤ 100)
vs. the time step h. Apparently, this validates the convergence
of the numerical scheme. Finally, Figure 3D verifies that the
convergence is of O(h2) (Katsikadelis, 2016b).
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FIGURE 2 | Solution and error in Example 2.

Example 4. Third-Order ODE.

One-Degree-of-Freedom System. Stable Solution
In this example, we study the IVP:

y′′′ + 2y′′ + 10y′ + y = 0 (2.35a)

y(0) = 1, y′(0) = −1, y′′(0) = 1 (2.35b)

Equation (2.35a) admits an exact solution:

yex = c1 exp(r1t)+ c2 exp(r2t)+ c3 exp(r3t)

where,







r1
r2
r3







=







−0.9490+ 2.9843i
−0.9490 − 2.9843i
−0.1020+ 0.0000i







,







c1
c2
c3







=







0.0371+ 0.1399i
0.0371− 0.1399i
0.9257− 0.0000i







The matrix K and its eigenvalues are:

K =





0 −1 0
0 0 −1
1 10 2





3×3

(2.36a)

,

eig(K) =







λ1
λ2
λ3







=







0.1020+ 0.0000i
0.9490+ 2.9843i
0.9490− 2.9843i







(2.36b)

Obviously, it is Re(λi) > 0. Therefore, the solution is stable as it
satisfies the stability condition. Figure 4 shows the solution and
the corresponding error.

Example 5. Third-Order ODE.

One-Degree-of-Freedom System. Unstable Solution
In this example, we study the IVP:

y′′′ + 2y′′ + 10y′ + 25y = 0 (2.37a)

y(0) = 1, y′(0) = −1, y′′(0) = 1 (2.37b)

Equation (2.37a) admits an exact solution:

yex = c1 exp(r1t)+ c2 exp(r2t)+ c3 exp(r3t)

where







r1
r2
r3







=







0.1623+ 3.2754i
0.1623− 3.2754i

−2.3246+ 0.0000i







,







c1
c2
c3







=







0.1429+ 0.0937i
0.1429− 0.0937i
0.7142− 0.0000i







The matrix K and its eigenvalues are:

K =





0 −1 0
0 0 −1
25 10 2





3×3

, (2.38a)

eig(K) =







λ1
λ2
λ3







=







5.0000+ 0.0000i
−1.5000 +4.7697i
−1.5000− 4.7697i







(2.38b)

Obviously, it is Re(λ2) < 0, Re(λ3) < 0. Therefore, the solution
is unstable because it does not satisfy the stability condition.
Figure 5 shows the solution and the corresponding error.

3. LINEAR EQUATION WITH VARIABLE
COEFFICIENTS

To this point, we have developed the method for the
solution of Equation (1.1a) with constant coefficients matrices.
If the matrices a1, a2, . . . an depend on the variablet, i.e.,
a1(t), a2(t), . . . an(t), the solution procedure described previously
remains the same except that the elements in the last row of K,
Equation (2.4b) depend on time. Therefore, this matrix must be
reevaluated in each time step of the solution procedure. In the
following, the efficiency of themethod is demonstrated by solving
ODEs with variable coefficients.
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FIGURE 3 | (A) Solution y = {y1 y2}
T
in Example 3. (B) Error in Example 3. (C) Error max

∣

∣yk (ti )− (yex )k (ti )
∣

∣ (k = 1, 2, 0 < ti ≤ 100) in Example 3. (D) Computed and

expected error ek = ek (h); ck = ek (1)/h(1)
2 (k = 1, 2) in Example 3.
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FIGURE 4 | Solution and error in Example 4.

FIGURE 5 | Solution and error in Example 5.

Example 6. Variable Coefficients. Second-Order ODE.

One-Degree-of-Freedom System
In this example, we solve the IVP:

(1+ t2)y′′ + ty′ + e1/(1+t)y = p(t) (3.1a)

y0 = 1, y′0 = −0.1 (3.2b)

This problem for

p(t) = e(−t/10){[e1/(t+1) − 99

100
(t2 + 1)− t

10
] cos t

+ (1− sin t

5
) sin t}

admits an exact solution yex(t) = e−0.1t cos(t).

We observe that a1 = t
1+t2

≥ 0, a2 = e1/(1+t)

1+t2
> 0.

Therefore, the stability condition is satisfied for all values of t,
and the developed solution procedure can be employed. The
computed solution in the interval 0 ≤ t ≤ 20 is shown
in Figure 6 as compared with the exact one together with the
error e = y− yex.

