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The estimation of seismic damage to buildings is complicated due to the many
sources of uncertainties. This study aims to develop a new approach using an artificial
intelligence system called adaptive neuro-fuzzy inference system (ANFIS) model to
predict the damage of buildings at urban scale considering input uncertainties. First,
the study performed seismic damage evaluation of buildings utilizing the capacity
spectrum method (CSM) to obtain a set of 57,648 training data from a combination
of three main parameters, i.e., 6 earthquake magnitudes, 8 structural types, and
1,201 distances. Next, the data was used to develop a practical ANFIS model for
the seismic damage prediction. The variables of the fuzzy system are earthquake
magnitudes, structural types, and distance between epicenter and building. To validate
the applicability of the proposed model, analyses of spatial seismic building damage
under five possible earthquakes in Chiang Mai Municipality were performed by using
the proposed methodology. From the comparison of the damaged urban area, small
discrepancies between the CSM and the ANFIS results could be observed. It should
be noted that the proposed ANFIS model can predict the seismic building damage
reasonably well compared with the CSM. Using the method proposed herein, it is
possible to create damage scenarios for earthquake-prone areas where only a few
seismic data are available, such as developing countries.

Keywords: earthquake, building damage, neural network, fuzzy, ANFIS, uncertainty

INTRODUCTION

Earthquakes are natural disasters that can damage buildings and injure human life. The severity of
earthquake-induced building damage depends on many factors such as magnitude, distance from
epicenter, and geological conditions as well as seismic building performance. The past earthquake
data from the earthquake observation division (Thai Meteorological Department, 2019) show that
small earthquakes have frequently occurred in Northern Thailand. Although the magnitude was
small, it is a warning sign that a more massive damaging earthquake could happen anytime.
On May 5, 2014, there was a magnitude 6.3 earthquake in Chiang Rai Province. The strike
is the biggest recorded earthquake in Thailand, causing damage to buildings in a large area
(Saicheur and Hansapinyo, 2016).
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The time of occurrence of a potential earthquake is
unpredictable. Therefore, seismic risk assessment is necessary
for preparedness toward appropriate earthquake mitigation
activities. To provide a seismic decision-making strategic
plan, a performance-based earthquake engineering assessment
methodology has been developed. A detailed nonlinear
displacement-based method is a sophisticated calculation
providing how to enhance the seismic performance of a building.
However, such sophisticated methods are computationally
demanding for the assessment of large geographical areas.
An earlier method for the assessment for a city has been
developed by Applied Technology Council (1996) and FEMA
(1997) for buildings in the United States. Using the seismic
risk evaluation scheme, the most vulnerable building typologies
and urban districts in the event of an earthquake scenario
were detected. Following the work of Applied Technology
Council (1996) and FEMA (1997), other methods have been
further developed based on different approaches and specific
objectives. Risk-UE methodology was developed in the year of
2003 for the seismic risk of the European built environment
(Mouroux and Brun, 2006). Two methods, the empirical
method LM1 and the mechanical method LM2, were proposed.
These methods have been widely implemented for the seismic
risk assessment in many EU cities. Erdik (2017) proposed
an earthquake risk assessment methodology considering and
combining three main factors, such as earthquake hazard,
fragility/vulnerability, and inventory of assets exposed to
hazard. Boutaraa et al. (2018) proposed “RISK-UE” method
for the seismic vulnerability assessment at Chlef City (Algeria).
Lestuzzi et al. (2017) improved the RISK-UE LM2 method
for more accurate seismic damage of URM buildings with
stiff floors and RC shear wall buildings. Latcharote et al.
(2018) proposed “SLA-IES” tool for seismic loss assessment
of approximately 20,000 wooden buildings in Sendai City,
Japan using a physics-based model to evaluate building damage
and economic loss. Smerzini and Pitilakis (2018) presented a
prototype of seismic risk assessment at the city of Thessaloniki,
Northern Greece synthesizing earthquake ground motion by 3D
physics-based numerical simulations. Saicheur and Hansapinyo
(2017) evaluated seismic damage of buildings in Chiang Rai
Municipality from hypothetical earthquake scenarios based
on HAZUS methodology (FEMA, 2003). The fragility curves
of the buildings were developed to evaluate building damage
using the capacity spectrum method (CSM) (FEMA, 2015).
Recently, the Global Earthquake Model Foundation (GEM) has
developed the OpenQuake engine, state-of-the-art open-source
software, additionally for global seismic risk modeling (Silva
et al., 2020). The seismic damage prediction at a regional scale
was proposed for seismic risk assessment in Basel and Naples
with a building exposure modeling technique (Diana et al., 2019;
Polese et al., 2020).

