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In the building and construction sector, the mismatch between predicted and measured
energy consumption is a well-known phenomenon called the performance gap. A
promising approach to reduce the performance gap and thus improve the current
building energy performance assessments are methods based on in-situ
measurements. In this work, we present a building assessment process based on a
novel, easily deployable wireless sensor kit. The basic sensor kit for building energy
assessment presented in this study consists of a heating energy input node, several indoor
temperature nodes, an outdoor temperature node, and a heat flux sensor. Specifically, the
study outlines a medium-scale deployment of the sensor kit in eight occupied single-family
homes in Switzerland and identifies the benefits of such an approach in the estimation of
the overall heat loss coefficient and U-values. The findings of this study suggest that such
sensor kits could be effectively used for rapid building performance assessment, and the
paper concludes by outlining the potential benefits and implementation challenges of a
larger scale study.
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INTRODUCTION

Buildings make up 36% of the final energy consumption and 40% of the energy-related
greenhouse gas emissions in Europe (United Nations Environment Programme and
International Energy Agency, 2018). As a result, buildings are vital for any endeavor to
reduce primary energy consumption and greenhouse gas emissions, despite the fact that
most of the buildings in the western world have already been built. Specifically, the IEA
estimates that in the United States and the European Union, 60% of the current building stock
will still be in operation in 2050 (International Energy Agency and Organisation for Economic
Co-operation and Development, 2013). Hence, within the building sector, building
refurbishments are essential to reduce energy consumption and greenhouse gas emissions.
In Switzerland, the reduction of greenhouse gas emissions of the building stock is a key
mitigation measure of the energy strategy 2050, which aims to reduce the energy-related
greenhouse gas emissions of Switzerland by 77% by 2050 in relation to reported levels in
2000 (Prognos, 2012).
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In the following subsections, we briefly introduce the
performance gap, the current state of smart meters, and the
current state of the art of in-situ measurements for building
performance assessments.

Performance Gap
The key departure point of this research is that building
retrofitting will play a key role in achieving this transition, and
therefore more site-specific approaches to understanding the
phenomenon of the performance gap are warranted. The
performance gap in the building and construction sector
occurs when the calculated energy consumption does not
match the measured energy consumption in buildings (de
Wilde, 2014). This phenomenon affects building retrofits in
two ways, which are known as the prebound effect and
rebound effect.

The prebound effect occurs in building energy assessments of
older buildings to be retrofitted (Sunikka-Blank and Galvin,
2012). These assessments often yield a higher energy
consumption than what is measured. There are multiple
drivers for this performance gap, including: 1) the lack of
accurate data about the building; 2) building properties
changing due to aging or moisture; 3) undocumented
refurbishments; 4) inefficient operation of building systems;
and 4) occupant behavior. Therefore, in the field, building
assessors must make assumptions about the missing
information on visual inspections and professional experience.
Remote measurements are not widely used due to their typically
cumbersome and costly nature (Ma et al., 2012). Overall, building
assessments are prone to inaccuracies and lead to an inaccurate
impression of the current state of the building.

Secondly, due to the significant uncertainties of the building
assessment, increased safety margins need to be considered when
sizing retrofit measures. As a result, often inappropriate or
ineffective retrofit measures are suggested (Ma et al., 2012).
Additionally, occupant energy behavior before and after the
retrofit can change, and the varying quality of workmanship
and construction materials can also modify the energy
consumption. This phenomenon is known as the rebound
effect and leads to an underestimation of the building energy
consumption expected after the refurbishment (Sunikka-Blank
and Galvin, 2012).

Similar results have been found for Switzerland. While Cozza
et al.’s building-stock level survey has found that the median of
the buildings performs better than their energy rating, low
performing buildings (G-label) use 40% less energy than
expected, and higher-performing buildings (B-label) use 12%
more energy (Cozza et al., 2019). Similarly for retrofits, the
achieved energy savings were 37% lower than what the
standard-based calculation suggested due to prebound and
rebound effects (Cozza et al., 2019). Additionally, a study
regarding energy labels in Switzerland has found that even
though, on average, the buildings perform as indicated by
their energy labels, 49% notably use more energy than
anticipated by the label (Reiman et al., 2016).

In short, the worst-case scenario of the predicted energy
savings of a building retrofit is doubly diminished due to 1)

the overestimation of the energy consumption of the unretrofitted
building, and 2) the underestimation of the energy consumption
of the retrofitted building. In combination, the prebound effect
and the rebound effect result in an estimated performance gap of
30% on average within the European building stock (Sunikka-
Blank and Galvin, 2012).

Smart Meters
Smart meters can be used to derive building performance
characteristics, reducing the performance gap. Researchers are
anticipating easier access to energy data due to the wide rollout of
smart meters (Senave et al., 2019a, 2019b; Chambers and
Oreszczyn, 2019; Deb et al., 2019). The penetration rate of
smart meters in the European Union is expected to be 43% by
the end of 2020 and 92% by 2030. The penetration rate varies
significantly throughout the European Union from 0% in
Germany to 100% in Sweden. The rollout for smart gas meters
is even slower, with an expected penetration rate of 44% by 2024
(Tounquet and Alaton, 2020). To accelerate the uptake of smart
meters, the European Union is developing the Smart Readiness
Indicator (Ma et al., 2020), which helps to raise awareness of the
benefits of building smartness. In 2018, the Swiss federal
government set the objective of an 80% penetration rate for
smart electricity meters by 2027, which are also required to have a
bi-directional interface for end-users. However, there is no
common standard required for the interface (Swiss Federal
Council, 2020). There are more than 700 Swiss electricity
suppliers, which are regulated on a cantonal or municipal
level1. Hence, any endeavor to collect meter-level electricity
demand data needs to either integrate smart meters across
different interfaces or negotiate access to the data with 700
different electricity suppliers. There are currently no plans for
smart gas meters in Switzerland.

Even with access to energy data, there remains the challenge of
disaggregation of the energy demand into categories, such as
space heating, appliances, and domestic hot water, which adds a
data processing step and uncertainty (Senave et al., 2019b; Deb
et al., 2019). Further, a significant amount of the energy supply for
space heating is not directly metered. Among the ones that are not
metered are typically systems based on wood, heating oil, and
coal, which account for 41% of the total heating energy use in the
European Union2 and 49% in Switzerland3, respectively.