4. NON-LINEAR EQUATIONS

The n-th Order Non-linear ODE
The solution procedure developed for the linear equations
can be straightforwardly extended to non-linear equations.
However, in this case, the stability condition applies locally,
which demands adequate reduction of the time step to
ensure linearization.
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FIGURE 6 | Solution y and error y − yex in Example 6.

The IVP for the non-linear N-degree of freedom systems can
be formally stated as:

y(n) + G(t, y, y′, y′′, . . . y(n−1), y(n−1)) = f(t),

t ∈ [0,T], T > 0 (4.1a)

y(0) = y0, y′(0) = y′0, y′′(0) = y′′0, . . . , y
(n−1)(0)

= y
(n−1)
0 (4.1b)

where G(t, y, y′, y′′, . . . y(n−1), y(n−1)) is an N × 1 vector whose
elements are in general non-linear functions of the components
of the vectors: y, y′, y′′, . . . y(n−1), y(n−1).

Using the transformation (2.1), Equation (4.1a) becomes:



































x′1
x′2
x′3
...

x′n−1

x′n



































+



































−x2
−x3
−x4
...

−xn
G(t, x1, x2, . . . xn, )



































=



































0

0

0
...
0

f



































(4.2)

Thus, the IVP (4.1a,b) is written in matrix form:

u̇+F(u) = p(t) (4.3a)

u(0) = u0 (4.3b)

where

u =



































x1
x2
x3
...

xn−1

xn



































L×1

, (4.4a)

F(u) =



































−x2
−x3
−x4
...

−xn
G(t, x1, x2, . . . xn, )



































L×1

, p =



































0

0

0
...
0

f



































L×1

(4.4b,c)

Equation (4.3) is solved using the procedure developed in
Katsikadelis (2016b) for the non-linear parabolic equation. Thus,
Equation (4.3a) for t = 0 gives:

q0 = [p0 − F(u0)] (4.5)

in which the vector q0 denotes u̇
Then, Equation (4.3a) is applied for t = tn:

qn + F(un) = pn (4.6)

Moreover, we have [see (Katsikadelis, 2016b)]:

un = un−1 +
h

2
qn−1 +

h

2
qn (4.7)

Eqations (4.6) and (4.7) are combined and solved for qn, un with
n = 1, 2, . . . .The solution can be obtained using an iterative
procedure in each step. A simple procedure is to substitute
Equation (4.7) into Equation (4.6) and solve the resulting non-
linear algebraic equation for qn. The solution can be obtained by
employing any ready-to-use subroutine for non-linear algebraic
equations. In our examples, the MATLAB function fsolve has
been employed to obtain the numerical results. The efficiency
of the described procedure to solve non-linear equations is
demonstrated by the following examples. All equations satisfy the
stability condition locally.

Example 7. Non-linear Second-Order ODE.

One-Degree-of-Freedom System
The described numerical procedure is used to solve the IVP for
the Duffing equation:

y′′ + 0.2y′ + y+ y3 = f (t) (4.8a)

y(0) = 0, y′(0) = 1 (4.8b)

For f (t) = e−3t(sin t)3/10 − e−t/10 sin t/100, the IVP (4.8a,b)
admits an exact solution uex(t) = e−0.1t sin t.

In this case, the vectors involved in Equations (4.3a,b) are:

u =
{

x1
x2

}

, G(u) =
{

−x2
0.2x2 + x1 + x31

}

,

p(t) =
{

0
f (t)

}

, u0 =
{

0
1

}

The solution together with the error y − yex for 1t = 0.01 is
shown in Figure 7A. Besides, Figure 7B shows the phase plane of
the solution.
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FIGURE 7 | (A) Solution y(t) and error y − yex in Example 7. (B) Phase plane

(0 ≤ t ≤ 500, h = 0.1) in Example 7.

Example 8. Non-linear Second-Order ODE.

One-Degree-of-Freedom System Exhibiting Softening
The numerical procedure for non-linear equations is employed
to solve the IVP describing the response of a system exhibiting
softening, namely,

y′′ + 0.2y′ + 40y− y3 = f (t) (4.9a)

y(0) = 0, y′(0) = 1 (4.9b)

For f (t) = 38.99e−0.1t sin t − e−0.3t(sin t)3, the IVP (4.9a,b)
admits an exact solution yex(t) = e−0.1t sin t.