Since building damage prediction deals with various uncertain
factors, a fuzzy logic theory was introduced for seismic
damage evaluation. Sen (2010) proposed a fuzzy logic model
to evaluate earthquake hazard in Istanbul City Municipality
and categorize the seismic risk of 1,249 reinforced concrete
buildings from possible earthquakes with Mw 7.0 or over. Deb

and Kumar (2014) presented the seismic damage assessment
in reinforced concrete buildings using fuzzy logic. The de-
fuzzification method was applied to estimate the damage index
corresponding to the damage state of the buildings. The damage
index was defined from 0 to 1, indicating damage level from
nonstructural damage to building collapse. Uncertainties in
the risk assessment and decision making on building retrofit
in Chiang Rai Municipality were studied by Ketsap et al.
(2019) using a fuzzy-based model. They considered seismic
hazard, building vulnerability, and building importance as the
fuzzy variables.

The membership function is a major component for solving
a fuzzy-based problem. It is mostly created based on expert
judgment basis, and it is not able to be adapted to new
input data resulting in solution accuracy. Also, estimation of
the building damage using the CSM and others for many
buildings is a time-consuming procedure and contains input
uncertainties. Therefore, a combination of fuzzy logic and
artificial neural network was proposed to solve a problem,
which is called the adaptive neuro-fuzzy inference system
(ANFIS). Various researchers have developed prediction models
for a possible future earthquake. Kamath and Kamat (2017)
presented the ANFIS modeling to predict earthquake magnitude
for the Andaman-Nicobar Islands considering four significant
features, such as latitude, longitude, depth, and magnitude.
The performance of each ANFIS model was measured based
on root mean squared error (RMSE). Mirrashid et al. (2016)
applied ANFIS to predict seismic moment magnitude for the
next earthquake using two seismic indicators, which were
the mean annual rate of exceedance from each record and
time interval between each record. The correlation factor of
98% showed the accuracy of ANFIS for earthquake magnitude
prediction. Ameur et al. (2018) proposed an ANFIS-based
ground motion model to predict PGA, PGV, and PSA. A dataset
of Next-Generation Attenuation relationships for the Western
United States (NGA-West2), including 2,335 records from
580 sites and 137 earthquakes, was used to train the model
considering three input parameters, which were Mw, RJB, and
Vs30. The mentioned research work indicates the applicability
of ANFIS on various prediction models in the earthquake
engineering field.

Chiang Mai Municipality is the most densely populated
city in Northern Thailand, located near the active Mae
Tha fault zone. Hence, surveying and collecting data on
different types of buildings in Chiang Mai Municipality in
the geographic information system (GIS) has been made for
many years. This study aims to extend this survey data
to predict building damage using the ANFIS model with
various membership types and functions. First, the study
performed seismic damage evaluation of buildings using the
CSM under various possible earthquake damage cases. Then,
the datasets of the building damages were used for training
and developing a practical ANFIS model for seismic damage
prediction. Using the proposed ANFIS method for the seismic
damage, a city with low to moderate earthquake risk, lacking
the past damage earthquake records, can initially establish
a building damage model with small effort. This is ideal
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FIGURE 1 | Overview of the study.

for cities in developing countries where incomplete seismic
information is available.