Measurement-Based Building Performance
Assessment
To further improve the quality of building performance
assessment and subsequently reduce the performance gap,
several strategies exist to acquire operational data of buildings

1https://www.bfe.admin.ch/bfe/de/home/versorgung/stromversorgung.html
(accessed June 23, 2020)
2https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/
heating-energy-consumption-by-energy-sources.html (accessed July 1, 2020)
3https://www.bfs.admin.ch/bfs/de/home/statistiken/bau-wohnungswesen/
gebaeude/energiebereich.html (accessed June 24, 2020)
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with sensors and to derive building characteristics frommeasured
data. For example, Baker conducted 70 U-value measurements in
occupied traditional Scottish buildings using offline data loggers
(Baker, 2011). The author concludes that the calculated U-values
tend to be higher as compared to the corresponding
measurements.

Bacher et al. describe the experimental setup, data acquisition,
and data analysis of a monitoring campaign in an unoccupied
office space in Denmark (Bacher and Madsen, 2010). The
measurement data is used for the identification of suitable
thermal RC models (Bacher and Madsen, 2011). In total, 86
sensors and actuators were deployed in the single-story structure
with a footprint of approximately 100 m2. The experiments lasted
58 days in total. Further, the authors also detail data processing
(e.g., time synchronization of all sensors, treatment of gaps in the
measured data, comparison of redundant data, and visual
inspection of the entire data set). The time gaps in the data
lasted between 20 min to two hours. They derived two outputs
(overall heat loss coefficient and thermal capacity) to assess the
quality of various models. More examples of measurement
campaigns in testbed buildings can be found in (Janssens, 2016).

Dimitriou describes sensor deployment in 20 inhabited
domestic buildings in the United Kingdom (Dimitriou, 2016).
The author describes the effort in recruiting and coordinating
with the homeowners and provides an overview of the required
visits for the entire case study. More than 1,084 sensors were
deployed in total. The sensors included dataloggers for air
temperature, relative humidity, light intensity, radiator surface
temperature, whole-house electricity consumption, and gas
consumption. A nearby weather station provided weather data.
From the 20 houses investigated, only data from 11 houses could
be used for further modeling. The main reasons for the exclusion
of the other datasets were gaps in the data due to the low memory
capacity of the dataloggers, difficulties with scheduling visits with
occupants, erroneous sensor data due to sensormalfunctioning or
detachment of sensors, and connectivity issues regarding the
energy measurements. One building was excluded from further
modeling due to the complex heating system. The author details
the manual inspection and processing of the measurement data,
particularly the handling of gaps in the data and outliers.

The above-described examples concerned studies in mostly
occupied buildings. However, there are also methods available
that require vacant buildings, e.g., co-heating tests (Bauwens and
Roels, 2014). During co-heating tests, electric heaters are installed
to uniformly heat the building to a constant temperature, usually
25°C. By measuring the heat input, internal gains, solar radiation,
indoor temperatures, and outdoor temperatures, the heat loss
coefficient (HLC) can be determined, e.g., by linear regression.
Co-heating tests can also include blower door tests and tracer gas
tests for the assessment of the airtightness of the building. The co-
heating test is a quasi-steady-state method and typically requires a
test period of approximately 7–21 days (Alzetto et al., 2018a).
There are variants of the co-heating method that consider the
dynamic behavior of the building, which leads to shorter test
periods, e.g., QUB (2 days), P-STAR (3 days), or ISABELE (15
days) (Subbarao, 1988; Alzetto et al., 2018b; Thébault and
Bouchié, 2018). All variants of the co-heating methods are

intrusive and require extensive equipment. Senave et al.
investigated the determination of HLC in occupied buildings
omitting the requirement of a constant indoor temperature of
25°C (Senave et al., 2019a; Senave et al., 2019b; Senave et al.,
2019c; Senave et al., 2020a). The method does not require
auxiliary heaters or fans. Instead, the space heating input to
the dwelling is measured. The authors found that the accuracy of
the HLC is influenced by several parameters, e.g., the duration of
the test, the number of temperature sensors and their placement,
and the data analysis method. But also, the occupancy schedules
and the building energy performance levels influenced the
accuracy. The best methods can determine the HLC with an
accuracy of 2.5% (Senave et al., 2020b).

In the above-described examples, the authors used data
acquisition systems from multiple suppliers, often mixing
online logging solutions with offline data loggers as well as
merging data from the different systems. The authors in
(Bacher and Madsen, 2010; Dimitriou, 2016; Senave et al.,
2019c) mention gaps in the time series data, which needed to
be addressed during the data processing or lead to the exclusion of
the case study object from further use. For online monitoring
systems, gaps were noticed during the monitoring period, and
attempts were made to rectify the issues. For offline data loggers,
the issues were only noticed after the read-out of the data. The
deployment process in the examples is described in varying detail.
The shortcomings of the research outlined above are primarily
the lack of description of the required resources for the sensor
deployment, i.e., cost, time, personnel, tools, and materials. The
same holds true for the challenges encountered during the entire
deployment and data-processing. Moreover, experiences and
feedback from the occupants regarding the monitoring in their
environments or the deployment are also not reported.

Additionally, the literature review highlights that the
hardware-side of measurement-based building performance
assessment has improved little over the past ten years.
Evidence-based building performance assessment currently still
requires heterogeneous setups, including the deployment of
multiple sensors of different brands, which is cumbersome.
Moreover, offline dataloggers are still prevalent. This suggests
that smart meters are potentially useful for building energy
research. However, wide-scale easy access to space heating
input for an arbitrary building is still a long time coming due
to the varying availability of smart-meters, non-uniform access
policies to smart-meter data, and significant diversity of space
heating fuels, which includes fuels that are not directly metered.

Objectives of this Research
As described above, wide-scale on-site building performance
assessment is hindered by the practical challenges associated with
sensor deployment and access to heating energy data. This work
aims to objectively discuss the benefits and risks of using a cost-
effective and easy-deployable WSN for gathering building data for
assessing the building performance. We propose and demonstrate a
process that allows a wide-scale rollout of evidence-based building
performance assessment. We apply the process to estimate the heat
loss coefficient and U-values and demonstrate it on a residential
building case study. We present the methodology to estimate the
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heat loss coefficient and U-values. Finally, we describe the process
from WSN deployment to the inference of building characteristics
and discuss the encountered risks and learnings.

The paper is organized as follows: Section Wireless Sensor
Networks-Based Building Performance Assessment presents the
process of deploying a streamlined WSN for deriving heat loss
coefficients and U-values from in-situ measurement data in
occupied buildings. Section Case Study: Eight Residential
Building in a Moderate Climate presents the results of a case
study campaign in eight residential buildings and compares the
results inferred from the measurement data to standard values
assessed using conventional methods. Section Risks and
Learnings reports on risks and learnings encountered during
the case study campaign that, however, also apply to any
comparable measurement campaign. Section Conclusion and
Outlook concludes the work and provides an outlook.

