
fbuil-06-574965 September 10, 2020 Time: 19:40 # 1

ORIGINAL RESEARCH
published: 11 September 2020

doi: 10.3389/fbuil.2020.574965

Edited by:
Wei Song,

The University of Alabama,
United States

Reviewed by:
Gaston A. Fermandois,

Federico Santa María Technical
University, Chile

Liang Cao,
Lehigh University, United States

Pei-Ching Chen,
National Taiwan University of Science

and Technology, Taiwan

*Correspondence:
Mohamed A. Moustafa

mmoustafa@unr.edu

Specialty section:
This article was submitted to

Earthquake Engineering,
a section of the journal

Frontiers in Built Environment

Received: 22 June 2020
Accepted: 12 August 2020

Published: 11 September 2020

Citation:
Bas EE and Moustafa MA (2020)

Communication Development
and Verification for Python-Based

Machine Learning Models
for Real-Time Hybrid Simulation.

Front. Built Environ. 6:574965.
doi: 10.3389/fbuil.2020.574965

Communication Development and
Verification for Python-Based
Machine Learning Models for
Real-Time Hybrid Simulation
Elif Ecem Bas and Mohamed A. Moustafa*

Department of Civil and Environmental Engineering, University of Nevada, Reno, Reno, NV, United States

Hybrid simulation (HS) combines analytical modeling with experimental testing to provide
a better understanding of both structural elements and entire systems while keeping
cost-effective solutions. However, extending real-time HS (RTHS) to bigger problems
becomes challenging when the analytical models get more complex. On the other hand,
using machine learning (ML) techniques in solving engineering problems across different
disciplines keeps evolving and likewise is a promising resource for structural engineering.
The main goal of this study is to explore the validity of ML models for conducting
RTHS and specifically introduce and validate the necessary communication schemes to
achieve this goal. A preliminary study with a simplified linear regression ML model that
can be readily implemented in Simulink is presented first to introduce the idea of using
metamodels as analytical substructures. However, for ML, commonly used platforms
for RTHS such as Simulink and MATLAB have limited capacity when compared to
Python for instance. Thus, the main focus of this study was to introduce Python-
based advanced ML models for RTHS analytical substructures. Deep long short-term
memory networks in Python were considered for advanced metamodeling for RTHS
tests. The performance of Python can be enhanced by running the models using high-
performance computers, which was also considered in this study. Several RTHS tests
were successfully conducted at the University of Nevada, Reno, with Python-based ML
algorithms that were run from both local PC and a cluster. The tests were validated
through comparisons with the pure analytical solutions obtained from finite element
models. The study also explored the idea of embedding the delay compensators within
the ML model for RTHS.

Keywords: real-time hybrid simulation, machine learning, data transfer, linear regression, long-short term
memory, deep neural networks, seismic response prediction

INTRODUCTION

Hybrid simulation (HS) is a widely used dynamic testing method that simultaneously benefits from
the advantages of numerical modeling and experimental testing. In an HS setup, experimental
components are integrated with numerical models, and this provides accurate, realistic, cost-
effective, and reliable investigations for both physical substructure and overall system behavior.

Frontiers in Built Environment | www.frontiersin.org 1 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2020.574965
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbuil.2020.574965
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2020.574965&domain=pdf&date_stamp=2020-09-11
https://www.frontiersin.org/articles/10.3389/fbuil.2020.574965/full
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 2

Bas and Moustafa Communication RTHS ML Models

The first HS test was conducted by Takanashi et al. (1975),
where a discrete spring-mass model is used, and the non-
linear differential equation was solved by updating the structural
stiffness at each time step from the structural experiment.
From the early 70s until today, a broad range of studies has
been conducted to improve the HS capabilities and widen the
feasibility of this technique for several dynamic applications.

The dynamic analysis for the coupled experimental–
computational model in slow HS or real-time HS (RTHS) is
usually solved using direct numerical integration algorithms,
where the computational system is modeled using the finite
element method (FEM). Many of the direct integration methods
were developed for pure analytical solutions and not necessarily
suitable for HS tests (Schellenberg et al., 2009b). Because of this
need, one of the main focuses of HS/RTHS research has been
to develop numerical integration algorithms that are specialized
to solve the substructured equation of motion in HS to have
accurate and reliable test results (e.g., Chang, 2002; Bonelli
and Bursi, 2005; Chen et al., 2009; Kolay and Ricles, 2014).
However, the developed HS-specific methods have still some
challenges and limitations, particularly for complex and large
analytical substructures with many degrees of freedoms and/or
large non-linearities. Del Carpio et al. (2017) examined the
performance of two commonly used integration methods for HS,
where complex structural systems were considered. According
to that study, a careful numerical sensitivity analysis was found
to be necessary to provide stable and accurate simulations for
large and complex structures. That is because numerical errors
could accumulate with the noise of the experimental feedback.
Recently, Bas and Moustafa (2020) conducted a comprehensive
study to assess currently available direct integration algorithms
for RTHS and understand the performance and limitations of
existing methods when computational models involve complex
non-linear behavior. The study identified the current integration
algorithms limitations for RTHS for some types of non-linear
behaviors and showed that testing becomes more sensitive
to hardware capabilities and experimental errors when such
non-linear models are considered.