METHODOLOGY

Method to Develop an ANFIS Model
There are three main steps in this study, as shown in Figure 1.
The first step consists in creating a training dataset of seismic
damaged buildings in Chiang Mai Municipality. By using the
CSM, the training data comprised of the building damage
estimation under different combinations of three input data as
(1) 6 earthquake magnitudes, (2) 8 structural types of buildings,
and (3) 1,201 distances between a building and the epicenter.
The six earthquake magnitudes ranging from Mw 4.0 to Mw
6.5 were considered based on past earthquakes and present
fault data in Northern Thailand. The minimum magnitude value
of 4.0 is considered as it is the minimum value for which it
will be possible to observe structural damage. Using HAZUS
methodology (FEMA, 2003), buildings in the studied area were
classified into eight structural types as; wooden light-frame
building (W1), wooden commercial and industrial building
(W2), steel moment-frame building (S1), steel braced-frame
building (S2), steel light-frame building (S3), concrete moment-
frame building (C1), concrete shear-wall building (C2) and
concrete frame building with unreinforced masonry infill walls
(C3). With a scope of near-fault earthquake loss estimation, the
distance from the earthquake was between 0 and 12 km. The
loss at every 0.01 km distance was determined. Hence, the total
training data is 57,648 seismic building damage cases.

The second step of the methodology consists of developing
an ANFIS model for seismic damage prediction of buildings

using the training data developed in step 1. Based on the fuzzy
logic theory, as the variation of input data, the input data
is subdivided into several subsets. The so-called “membership
function” defines the variation of the data for each subset. In
this study, the three input data variations were treated with
eight possible geometric membership functions and two-member
division configurations. Either constant or nonlinear Sugeno
Fuzzy Inference System Model Output membership function
(Sugeno, 1985) was applied. Finally, 32 ANFIS models were
generated and the ANFIS model with the lowest RMSE was
proposed for predicting building damage scenarios. Finally, in
step 3, the results of the building damage estimated by the
proposed ANFIS model were compared with those computed by
the CSM under five different assumed earthquakes.

Case Study
Based on the historical seismicity of the area, Northern Thailand
is a seismic-prone region. Chiang Mai Province is located in
this region at 310 m height above mean sea level with a
latitude of 16 degrees North and a longitude of 99 degrees
East. The total area of Chiang Mai Province is approximately
20,107 km2, which is mostly mountains and foothills. In this
study, a high seismic risk area, Chiang Mai Municipality, was
selected because of a high-density building area with a total
area of approximately 40 km2. There is a historic old town
in the central area containing many historic buildings. From
building data collected in 2018, there were 80,290 buildings
in Chiang Mai Municipality, mostly constructed based on pre-
code seismic design without seismic consideration. In Table 1,
these 80,290 typical buildings are classified into eight structural
types by rapid visual screening (RVS) survey based on HAZUS
(FEMA, 2003). Some untypical buildings, e.g., Pagoda were
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TABLE 1 | Building information in Chiang Mai Municipality.

Occupancy type Structural type

C1 C2 C3 S1 S2 S3 W1 W2 Total

Assembly 2 2 57 2 0 15 1 0 79

Commercial 127 151 18,072 5 5 288 393 3 19,044

Hospital 4 12 136 2 0 3 2 0 159

Government 8 10 881 0 0 20 20 0 939

Historic 1 6 951 0 0 0 34 1 993

Hotel 70 158 412 2 0 5 4 0 651

Industrial 0 2 121 1 0 68 2 0 194

Office 15 47 397 1 0 19 7 0 486

General 9 2 12,117 4 0 111 328 0 12,571

Residential 143 400 40,206 2 0 95 2,972 6 43,824

School 60 19 1,198 8 0 30 35 0 1350

Total 439 809 74,548 27 5 654 3,798 10 80,290

excluded in the damage analysis, as it requires special capacity
and fragility functions.

The most common structural type in the study
area is the concrete frame building with unreinforced
masonry infill walls (C3), at 74,548 buildings. Second,
the number of wooden light-frame buildings (W1) is
3,798. 54.58% of the entire portfolio is residential (43,824
buildings). Next, the number of commercial buildings
are19,044. All of these are mostly low-rise buildings
(95.62%) with 4.22% of mid-rise buildings and 0.16% of
high-rise buildings.