WIRELESS SENSOR NETWORKS-BASED
BUILDING PERFORMANCE ASSESSMENT

In the following section, we outline a process to capture in-situ
data of occupied buildings. The process is based on the utilization
of a wireless sensor network (WSN) (Figure 1, step 1). The WSN
is deployed in the building while it is operated in a regular manner
(step 2). The data is acquired and screened (step 3). The process
concludes with the inference of energy-relevant characteristics of
the building (step 4).

Wireless Sensor Network Architecture
The novel WSN used in this work has been introduced previously
in (Frei et al., 2020), where performance, cost, and sensor choice
are discussed in detail. The WSN allows for measurements of air
temperature, relative humidity, supply and return temperature of
hot water from the heating system and the radiators, heat flux
through the walls and the windows, luminosity, oil flow,
electricity, window opening times, and CO2-concentration.
The modular design and the open-source architecture allow
tailoring the number and type of sensors to the specific
needs4. Besides, streaming to an online database enables the
monitoring of measured data in near real-time, which allows
for fault detection during operation without requiring on-site
visits.

Deployment of the Wireless Sensor
Network
The deployment process includes the preparation of the sensor
deployment, communication with stakeholders, on-site visits,
sensor installation, maintenance, and removal of sensors. The
deployment of the WSN has been previously described for a
single building (Frei et al., 2020). Typically, before the
deployment of the sensors, sensor node positions are proposed
on the floor plans. The final sensor location, however, was
influenced by the individual preferences of the various
stakeholders. The installation of the sensor nodes took, on
average, seven minutes per sensor node.

Measurement-Data Screening
During the data collection process, it is likely that imperfections
occur in the data set, despite all efforts to avoid that. Such
imperfections consist of time gaps in the measurement data
and erroneous measurement data. Time gaps in the data can
be caused by transmission errors, which in turn can be caused by
weak wireless connections or a malfunction of one of the sending
or receiving devices (Frei et al., 2020). For this work, the data set
was split into two parts if the time gap was longer than one hour.
For time gaps shorter than one hour, the missing values were
replaced by linear interpolation between the measurement values
before and after the gap. At the end of the process, the longest
data set was used for further analyses.

It is common for distributed sensor networks that the
timestamps of the measured data from different sensors are
not synchronized. However, the timestamps of the measured
data from different sensors need to be synchronized to combine
the data in further calculations. For the time synchronization, a
new date vector was defined with the desired sampling
timestamps. The measured data was then linearly interpolated
at the new timestamps. A sampling interval of five minutes was
chosen for this work. For U-value estimation, the data was
cropped to have the first and last timestamps occur at the
same time of day. For HLC estimation, the data was cropped

FIGURE 1 | Flow chart of a building performance assessment process
using WSN.

4https://github.com/architecture-building-systems/Wireless-Sensor-Network
(accessed June 23, 2020)
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to keep only whole days worth of data. Then the daily average is
taken of the resampled data with the five-minute sampling
interval. Daily averages were chosen to counteract dynamic
thermal effects (Butler and Dengel, 2013; Chambers and
Oreszczyn, 2019).

Erroneous data can be caused by malfunctions on the sensor
node, malfunction of the sensor mount, and environmental
interferences. The data needs to be within reasonable limits and
internally consistent. We used visualizations, such as time-series
plots, raster plots, histograms, and statistical indicators, e.g.,
maximum, minimum, and mean, to detect outliers (Frei et al.,
2020). Further, we compared the indoor temperatures against each
other and the default value in the standard. In addition, we
compared the outdoor temperatures measured in-situ against
outdoor temperatures measured at a nearby weather station.

Inference of Building Characteristics
Once the measurement data is acquired and pre-processed, useful
information can be extracted. In the following subsections, the
methods to extract information relevant for a building
performance assessment are presented.

U-Value Calculation
Using the data from the heat flux sensors, the U-values can be
inferred. ISO 9869–1:2014 outlines the calculation of the U-value
based on two air temperature measurements of either side of the
building element and the heat flux through the building element
(International Organization for Standardization, 2014). The
thermal transmittance U (W/m2K) is calculated with the
average method, according to Eq. 1.

U � ∑n
j�1qj

∑n
j�1(Tij − Tej)

(1)

where qj is the heat flux (W/m2) through the building element at
time j, Tij is the interior environmental temperature (°C or K) at
time j, and Tej is the exterior environmental temperature (°C or K)
at time j.

Heat Loss Coefficient
The steady-state energy balance for calculating the required space
heating power is

Qh � Qloss −Qgains − Qsolar (2)

where Qh is the required space heating energy (W), Qloss are all
thermal losses through the building envelope (W), Qgains are the
internal gains from appliances and occupants (W), and Qsolar are
the solar gains (W).

For buildings with a low performing envelope, internal and
solar gains are much smaller than losses through the envelope
during the heating season. Hence, following the reasoning in
(Bauwens and Roels, 2014), equation Eq. 2 can be simplified to

Qh � Qloss � HLC · (Ti − Ta) (3)

where HLC is the heat loss coefficient (W/K), Ti is the indoor
temperature (°C), and Ta is the ambient temperature (°C). Unlike
the U-value, which represents transmission losses of an individual

component, the HLC lumps together all transmission losses and
ventilations losses in one value.

For cases where the same system supplies space heating and
domestic hot water (DHW), the total energy Qtot (W) can be
described as

Qtot � Qh +QDHW � HLC · (Ti − Ta) +QDHW (4)

where QDHW is the power needed for DHW production (W).
DHWproduction and hence QDHW is assumed to be independent
of indoor and outdoor temperatures (de Santiago et al., 2017).
Hence, when Qtot and the temperature difference are plotted
against each other, linear regression can be applied to the daily
averaged samples. The slope of the line resulting from the linear
regression model describes the heat loss coefficient of the
building. The contribution of DHW to the daily average
heating power results in a vertical shift of the curve but does
not influence the slope of the curve. Variations in DHW demand
can, however, lead to a wider spread of the data and hence lower
R2 values of the linear regression model. For the linear regression,
daily averaged arithmetic means for indoor temperatures were
used. For the outdoor temperature, we chose measurements from
the sensors with the least influence from solar radiation, i.e., we
compared the three outdoor temperature measurements from the
U-value measurements and chose the one with the lowest mean
temperature.