In this case, the vectors involved in Equations (4.3a,b) are:

u =
{

x1
x2

}

, G(u) =
{

−x2
0.2x2 + 40x1 − x31

}

,

FIGURE 8 | (A) Solution y(t) in Example 8. (B) Derivative y′(t) of the solution in

Example 8. (C) Error y − yex in Example 8.

p(t) =
{

0
f (t)

}

, u0 =
{

0
1

}

The computed solution and its derivative are shown in
Figures 8A,B, respectively, as compared with the exact ones.
Moreover, the computed error y − yex for 1t = 0.01
is shown in Figure 8C. Apparently, the obtained results
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show that the proposed method can solve efficiently systems
exhibiting softening.

Example 9. The Van Der Pol Equation
In this example, the IVP for the Van der Pol equation is
solved, namely,

y′′ + µ(1− y2)y′ + y = 0 (4.10a)

y(0) = 0, y′(0) = 0.1 (4.10b)

The solution obtained for various values of the parameter µ is
shown in Figure 9. Apparently, the method works for a long
duration and large values of µ , where the system becomes stiff.

Example 10. The Elastic Pendulum
The elastic pendulum (Figure 10A) is chosen as a two-degree-of-
freedom non-linear system. In this pendulum, the rod is assumed
elastically extensible with an axial stiffness k = EA/l, where A
is the area of the cross-section of the rod and E the modulus of
elasticity of its material.

In Cartesian coordinates x(t) y(t), the motion of the
pendulum is governed by the two non-linear equations of motion
(Katsikadelis, 2020).

mẍ+EA

L

(

1− L
√

x2 + y2

)

x = 0 (4.11a)

mÿ+EA

L

(

1− L
√

x2 + y2

)

y = −mg (4.11b)

with the initial conditions.

x(0) = x0, ẋ(0) = ẋ0, y(0) = y0, ẏ(0) = ẏ0 (4.12)

This problem, in absence of gravity, i.e., mg = 0, has
been used as a benchmark problem by earlier investigators
(Bathe, 2007) to check the performance of their method in
an effort to overcome the instability of the Newmark method
arising when long-durationmotions are considered in non-linear
structural dynamics.

The pendulum is studied using the procedure presented in
Section Non-linear Equations with data: l = 3.0443m, EA =
104N, x0 = 0, ẋ0 = 7.72ms−1, y0 = −l, ẏ0 = 0, m =
6.667 kg, ρA = 6.57kg/m, which are the data employed
in Bathe (2007). The response of the system obtained with
1t = 0.001 is presented in Figure 10B and is identical with
the exact solution (Beléndez et al., 2007). In Figure 10C, the x-
displacement obtained with 1t = 0.001 in the intervals 0 ≤
t ≤ 5 and 990.09 ≤ t ≤ 995.09 has been plotted. This
demonstrates that the response remains unchanged after a long
duration of motion. Figure 10D shows that the total energy of the
system is conserved. It is apparent that the proposedmethod does
not exhibit a period elongation and an amplitude decay when
analyzing the dynamic response of non-linear systems (Kuhl and
Crisfield, 1999). Finally, Figure 10E shows the response of the
elastic pendulum obtained using the current scheme with 1t =

0.01 and Newmark’s trapezoidal scheme with 1t = 0.00001.
Apparently, the present scheme performs well for a relatively
large time step, while Newmark’s scheme shows instability even
for a very small time step.

Example 11. Variable Coefficients. Second-Order

Non-linear ODEs. Two-Degree-of-Freedom System
The motion of a planet around the Sun is described by the system
of differential equations:

d

dt
(mp ẋ)+ GmpMS

x

r3
= 0 (4.13a)

d

dt
(mp ẏ)+ GmpMS

y

r3
= 0 (4.13b)

subject to the initial conditions

{x(0), y(0)} = {x0, y0}, ẋ(0), ẏ(0)} =
{

ẋ0, ẏ0
}

(4.13c,d)

where r = (x2 + y2)
1/2

; mp,MS the mass of the planet and Sun,
respectively, and G the universal gravitation constant (Murray
and Dermott, 1999). For variable planet mass mp = m0m(t)
and variable Sun mass MS = M0M(t), Equations (4.13a,b) are
generalized as:

ẍ+ ṁ

m
ẋ+ µM(t)

x

r3
= 0 (4.14a)

ÿ+ ṁ

m
ẏ+µM(t)

y

r3
= 0 (4.14b)

in which µ = GM0 is the standard gravitational parameter.
Equations (4.14a,b) are solved numerically with µ = 1 and

initial conditions:

{x(0), y(0)} =
{

0 13.3333
}T

,

{ẋ(0), ẏ(0)} =
{

-0.2738 0.09129
}T

(4.15a,b)

First, the solution is obtained for constant Sun mass M(t) =
1, constant planet mass m(t) = 1, and the specified initial
conditions (4.15a,b). The exact orbit is the ellipse with rmin =
10 and rmax = 20 (see Figure 11A). Figures 11B,C show the
solution as compared with the exact one. Moreover, Figure 11D
shows the error = r − rex for long the duration of the motion.
Note that for h ≤ 0.01, the error does not increase.