The strike-slip Mae Tha active fault zone was considered
for seismic hazard, which is located near to Chiang Mai
Municipality, as shown in Figure 2A. This fault zone can
cause an earthquake with a magnitude up to Mw 7.0 based
on the fault data. The recent significant earthquake along
the Mae Tha fault is the 2006 Mae Rim earthquake with a
magnitude of Mw 4.6. The considered fault in this study is

a secondary fault of the Mae Tha fault, which is closest to
Chiang Mai Municipality, as shown in Figure 2B. The location
along this fault, which is closest to Chiang Mai Municipality,
was selected for the epicenter in this study. With the surface
rupture length of 9.69 km, a possible earthquake magnitude
would be Mw 6.3 using Eq. 1 for a strike-slip fault proposed
by Wells and Coppersmith (1994). Hence, the earthquake
scenario with a magnitude of Mw 6.3 was considered for the
building damage prediction in step 3 since this secondary
fault is closest to this urban area which is in shallow (less
than 10 km) as the same characteristics as the 2014 Mw 6.3
Mae Lao earthquake.

Mw = a+ b× log(SRL) (1)

where Mw, moment magnitude, the strike-slip
parameters of a = 5.16 and b = 1.12, and SRL, surface
rupture length.

FIGURE 2 | The study area of Chiang Mai Municipality with past earthquake records. (A) Location of the study area and Mae Tha fault zone; (B) enlarged study area.
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SEISMIC BUILDING DAMAGE
CALCULATION USING CAPACITY
SPECTRUM METHOD

The capacity spectrum method or CSM is a method to calculate
the peak response of a building by finding the intersection
of the building capacity and the demand spectrum curves.
The calculation requires in-depth knowledge in earthquake
engineering (Applied Technology Council, 1996). As shown
in Figure 3A, the building capacity curve is a plot of lateral
load resistance and lateral displacement (V, 1). The simplified
capacity curve is defined by the yield capacity and ultimate
capacity points (FEMA, 2003). Up to the yield point (Vy, 1y),
the building is considered as elastic behavior and the building
behavior is changed to plastic from the yield point to the
ultimate point (Vu, 1u). With a provided earthquake magnitude
and ground motion prediction equation (GMPE), peak ground
acceleration (PGA) at a distance from the epicenter is determined
for developing the demand spectrum curve. To obtain the
demand spectrum curve, the 5% damped elastic acceleration
response spectra Sa-T from the probabilistic seismic hazard
analysis (PSHA) in the study area (DPT, 2009) is utilized, as
shown in Figure 3B. To compare the response spectra with
the capacity curve, the two relationships are transformed into

the acceleration displacement response spectra (ADRS) format
[i.e., a plot between spectral acceleration (Sa) and spectral
displacement of earthquake ground motions (Sd)], as shown
in Figure 3C. Finally, the damage that occurred under the
earthquake is considered, reducing the elastic demand spectrum
to the inelastic demand spectrum. The intersection between
the inelastic demand spectrum and the capacity spectrum is
known as a performance point that shows the seismic behavior
of different buildings (Figure 3C). With the determined spectral
displacement from the performance point, the probability of
damage can be obtained using the fragility curve shown
in Figure 4A. The fragility curve (Figure 4A) shows the
cumulative probability of damage in lognormal distribution on
the vertical and the spectral displacement on the horizontal
axis. Then the discrete probabilities (Figure 4B) in each of
the five different damage states are obtained as a, complete;
b, extensive; c, moderate; d, slight’ and e, none. Finally, the
building damage area is estimated using the complete damage
probability (a) with the total building area. The CSM results
are used for training and comparisons with the proposed
ANFIS model explained in step 1 and step 3 of the study
shown in Figure 1.

In this study, the constant depth of the earthquake epicenter
was assumed to be 10 km for all earthquake magnitudes which is
a limitation in this study that can be completely removed using

FIGURE 3 | Performance point determination (FEMA, 2003). (A) Capacity curve; (B) 5% damped elastic acceleration response spectra (PSHA); (C) spectral
acceleration-spectral displacement.
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FIGURE 4 | Fragility curves of five damage states (FEMA, 2003). (A) Fragility curve of a building; (B) discrete damage probabilities.

extensively proper scaling laws. Since the active fault near the
urban area was considered in this study, the near-fault ground
motion effect must be considered (Alavi and Krawinkler, 2000;
Zeng et al., 2016). The PGA was then estimated using the BSSA14
GMPE proposed by Boore et al. (2014). The BSSA14 model is a
part of the NGA-West2 program. The NGA-West2 program was
developed using a database that included many near-fault ground
motion recordings (FEMA, 2018). For the assumed earthquake
events, the BSSA14 model with the median value shows the PGA
in the range of 0.1–0.4 g considering the site amplification effects
with average shear wave velocity from surface to 30-m depth
(Vs30) of 330 m/s. If the larger area than Chiang Mai Municipality
is a case study, the variation of the site amplification effects should
be considered (Bonilla et al., 1997; De Risi et al., 2019).