In addition, the experimentally measured HLC, which is
derived from space heating energy input, indoor temperature,
and outdoor temperature (Eq. 3), the heat loss coefficient was
estimated by an energy assessor according to the SIA 380/1 (Swiss
Society of Engineers and Architects (SIA), 2016), where HLC in
(W/K) is defined as the sum of all transmission losses and the
ventilation losses:

HLC � ∑
n

i�1
(Ai · Ui · bi+li · Ψi+Χi) + qth · Aref · ρair · cair (5)

The transmission losses consist of the U-values Ui (W/m2K) of
the envelope elements multiplied by their respective surfaces Ai

(m2), the linear thermal transmittances Ψi (W/mK) multiplied by
their respective lengths li (m), and the point thermal
transmittances Xi (W/K). U-Values can be multiplied by
temperature adjustment factors bi (-) in cases where the
building element is adjacent to an unheated space instead of
the ambient air. bi is based on the ratio between the temperature
difference between the heated and unheated space and the
temperature difference between the heated space and outdoors.
Alternatively, tabulated values can be used. The ventilation losses
result from the multiplication of the air exchange rate qth (m3/
m2h) with the heated reference area Aref (m

2), the density of air
ρair (kg/m3), and the specific heat capacity of air cair (J/kgK).

CASE STUDY: EIGHT RESIDENTIAL
BUILDING IN A MODERATE CLIMATE

To demonstrate the aforementioned process, we conducted an
experimental study using eight occupied single-family residential
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buildings in Switzerland. Wireless sensor kits were deployed in
the buildings between the end of January to mid-May 2017 to
acquire measured data during the heating season and extract
information about the building properties and occupant
preferences.

Case Study Setup
The eight single-family buildings are located near the city of St.
Gallen in Switzerland. Initially, a local energy assessor was asked
to provide a list of potential measurement sites. The selection
criteria were oil-based heating systems and single-family as a
building type. However, to broaden the experiment, buildings
with different heating systems were also included. Documents
provided by the energy assessor included a heating energy
assessment based on local standards (SIA 380/1), photographs
of the envelope, an assessment of the envelope, a description of
the construction of the building and systems, and floor plans.
Table 1 provides an overview of the eight case study buildings.
The number of occupants per building varied from two to six
people. The construction years range from 1928 to 1984. The
combination of heating systems for space heating and domestic
hot water are different for each building except building two,
three, and four. In these three buildings, heating oil is used as an
energy carrier for domestic hot water and space heating. The heat
loss coefficients estimated according to SIA380/1 range from 274
to 533W/K. Most envelopes of the case study buildings exhibit
low thermal performance with envelope performance labels
ranging from C to G, according to GEAK (Hall, 2020). For
the base construction of the buildings, materials such as
concrete and bricks have been used. Hence the buildings have
a rather high thermal mass, indicated by their average heat
capacity of 0.14 kWh/m2. Building one and two have newer
double and triple glazing windows with U-values between 0.9
and 1.5 W/m2K. The majority of the windows in the remaining

buildings are double-glazed windows with U-values above
2 W/m2K. Occasionally, few windows were updated to
triple-glazing. The building’s windows-to-wall ratio (WWR)
ranges from 14 to 39%. The set of case study buildings is typical
for Switzerland, where 51% of all buildings were built before
1970 (Bau- und Wohnungswesen 2018, 2020), and 57% of all
residential buildings are single-family buildings5. Each
building was equipped with a sensor kit consisting of up to
18 sensor nodes. The number, type, and accuracy of the
selected sensors are described in Table 2.

Hardware Deployment
The occupant owners of the buildings selected were already
planning to perform a building energy retrofit to their
properties. Subsequently, they were engaged in the process and
the results, which might have contributed to a positive attitude
toward the measurement campaign. Additionally, all participants
stated that they would participate in a similar case study again,
even though on-site visits occurred more frequently than initially
anticipated, which was perceived as the most prevalent nuisance.
At the beginning of each site installation, the proposed sensor
positions were discussed with the occupants at the location of the
sensor nodes in the house. If necessary, the sensor positions were
revised. Common reasons for revised sensor positions were the
obstruction of the building element by furniture, undocumented
changes to the building structure or on request from the
occupants. Sensor nodes for U-value measurements were
placed on building elements, which were expected to cause the
most significant heat losses according to an energy assessment
based on the standard SIA380/1 (Swiss Society of Engineers and

TABLE 1 | Characteristics of the eight buildings selected for the case study.

No Build
year

Heated area Building
type

Occupants Energy carrier Heat
loss

coefficient

Energy
label

WWR Heat
capacity

(m2) Heating
system

Domestic
hot water

(SIA
380/1)
(W/K)

(%) (kWh/
K/m2)

1 1928 220 Single-family
house

5 Heating oil Electricity (resistive) 445 F 15% 0.14

2 1973 238 Single-family
house

4 Heating oil Heating oil 533 F 39% 0.08

3 1976 280 Single-family
house

6 Heating oil Heating oil 364 D 19% 0.22

3 1976 280 Single-family
house

6 Heating oil Heating oil 364 D 19% 0.22

4 1980 340 Single-family
house

2 Heating oil Electricity 512 D 17% 0.14

5 1980 248 Single-family
house

5 Heating oil Heating oil 284 C 15% 0.14

6 1979 179 Two-family house 2 Electricity (resistive) Electricity (resistive) 380 F 29% 0.08
7 1984 271 Two-family house 2 Electricity (heat pump) Electricity (heat pump) 274 C 24% 0.14
8 1967 146 Row house 4 Gas Gas 323 G 14% 0.14

5https://www.bfs.admin.ch/bfs/en/home/statistics/construction-housing/
buildings/energy-field.html
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Architects (SIA), 2016) and preferentially on the north façade.
Sensors for air temperature and relative humidity were
preferentially placed in the largest volume of each level. For a
detailed overview of all sensor locations and orientation, see
Supplementary Material.

Most of the time for installing the sensors was spent on sensor
cable management. On average, the installation of a sensor node
took seven minutes, while the removal of the sensor took three
minutes. Even with removable adhesives and carefulness during
removal, we could not avoid damages entirely. A private heating
system technician installed the oil flow meters.

For fault detection, we examined the measurement data daily
online. We particularly made sure that all installed sensor nodes
were recording data. Further, random checks were run on the
time series data, and whenever sensor nodes went offline or the
measured data exceeded the expected limits, an on-site visit was
scheduled to inspect the sensor. During on-site visits, we rectified
the issue that caused the on-site visit and checked all mechanical
mountings of the sensors. However, notably site maintenance-
visits typically occurred roughly a week after detection of a sensor
issue due to homeowner availability to allow access to the site.
This means that despite the ability to determine sensor faults
quickly, a gap of several days in the time series data would still
occur. Also, we were not always able to address the issue. For
instance, the respective oil and electricity meters in building four
were never successfully connected to the sensor nodes.