The IVP is now solved for a variable mass of the planet and
the Sun. Results for the following four cases have been obtained
with 1t = 0.2.

(i) Variable Sun massM(t) = exp(−0.001t) and constant planet
massm(t) = 1.

(ii) Constant Sun mass M(t) = 1 and constant planet mass
m(t) = 1.

(iii) Constant Sun mass M(t) = 1 and decreasing planet
massm(t) = exp(−0.005t),

(iv) Constant Sun mass M(t) = 1 and increasing planet
massm(t) = exp(0.005t).

The results have been plotted using polar coordinates in
Figure 11E. This figure gives an insight into the behavior of the
system Sun-planet when either the mass of the Sun or the mass of
the planet varies with time.

Frontiers in Built Environment | www.frontiersin.org 13 April 2021 | Volume 7 | Article 621037

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Katsikadelis Solution of Higher-Order ODEs

FIGURE 9 | Solution y(t) and phase plane in Example 9.
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FIGURE 10 |
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FIGURE 10 | (A) Elastic pendulum in Example 10. (B) Elastic pendulum using the present scheme with 1t = 0.001 in Example 10. (C) The x-displacement in the time

intervals 0 < t < 5 and 990.09 < t < 995.09 with 1t = 0.01 in Example 10. (D) Energy variation in Example 10. (E) The x-displacement using (left) current scheme

with 1t = 0.01 and (right) Newmark’s trapezoidal rule with 1t = 0.00001 in Example 10.
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FIGURE 11 | (A) The heliocentric coordinate system (r, θ ) for the ellipse in Example 11. (B) Plot of the solution using polar coordinates in Example 11. (C) Plot of the

solution r(t) in Example 11. (D) Error = r − rex in Example 11. (E) Orbit of a planet when the mass of the planet or the mass of Sun varies with time in Example 11.

Example 12. Fourth-Order ODE.

One-Degree-of-Freedom System
In this example, we study the IVP

y(iv) + y3 = cos t + cos3t (4.16a)

y(0) = 1, y′(0) = 0, y′′(0) = −1, y′′′(0) = 0 (4.16b)

The problem admits the exact solution yex(t) = cos t.

In this case, the vectors involved in Equations (4.3 a,b) are:

u =















x1
x2
x3
x4















, G(u) =















−x2
−x3
−x4
x31















,

p(t) =















0
0
0

cos t + cos3t















, u0 =















1
0
−1
0
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FIGURE 12 | (A) Solution in Example 12 (1t = 0.005). (B) Error y − yex for various values 1tin Example 12.

Figure 12A shows the solution with 1t = 0.005 as compared
with the exact one. Moreover, Figure 12B shows the computed
error y − yex for various values of the time step 1t. The local
stability requires a very small time step to reduce the error
(see Figure 12B).

5. CONCLUSIONS

The paper presents a direct time integration method for solving
numerically higher-order linear and non-linear ODEs. The
quintessence of the method is to use the well-known state-space
representation to transform the differential equation of order
n > 1 into a system of L = n × N simultaneous first-order
equations, and subsequently, to solve it using the numerical
method developed recently by Katsikadelis for systems of first-
order parabolic differential equations (Katsikadelis, 2016b). An
important advantage of the developed method is that it captures

the periodic behavior of the solution, where many of the
standard numerical methods may be ineffective or produce
highly inaccurate results.

The investigation of the stability of the numerical scheme
results in the condition that the coefficient matrices of
the differential equation must satisfy. The stability does
not require symmetrical and positive definite coefficient
matrices. This advantage is important because the scheme
can find the solution of differential equations resulting
from methods in which the space discretization does not
result in symmetrical matrices, for example, the boundary
element method.

The present method also solves equations having variable
coefficients if the stability condition is satisfied in all instances.
For non-linear equations, the derived stability condition
should be satisfied locally. The method is simply implemented
and self-starting. It has second-order accuracy and does not
have numerical damping or period elongation. It performs
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well when motions of long duration are considered, and it
can be employed as a practical method for integration of
stiff higher-order differential equations as well as equations
with stiffness softening, where widely used methods may
not be effective. Several well-corroborated examples and
numerical experiments are presented, including linear
as well as non-linear equations of benchmark problems,
which demonstrate the efficiency and accuracy of the
developed method.
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