DEVELOPMENT OF ADAPTIVE
NETWORK-BASED FUZZY INFERENCE
SYSTEM

Adaptive network-based fuzzy inference system is a tool
combining the benefit and computation of fuzzy logic and neural
network into a single technique. The fuzzy logic can make logical
decisions in If-Then rules that are consistent with the human
mind. In addition, it can judge an unclear problem containing
a certain degree of right/wrong. However, the disadvantage of
fuzzy logic is that the structure must be defined by an expert
and it is not able to learn on its own. For the artificial neural
network, the computational model is dynamic and can learn to
improve its own structure, but its results are only answers without
a logical reason. Therefore, the integrated ANFIS can improve its
structure based on interconnected elements as an artificial neural
network and make decisions based on logical reasoning as the
fuzzy logic in order to transform given inputs into the desired
output using neural network processing and information. The
ANFIS was originally presented by Jang (1993), as shown as five
layers in Figure 5 (for two input variables x1 and x2). The ANFIS
architecture presents a circle as a fixed node and a square as
an adaptive node.

Training the ANFIS Model
Creating the training dataset of the seismic damage of buildings
is the first step of this study, as shown in Figure 1. The seismic
damage of buildings was calculated using the CSM (see section
“Seismic Building Damage Calculation Using Capacity Spectrum
Method”). Different possible earthquake scenarios containing
three input parameters (earthquake magnitude, structural type,
and site distance) were analyzed for the building damage. The
input variables are explained below.

• Six earthquake magnitudes: the parameter represents the
severity of the earthquake varied from low to strong
excitations (Mw 4.0, Mw 4.5, Mw 5.0, Mw 5.5, Mw
6.0, and Mw 6.5).
• Eight structural types: W1, W2, S1, S2, S3, C1, C2, and C3

are classified by HAZUS (FEMA, 2003).
• One thousand two hundred and one distances: the distance

is a length between the earthquake epicenter and a
building. The distance was ranged between 0 to 12 km.
The maximum distance of 12 km. represents a length
covering all buildings in Chiang Mai Municipality. The
distances at every 10 m were analyzed. Hence, there are
1,201 cases in total.

Considering the combination of the three variables, the
CSM seismic building damage analyses are comprised of
6 × 8 × 1,201 = 57,648 damage data. The dataset of complete
damage buildings output is used for training the ANFIS model.

ANFIS Model for Seismic Building
Damage Prediction
Judgments on the damage level of a building struck by an
earthquake could be uncertain. This unclear measurement is
because the damage level depends on various factors but can
be grouped into two basic parameters as (1) vibration level
at the building foundation and (2) building resistance. In
addition, the complex nature of dynamic response increases
this vagueness. Two near-identical buildings under the same
earthquake were observed with different damage (Saicheur and
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FIGURE 5 | ANFIS architecture.

FIGURE 6 | Triangular membership function (Trimf model) with two configurations of division. (A) 3-8-4 model (Trimf membership function); (B) 6-8-4 model (Trimf
membership function).

Hansapinyo, 2016). Hence, with an uncertain input, it is not easy
to precisely quantify the damage. In this study, the vibration
level is represented by the magnitude (x1) and distance (x2).
For the seismic resistance, structural types (x3) are defined.
The three inputs (x1, x2, x3) are cross operated to obtain
various output scenarios, as shown in Figure 5. To consider
the uncertainty of each input, based on the fuzzy logic theory,
a geometric membership function is introduced (Zadeh, 1965).
With some knowledges of the seismic uncertainties, this study

introduced eight possible geometric input membership functions,
e.g., Trimf, Trapmf, Gbellmf, Gaussmf, Gauss2mf, Pimf, Dsigmf,
and Psigmf. For each geometric input membership function,
two different configuration models were applied, as shown in
Figure 6 for the triangular membership function or Trimf. One
was 3-8-4 Trimf ANFIS model (Figure 6). The first number is
the earthquake magnitude which represents three levels of the
magnitude: Light, Moderate, and Strong ranged between Mw 4.0
and Mw 6.5. For the second number, it is the eight structural
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FIGURE 7 | RMSE of ANFIS model.