Results Data Screening
Wireless Sensor Network Performance
During the measurement campaign, the quality of data varied
widely between the buildings, from almost no measured data to
measured data with no significant gaps in the time series
(Figure 2). For building eight, we were only able to collect a
few hours of data, while the data sets for building two, six, and
seven are uninterrupted for several weeks. As previously
described in (Frei et al., 2020) two kinds of data losses have
been observed: 1) A partial loss, where continuous data is
available for some sensor nodes, while other sensor nodes
show significant data gaps, and 2) full connectivity loss, where
no data is available for any sensor nodes.

Outages due to gateway malfunction required a manual reset
on-site. The outages led to time gaps of multiple days, resulting in
a significant amount of lost data packages. Moreover, the
installation of the oil flow meters took place after the initial
sensor deployment and shrunk the complete length of data sets
further. The lost package ratio ranges from 0.8% in building six to
97.7% in building eight, with an overall average of 41.5%.
However, when focusing on the longest complete data streams
without long periods of missing data, the lost package ratios
improve to the range of 0.4% in building six to 56.8% in building
one with an overall average of 16.2%, as seen in Figure 3.

In building three, the heating system failed and was replaced
thirteen days after the installation of the oil flow meter. This

TABLE 2 | Details of the sensors used for the case study sensor kit.

Manufacturer Sensor Measured entity No. of sensors Accuracy

Sensirion SHT31 Air temperature and relative humidity 3 ±0.3°C, ±2%
Maxim integrated DS18B20 (2x) Supply and return temperature of heating systems 3 ±0.5°C

Indoor and outdoor air temperature 3
GreenTEG gSkin XO 669C Heat flux 3 ±3%
AMS TSL257 Light pulses from electricity meters (electricity consumption) 1 —

Braunmesstechnik HZ6-DR Volumetric oil flow 1 ±1%
SenseAir S8 CO2-concentration 1 ±40 ppm
C&K Reed switch 3 —

FIGURE 2 | Lost and received data of the entire measurement campaign
in days for each building.

FIGURE 3 | Lost and received data of the longest continuous dataset in
days for each building.
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“data loss” does not appear in Figure 2, since the data was not
lost during transmission, but the sensors were discarded during
the replacement of the heating system. The data loss rate in
building four was caused due to an unplugged gateway antenna
cable and delays in scheduling for an on-site visit due to
vacations of the occupants. In building eight, almost all data
was lost because the gateway initially worked for several hours
and then stopped working. The issue could not be fixed during a
follow-up visit.

Outdoor Air Temperatures
For our estimations, we exclusively used outdoor temperatures
measured by the WSN outside of the building. A common
approach is to rely on temperature data from a nearby
weather station. However, this might introduce significant
offsets due to influences such as the vertical thermal gradient
and local microclimatic conditions. In our example, using
measurements from a nearby (2.5 km) weather station would
have resulted in mean deviations of 0.1–2.5°C as compared to
measurements taken on site.

Indoor Air Temperatures
Figure 4 presents an overview of air temperatures measured in
the case study buildings. The mean of all averaged air
temperatures is 20.5°C, while the median is 20.4°C, which is
close to the standard room temperature of 20°C in SIA380/1.
However, average room temperatures of individual buildings
deviate up to 3.3°C from the standard room temperature, e.g.,
in building two, the average air temperature is 23.3°C. In building
four, the average air temperature is 18.2°C. This clearly
demonstrates the differences in indoor environments and
occupant preferences.

Electricity Consumption
Electricity consumption data with good data quality could be
accessed from building two and six. Figure 5 shows the two
successful attempts to measure the whole building electricity
consumption. The plots show two very different electricity
usage patterns. In building two (Figure 5, left), electricity is
only consumed by appliances and lighting. The electricity
consumption peaks between six and seven kilowatts, and the
baseload is approximately 500W.

Further, no usage pattern is apparent. In contrast, in
building six, electricity is used for DHW production,
heating, lighting, and appliances. There is a clear pattern
visible in the electricity consumption of building six
(Figure 5, right). During the night, peaks of approximately
24 kW are visible. The peaks are caused by the electric heating
system, which thermally loads large water tanks during the
night. These water tanks are for space heating only and not to
be confused with DHW storage. Further, there are peaks of
four kilowatts in the evenings and less frequent during the
days. The smaller peaks belong to the DHW boiler. The
baseload in building six is approximately 180 W.

The electricity demand in building two amounts to
approximately 9.4% of the oil demand for heating and DHW.
Detailed disaggregation of the electricity consumption data of
building six is available in (Deb et al., 2019). From (Deb et al.,
2019), it can be seen that space heating amounts to 86% of the
total energy input and appliances amount to 6%. These
observations support the assumption that internal gains can be
neglected for the HLC estimation of older residential buildings.

Building Characteristics
U-Values
Using the heat flux measurements, we were able to calculate
20 U-values by applying Eq. 1. Table 3 lists all sensor nodes and
their locations involved in the U-value measurements.

For light building elements such as windows, only
measurement values during night time (one hour after sunset
until sunrise) were used for the calculation of the U-values, as
recommended in ISO 9869, to avoid the effects of solar radiation.
Figure 6 provides an overview of the U-values derived from the
measurements compared to the U-values estimated by the energy
assessor, according to the SIA 380/1 (Swiss Society of Engineers
and Architects (SIA), 2016).

According to ISO 9869, differences between measured and
calculated U-values of more than 20% are considered significant.
Eleven differences between calculated and measured U-values
were found to be significant, i.e., 114, 115, 215, 216, 414, 315, 414,
416, 615, 616, 716 (Figure 7). Only one out of four light-weight
elements exhibited a significant difference between calculated and
measured U-value. This can be attributed to the fact that the light
building elements are expected to have a higher U-value.
Therefore, relative differences are smaller for the same
absolute difference. On average, the measured U-values are
lower than the U-values assumed in the norm-based
assessment, i.e., the envelope elements are performing better in
reality than assumed.

FIGURE 4 | Measured indoor air temperatures in the case study
buildings. The green line indicates the standard room temperature according
to SIA380/1.
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Heat Loss Coefficient
Before the estimation of the HLC, we applied further data-
processing. The measured oil demand was adjusted by the
efficiency of the oil boilers, as stated in the manuals, which
were 93% for building two and 91% for building three. The
electrical storage space heating system charges with constant

power during the night, depending on the storage temperature
and outdoor temperature. Hence, the length of the charging
process depends on the heat demand from the preceding day
and the current outdoor temperature. Therefore, the daily means
were calculated from 07:00 to 07:00 instead of midnight to
midnight. We excluded three days from the analysis due to
the very low heat demand of less than 25% of the mean daily
demand.