TABLE 2 | Estimation of damaged building area under five possible earthquakes by CSM and ANFIS.

Magnitude (1) Total building area (2) Damaged building area by CSM (3) Damaged building area by ANFIS

km2 km2 (2)/(1) km2 (3)/(1)

4.3 22,331,315 170,433 0.76% 343,015 1.54%

4.8 22,331,315 2,907,805 13.02% 3,543,228 15.87%

5.3 22,331,315 11,312,158 50.66% 11,801,958 52.85%

5.8 22,331,315 15,311,633 68.57% 15,618,223 69.94%

6.3 22,331,315 16,207,865 72.58% 16,189,257 72.50%

FIGURE 8 | Damage ratio of complete damage of buildings under the assumed Mw 6.3 earthquake. (A) by CSM; (B) by the proposed ANFIS model.
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FIGURE 9 | Comparison of building damages between CSM and ANFIS in Chiang Mai old town. (A) by CSM (B) by the proposed ANFIS model.

types: W1, W2, S1, S2, S3, C1, C2, and C3. The last number
is 4, describing four levels of distance between the epicenter
and building: Near, Quite Close, Quite Far, and Far with the
distance from 0 to 12 km. The other model with the higher
refined division of the magnitude, was 6-8-4 Trimf ANFIS model
(Figure 6). The first number of 6 represents the magnitudes of
Minor, Light, Moderate, Strong, Major, and Great. The initially
assigned membership function and range between divisions are
defined as the square node Layer 1 in the ANFIS architecture
shown in Figure 5.

To obtain the output, the fuzzy inference system was applied.
A neuro-fuzzy designer in MATLAB was used as a development
tool in this study which provides a built environment for
constructing various ANFIS models. The tool can tune the
initially assigned membership function parameters based on
Sugeno-type fuzzy inference systems (Sugeno, 1985), Layer 2 and
3 in Figure 5. Two output membership functions; constant and

linear were implemented (Layer 4 in Figure 5). Using the training
system of the neural network, the structure of the inference
systems in the fuzzy machine could be automatically optimized.

From the eight membership functions, two configurations of
the membership division and two output types, 32 ANFIS models
were obtained, as shown in Figure 1. All the ANFIS models were
re-examined with the entire 80,290 building dataset in Chiang
Mai Municipality and the best ANFIS model was defined with the
lowest RMSE calculated by Eq. 2.

RMSE =

√∑n
i=1
(
XANFIS,i − XCSM,i

)2

n
(2)

Where XANFIS and XCSM are the damaged areas determined by
the ANFIS model and the CSM, respectively. n is number of data
(n = 80,290).

TABLE 3 | Comparison of damaged building area classified by structural type between CSM and ANFIS.

Structural type Mw 4.3 Mw 4.8 Mw 5.3 Mw 5.8 Mw 6.3

CSM (%) ANFIS (%) CSM (%) ANFIS (%) CSM (%) ANFIS (%) CSM (%) ANFIS (%) CSM (%) ANFIS (%)