Figure 8 shows the heating curves for the buildings two, three,
and six. The slope of the linear regression approximates the heat
loss coefficient of the building. The R2 metric for building three
and six are 0.64 and 0.85, which is comparable to results from co-

FIGURE 5 | Measured electricity consumption of case study building two (left) and case study building six (right).

TABLE 3 | Location of U-value measurements (Orientation: N: north, E: east, S:
south, W: west, H: horizontal).

Building
no

Sensor
ID

Element
type

Orientation Room
type

Floor

1 114 Wall N Corridor 3. floor
1 115 Wall SW Bedroom 2. floor
1 116 Roof W Attic 4. floor
2 214 Window N Living room 2. floor
2 215 Wall N Living room 3. floor
2 216 Wall N Dressing

room
Basement

3 314 Wall W Living room 1. floor
3 315 Wall N Living room 3. floor
3 316 Wall N Wardrobe Basement
4 414 Wall N Living room 1. floor
4 415 Window N Living room 1. floor
4 416 Roof SE Bedroom 2. floor
5 514 Window N Workshop Basement
5 515 Wall N Playroom 1. floor
5 516 Roof E Staircase 1. floor/

2. floor
6 614 Wall E Living room 1. floor
6 615 Roof N Study room 1. floor/

2. floor
6 616 Window S Gym 2. floor
7 714 Wall N Bedroom 2. floor
7 715 Window O Bedroom 3. floor
7 716 Roof N Bedroom 3. floor
8 814 Roof H Living room 2. floor
8 815 Wall W Living room 2. floor
8 816 Floor H Entrance 1. floor

FIGURE 6 | Comparison of measured U-values and U-values calculated
according to SIA 380/1.
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heating studies (Butler and Dengel, 2013). However, the
regression for building two yields an R2 metric of 0.03 and an
underestimation of the HLC of 64% compared to the standard
assessment. Averaging over more than one day did increase the
HLC estimation to 481W/m2. However, the fit was still weak with
R2 � 0.09. The same procedure did not yield significantly different
results for building two and three. Similarly, considering solar
radiation did not significantly alter the results. Lastly, the HLC or
R2 metric for building two did not change significantly when
electricity demand was removed from the heat input. Using a
sliding window of three weeks yields the best results for the time

from April 7 to April 28 with HLC � 580W/K and R2 � 0.63.
Within the same period is a phase of apparent lower occupancy
from April 9 to April 17 (Figure 5, left). During this time, the
electricity demand exhibits a lower baseload and significantly
fewer peaks. Similarly, the CO2 concentration in the living room
exhibits fewer peaks and remains constant for several hours.
Hence, when the building is occupied, we suspect a strong
occupant interaction with the heat demand of the building,
e.g., strong fluctuations in DHW demand, substantial
variations in ventilation habits, or variations in shading habits.

In Figure 9, the measured heat loss coefficients are compared
to the calculated heat loss coefficients according to the local
standard SIA380/1 (Swiss Society of Engineers and Architects
(SIA), 2016). For building two and three, the measured heat loss
coefficients are by 3 and 13% higher compared to the calculated
assessment. For building six, the measured heat loss coefficient is
30% lower than the calculation.

For buildings two and six, observed deviations of the HLC are
consistent with the deviations observed for U-values:
Overestimation in the U-value result in an overestimation of the
HLC and vice versa. In contrast, the signs of the deviations are
opposite for building three. The measured U-values in building
three are, on average, 13% lower compared to the assessment,
whereas the measured heat loss coefficient is 13% higher than what
the assessment suggests.While theHLC depends on all transmissive
heat losses and ventilation losses, the U-value measurements are
spot measurements of transmissive heat losses, which represent the
particular building element. Hence, deviations between U-value
measurements and HLC estimation can stem from unaccounted
deviations, e.g., ventilation losses or other building elements.

RISKS AND LEARNINGS

In the following subsections, we will discuss the learnings from
the sensor deployment together with working with the
measurement data. We discuss the reliability of the sensor
network and the effort required to acquire the data.
Additionally, we critically review the approach, highlight the
challenges, and suggest improvements for further applications.

FIGURE 7 | Relative differences between U-values derived from
calculations and from measurements.

FIGURE 8 | Heating curves of case study buildings, two, three, and six.

FIGURE 9 | Comparison of measured vs. calculated (based on SIA 380/1
norm) heat loss coefficients.
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Technical
The quality of the raw datasets varies from only a few hours
measured to data sets with many gaps to data sets without
significant gaps. The same is true for individual sensor nodes
within a dataset. The gaps caused by the gateway impacted all data
from the sensor nodes connected to the respective gateway. These
gaps were caused by unplugging of the gateway, lose antenna
connections, and issues with the cellular modem. Such gaps
require significant effort spent on data analysis and
reconstruction and limit the quality of the data. Cases with
disconnected gateway antenna cable could be avoided with an
improved design of the gateway housing that secures the antenna
more safely. Cellular connectivity failures could be inhibited in
the future with a more reliable gateway design. Power supply
issues cannot be avoided entirely unless the entire wireless sensor
network is battery-driven. There is always a chance of an
electricity blackout or occupants unplugging the device. To
avoid unplugging of the power source, we suggest using a wall
outlet in the building that is not shared with other devices and
placing the gateway somewhere where it is not easily accessible to
occupants. Even though issues with the sensor network can be
detected within hours, rectifying the fault can take days or weeks,
depending on the availability of occupants. In addition, every visit
is an inconvenience to the occupants. Therefore, the sensor
network should be as minimal and as robust as possible.

Aside from gaps, invalid sensor data is a concern for sensor
nodes, e.g., sensors detaching. The sensors for the U-value
measurement, i.e., indoor temperature, outdoor temperature,
and heat flux, fell off on a few occasions. This is the
consequence of trying to mount the sensor in a way that the
sensor can be removed without damaging the surface of the
building element. Stronger adhesives could be used, but that
might also increase the risk of damage to the surfaces.

We conducted the measurements with a sampling interval of
five minutes, which is adequate for building energy applications.
The sampling time of five minutes resulted in a battery lifetime of
ten to twelve months for the temperature and heat flux sensors,
which is more than required for measurements of one heating
season in Switzerland. Sensors for energy use were wall-powered.
The energy meters were usually in the basement with nearby
power outlets. Only in building three, the electricity meters were
located outside of the building with no nearby power outlet.

Process
Wireless Sensor Network Deployment
Even though such measurements are often called non-intrusive, it
mostly refers to the physical nature of the measurements,
i.e., the measurements require no or very little physical change
to the building. Nevertheless, the measurements are an intrusion
to the privacy and comfort of occupants in their homes. While
privacy is a delicate topic, none of the occupants objected to a
sensor placement because of privacy concerns. This could be linked
to the positive bias of the occupants and voluntary participation in
a research project. Mandated in-situmeasurements might produce
different occupant reactions. The intrusion was most tangible for
occupants when negotiating sensor placements at the actual
location of the sensor.

The placement of the sensor nodes was planned carefully in
advance with the aid of floorplans and a performance assessment.
However, the planned sensor placement could not always be
implemented due to the objection of the occupants,
undocumented changes to the building, and furniture that
restricted access to place the sensors. Occupants either refused
to have the visual intrusion of the sensors in the living room and
bedroom, or they feared it might interfere with their routines. In
these cases, it is up to the measurement facilitator to propose
acceptable alternatives. Moreover, floorplans might not always be
available in future case studies.

The deployment of the sensors is already rapid. The most
time-intensive sensors are the sensors for U-value measurement
and the oil flowmeters. The sensors for the U-value measurement
require time-intensive cable management. A way to improve this
situation is to recombine the sensors into one sensor module for
outdoor temperature and one sensor module for indoor
temperature and heat flux. This approach would allow to
shorten the cables and shorten the associated cable
management process significantly.

The oil flow meters required a third party for installation,
which led to at least one additional site-visit. Non-invasive clamp-
on flow meters could save significant amounts of time and reduce
the number of on-site visits.

The current data screening process is manual and needs to be
carried out every day of the deployment for fault detection, which
is labor-intensive. The most common data integrity issues
included gaps in the time-series data and heat flux sensors
that detached from the wall. There is potential for
improvement by rule-based automation of the tasks. For
example, heat flux sensors that detach from the wall transmit
values close to 0W/m2 with little variance because both sides of
the sensor are exposed to the same air. Another example is the
DS18B20 sensors, which send −127°C in case of connectivity
issues between sensors and sensor module. Both values are easy to
detect and therefore can be used for automated detection of
measurement errors.

Inference of Building Characteristics
The envelopes of the case study buildings exhibit low thermal
performance, which justifies the simplifications in the heat
balance needed for the HLC estimation. This is supported by
the low relative share of internal gains. Nevertheless, this leads to
an underestimation of the HLC. The analysis of the HLC for
building two has shown that there is likely a strong impact from
occupant behavior on the space heating demand. Further, we
assumed that DHW demand is independent of temperature.
Hence, it does not influence the HLC estimation. However,
the DHW demand is likely to vary over time, which
introduces more variance in the HLC estimation.

The issues mentioned above seem to be permissible for
buildings with low energy performance. However, as other
researchers have shown, this is no more the case for high-
performing buildings (Alexander and Jenkins, 2015; Senave
et al., 2020b). Hence, buildings with high energy performance
require a more elaborate sensing setup to have a better grasp on
all heating inputs, i.e., internal gains, metabolic gains, solar
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irradiation, and space heating input independent of DHW
demand. On the bright side, higher-performing buildings tend
to have more homogeneous internal temperatures. Hence, the
number of temperature sensors can likely be decreased with
increasing envelope performance (Senave et al., 2020b).

While the HLC allows the assessment of the overall
performance of a building, it does not allow to pinpoint issues.
U-value measurements allow for spot checks of building
elements. Hence, U-value performance is a subset of the HLC
performance, which includes all transmissive losses as well as
ventilation losses. It is, therefore, possible that the average
deviation from the standard assessment is not equal for some
U-values and the HLC. For a better comparison between HLC
estimation and spot-measurements, the U-value of all building
elements should be measured as well as ventilation losses. Such
comprehensive spot measurements are likely to require many
more sensors, while linear and point thermal transmittance are
still unknown. Furthermore, the measurement of ventilation
losses requires significantly more time and tools, compared to
the deployment of more sensor nodes. Alternatively, the
ventilation losses could be estimated based on CO2

concentration measurements. However, more research is
required on that topic with regard to single-family buildings.

Measuring Space Heating Consumption
The measurement of energy carriers using the meters installed
proved to be challenging. This starts at the level of the meter type
and available interfaces. On the building systems level, it needs to
be understood which systems for space heating, DHW, and which
storage tanks are included and how they are combined. This
means that the instant primary energy use is not necessarily
proportional to the instantly supplied space heating energy.

On a meter level, the sensor kit is currently only able to access
energy consumption, e.g., electricity or gas, if the energy meter
outputs light pulses or electric pulses. Only in three cases, the
electricity was measured successfully. In the three other cases, the
energy meters did not have an appropriate interface. In one case,
the electricity meter was located outside and could not be
accessed with the sensor kit due to a lack of weatherproofing.
Natural gas was one of the primary energy sources for heating and
DHW. However, the energy meters installed in the case study
buildings were analog and could not be interfaced with the sensor
network, which is a commonly faced issue.

For oil-based heating systems, a third party installed an oil
meter between the oil tank and the heating system. The oil
meter had a cost of USD 225, and the installation of the oil
meter had a cost of approximately USD 210 on average. The
involvement of a third party for the installation of the oil
meter increased the scheduling complexity. The setup of the
heating systems of the case study buildings was heterogeneous
regarding the energy carriers and the integration of DHW
generation in the heating system. The measurement of energy
used for space heating also proved to be challenging on the
system level. There were four different systems for heating,
namely gas boiler, oil boiler, ground borehole with heat pump,
and electric resistive heating. Additionally, the energy source
for DHW was not necessarily the same as for space heating. In

the eight case study buildings, there were six different setups
for the supply of space heating and DHW. The inclusion of
DHW in the energy consumption data was addressed with the
assumption that DHW demand is independent of the heating
energy. Hence, it does not affect the slope of the heating curve.
However, for more detailed analyses, e.g., grey box modeling,
it is desirable to have access to heating energy demand data
only and with high temporal resolution. With the current
sensor suite, it is not possible to access the efficiency of the
heating system, i.e., we cannot determine how much energy
from the energy carrier is actually converted to heat and
transferred to the building and how much is lost in the
process. Hence, the heat loss coefficients calculated earlier
relied on efficiency data from the manuals. Hence, clamp-on
flow meters seem to be a promising alternative for accessing
space heating energy use.