C1 2.07 2.81 17.42 21.03 57.44 56.83 70.51 71.61 73.05 72.85

C2 0.32 0.56 6.09 7.81 32.78 37.02 50.97 52.40 55.97 56.01

C3 0.71 1.60 14.04 17.07 54.30 56.61 73.31 74.76 77.46 77.38

S1 0.86 1.11 9.42 12.01 45.13 46.07 61.37 62.57 64.64 64.41

S2 0.60 0.80 7.82 10.09 41.38 43.73 59.20 60.60 62.78 62.66

S3 1.10 1.99 16.39 19.81 60.95 61.70 79.01 80.32 82.44 82.18

W1 0.00 0.09 1.16 1.57 8.55 10.67 15.82 16.43 18.60 18.64

W2 0.13 0.13 1.24 1.61 11.72 15.06 22.95 23.84 26.81 26.83
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Figure 7 displays the RMSE value (in logarithmic scale) of
each model. It indicates that all the models have a small error.
The linear output models have the lower RMSE than that of
the constant output models. In addition, the more refined 6-
8-4 ANFIS models have the lower RMSE than that of the 3-
8-4 ANFIS models. The most accurate ANFIS model is linear
Gaussmf 6-8-4 with the RMSE of 0.000573. Then, this model was
used to predict the spatial seismic building damage in Chiang
Mai Municipality.

CSM and ANFIS Comparison of Seismic
Building Damage
To confirm the validity of the proposed ANFIS model, five
possible earthquakes in Chiang Mai Municipality area as
described in section “Case Study” was assumed, and the
spatial seismic building damages were determined by the CSM
and the proposed ANFIS model. As shown in Table 2, the
damage building area estimated by the two approaches is very
similar. The damage estimated by the CSM tends to give a
little higher value. Under the assumed Mw 6.3 earthquake
(maximum credible earthquake), as an example, Figure 8
shows the spatial distribution of the complete damage ratio
of buildings in Chiang Mai Municipality map determined by
CSM and the proposed ANFIS model. The damage ratio is
defined as the damaged building area divided by total building
area. The complete building damage distribution of the two
results are similar. For more detailed illustration, Figure 9
shows the comparison of building damage in Chiang Mai old
town. The difference of building damage was observed at a
latitude of 18.794 and a longitude of 98.988. In addition, the
tabulated comparison regarding both figures is illustrated in
Table 3 to show the individual damage area classified by the
structural type.

CONCLUSION

Capacity spectrum method, although a powerful tool to
calculate the seismic building damage, is complicated and time-
consuming for a large-scale building damage assessment. In
addition, the inputs for the assessment involve many factors
and contain uncertainties. As an alternative approach, this
research proposed an ANFIS model for the damage prediction.
Hence, some uncertainties, e.g., dynamic properties, near or
distance-earthquake effect, characteristics of the earthquake
wave, soil condition, etc., are inherently treated in the fuzzy
model. First, the study performed seismic damage evaluation
of buildings using the CSM to create the datasets of building
damage under various possible earthquake scenarios considering
three input data as earthquake magnitudes, structural building
types, and distances. Then, the datasets were used for
training and developing a practical ANFIS model for seismic
damage prediction.

After training a total of thirty-two ANFIS models, the
most accurate one is Linear Gaussmf 6-8-4 and proposed
for predicting the building damage. To confirm the validity
of the proposed ANFIS model, five possible earthquakes

with magnitude from the lowest, but damageable earthquake
of Mw 4.3 to the maximum credible earthquake of Mw
6.3 earthquake in Chiang Mai Municipality was assumed
and the spatial seismic damage of 80,290 buildings
was determined by the CSM and the proposed ANFIS
model. Then, the damage assessments from the two
approaches were compared. The amount of damaged
buildings from the five earthquakes obtained from the two
approaches is similar.

The article is mainly aimed to implement the ANFIS for
the seismic building damage prediction with a single depth,
a single location, and various magnitudes. Hence, further
study to consider more possible locations including near and
distance earthquakes are required. The proposed ANFIS model
provides two main benefits; (1) input uncertainties can be
treated in the fuzzy logic functions and the function can be
further adapted with a further new correct training dataset,
e.g., real earthquake damage, and (2) an alternative approach
with machine learning through the neuro-network system.
Using the proposed ANFIS method for the seismic damage,
a city with low to moderate earthquake risk, lacking the
past damage evidence from a real earthquake, can initially
establish a building damage model with small effort (as
explained in section “ANFIS Model for Seismic Building
Damage Prediction”), with the use of fuzzy logic and neuro-
network. Especially in developing countries, it is generally
noticed the lack of a complete set of earthquake data, e.g.,
earthquake records, fault location, building data, soil condition,
etc. However, the more acquired earthquake data, if any provided
in the future, can be used for the training to obtain more
realistic results.
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