Limitations
The construction of the buildings measured in this case study
were quite uniform, featuring a high thermal mass and low
performing thermal envelopes. For the heating season, this
allowed to make certain simplifications about internal heat
gains. As the standard-based assessments show, even for
buildings with a rather low windows-to-wall ratio, the solar
gains can be significant, particularly in spring and autumn.
For the buildings measured, they range from 20–36%
compared to the total losses in March of a standard year,
which means an error of the HLC estimate in the same order
of magnitude. For different conditions, e.g., light-weight
construction, milder climate, or better-performing envelopes,
the impact of solar gains could be even larger, and hence the
underlying assumptions for the estimation of the HLC need to be
reviewed. In cases where higher accuracy is required, an on-site
solar radiation measurement is needed.

Disturbance by solar radiation was minimized by placing
outdoor temperature sensors preferentially on the north façade.
In the extreme case of building six, where one U-value setup was
mounted on a window on the south façade, only night values
were used to compute the U-value, which is in line with ISO
9869. Although ISO 9869 does not require shaded sensors, the
difficulty of measuring the ambient temperature is discussed in
Annex A of that standard where shading is suggested. The
preferential installation on the north side and only using night
values for windows is also in accordance with the manuals from
the manufacturer of the heat flux sensors6. For practical reasons,
we decided not to install shading devices on the outdoor
temperature sensors and attempted to avoid solar
disturbances by appropriate sensor placement. Solar radiation
can cause temperature measurement errors of up to 0.5°C
(World Meteorological Organization, 2008, 86, 396;
Philipona et al., 2013). This might lead to a maximal
additional uncertainty of the HLC estimate in the range of

6https://greenteg.com/template/userfiles/files/gSKIN_U-Value%20KIT_Manual_
Version2.4.pdf
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3–5%, assuming an average temperature difference of 10–20°C
between indoor and outdoor.

While we were able to demonstrate that it is possible to
measure relevant building properties in high quality with less
effort as compared to previous studies (Bacher andMadsen, 2010;
Dimitriou, 2016; Alzetto et al., 2018b), we are aware that certain
assumptions taken to simplify the process risk bear additional
inaccuracies. We did not study the cumulative impact of these
inaccuracies, which require further investigations.

CONCLUSION AND OUTLOOK

Building performance assessment and retrofits are essential for
any comprehensive strategy to save greenhouse gas emissions and
primary energy consumption. Due to a lack of readily available
off-the-shelf hardware and tools for remote sensing of multiple
modalities in buildings, we developed a novel modular and open-
source sensor network for building performance assessment.

Within the Swiss case study presented in this paper, sensor kits
were installed in eight occupied single-family homes during the
heating season 2016/2017. The occupants well received the sensor
kits, and we were able to capture high-resolution time-series data.
The case study revealed several challenges of in-situ
measurements. First, the heating energy carriers and heating
system setup that we encountered were quite diverse, and
second, interfacing existing metering infrastructure was not
always feasible. This lean case study has highlighted that it is
possible to measure multiple modalities in buildings with one
sensor network, as well as install and collect the sensors with little
disturbance to the occupant and minimal damage to the building.
If the methodology presented in this paper and the lessons
learned from the case study were applied widely to the
existing building stock, it has the potential to improve the
effectiveness of building retrofit measures by providing a more
accurate building energy assessment. Consequently, this work
could help to accelerate the transformation of the building stock,
which is essential to mitigate anthropogenic climate change.

As seen in the literature, the frequently measured parameters
are indoor temperature, outdoor temperature, solar radiation,
and heating energy input. These parameters allow for an overall
assessment of the heating system and the building envelope.
Notably in practice, the envelopes of real buildings are not
homogeneous, but rather are an ensemble of different
envelopes with varied properties. Some properties are even
unsteady such as air change rate and shading. Hence, when it
comes to retrofit decisions, identification of the weakest elements
of the envelope should be prioritized to support strategic
retrofitting, and the approach outlined in this research would
support this kind of decision-making. In other words, the novel
approach presented here aids in identifying the quality of the
different envelope parts, and specifically spot measurements can
help to assess the different material properties such as U-value
measurements and surface temperature measurements.

Heating energy input is central to any building energy assessment.
However, it is challenging tomeasure the energy input in a generalized
and non-intrusive manner with a high temporal resolution, due to

many energy carriers and diverse heating system setups. Wide-scale
deployments of smart meters are seldom able to alleviate this fact. In
Switzerland, themajority of heating systems in single-family buildings
are water-based. Recent developments have made ultrasonic clamp-
on flowmeters significantly less expensive (<USD 1500). Hence,
measuring the heating energy input by measuring the water flow
rate from the heating system and the respective supply temperature
and return temperature appear to be a promising approach since the
space heating demand is measured independently of the primary
energy carrier and the system configuration. Clamp-on flow meters
were also suggested by Senave (Senave, 2019).

The communication and scheduling with the building owners
required a significant amount of time. To better prepare all
stakeholders, comprehensive information material could be
helpful, e.g., visual representation of the sensor nodes, a
written timeline of the sensor deployment, and examples of
measured data.

We expect that the cost of measurement-based building
assessment reduces due to technical developments in other
areas, such as more inexpensive batteries and more
inexpensive electronic components and sensors. For the future,
we envision a sensor system that is more reliable and requires less
effort to operate. We were already able to improve the
performance of the WSN by design changes to the gateway
based on the learning of this work. Ideally, the sensor system
works in conjunction with a wide range of heating energy carriers
and heating systems. Further, we envision a higher degree of
automation, i.e., automatic fault detection of the sensor network
and automatic processing of the sensor data for building
performance assessment. This would involve only the very
necessary sensors for a minimal amount of time. A basic
sensor suite for whole building energy assessment (overall heat
loss coefficient, thermal mass) could consist of a heating energy
input node (without DHW), several indoor temperature nodes,
an ambient temperature node, and a pyranometer. In addition,
the primary energy input could be measured in order to
determine the heating system efficiency. For the inspection of
individual building elements, U-value nodes could be added. Such
a sensor kit could be used for building assessment of older
buildings in need of a retrofit or for new or retrofitted
buildings for quality control assessment. However, even in the
future, some modalities might stay challenging to measure, e.g.,
metabolic energy input from occupants or the energy input from
wooden fireplaces.

Finally, in the presented case study, we deployed more sensors
than we used in the data analysis. We also deployed sensors for
CO2 concentration and reed switches for measuring the windows
opening times. In the future, these sensors could be used to infer
occupancy, air exchange rates, and air quality. Furthermore, some
of the sensors that measure air temperature, also measure relative
humidity, which could be used for thermal comfort assessment.
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