Another critical aspect of conducting HS/RTHS is accurate
actuator control. Typically, in every time step, the integration
algorithm calculates the displacement response and that is
applied to the experimental substructure where the force
of the experimental specimen is measured and fed back to
the numerical substructure. The combined dynamics of the
experimental substructure and the servo-hydraulic actuator
can lead to a delay in response and amplitude error to
the commanded displacement. These cause inaccurate results,
especially in RTHS (Chae et al., 2013). Various compensation
methods were proposed to compensate by considering both
constant delay compensation (e.g., Zhao et al., 2003; Carrion
and Spencer, 2007; Phillips and Spencer, 2013) and adaptive
delay compensation (e.g., Darby et al., 2002; Wallace et al., 2005;
Ahmadizadeh et al., 2008; Chen and Ricles, 2010). Moreover,
an adaptive time series (ATS) compensator has been introduced
and commonly used nowadays to compensate for the delay
(Chae et al., 2013). The ATS compensator uses online real-
time linear regression (LR) analysis to continuously update the

system’s coefficients at each time step without the need for user-
defined parameters.

As the challenges to conducting the RTHS tests continue,
recent advancements in various disciplines and research fields
can be used to address such challenges. In structural dynamic
analysis and specifically RTHS testing, using FEM for non-linear
time history analysis could be computationally demanding even
with the current technology we have today. There has been a
large number of studies that suggest alternative approaches for
FEM to obtain structural responses using input/output relations
based on system identification methods, and some of them have
been applied to RTHS as well (e.g., Mai et al., 2016; Abbiati et al.,
2019; Miraglia et al., 2020). Machine learning (ML) is one of
the disciplines that have the potential to improve the capabilities
and extend the possible range of applications of RTHS. Shortly,
ML is the science of programming computers so that they can
learn from the data (Géron, 2017). ML has been used for many
earthquake engineering applications, including seismic hazard
analysis, system identification, damage detection, seismic fragility
assessment, and structural control for earthquake mitigation (Xie
et al., 2020). ML models can be grouped in many different forms
such as grouping based on the tasks ML models are designed
to solve, i.e., classification, regression, and clustering. This study
aims to set the stage for a new paradigm of RTHS testing that
would use ML to replace finite element (FE) models to predict
the analytical model response.

Because ML models are designed to predict the continuous
response, the task here is regression. During the past decade,
artificial neural networks (ANNs) have been used in predicting
non-linear behavior of static and dynamic responses of structures
(e.g., Wang et al., 2009; Lagaros and Manolis, 2012). Moreover,
Mucha (2019) used ANNs to replace FEM of the HS to reduce
the computational cost of RTHS for a bicycle frame under time-
varying excitation force. The study did not focus on structural
or earthquake engineering applications, which have been the
classical venue for HS/RTHS. Moreover, the capacity of ANNs
is limited, and there are some studies that use more advanced
deep learning algorithms such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), which are
more suitable for long-range time-varying structural response
predictions. For example, Zhang et al. (2019b) used deep long
short-term memory (LSTM) networks to model non-linear
seismic response of structures. Other examples include physics-
guided CNNs that have been recently proposed for data-driven
seismic response modeling (Zhang et al., 2019a).

The main goal of this article is to develop and validate
communication schemes and overall RTHS test performance
when advanced ML models, also referred to as metamodels,
are included in the RTHS loop to represent the analytical
substructure. The article first introduces the ML-based RTHS
system components and capabilities with a simplified ML model,
i.e., an LR algorithm, to model a linear-elastic one-story, one-
bay braced frame model. This simple exercise is conducted to
assess the overall system performance and explore another new
benefit of using ML models. This new benefit is concerned with
potentially eliminating the time delay between actuator input and
feedback within the metamodel instead of using a time-delay

Frontiers in Built Environment | www.frontiersin.org 2 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 3

Bas and Moustafa Communication RTHS ML Models

compensator, which is investigated further throughout the article.
Next, modeling and training assumptions for more complex and
representative ML models are explained in detail. The advanced
models are generated using LSTM networks, which are modeled
in Python. A large number of ML research studies prefer Python
as one of the most popular high-level programming languages
that include many frameworks and large ML libraries. To our best
knowledge, this article presents the first attempt that combines
an advanced ML model within the RTHS loop. The article then
focuses on the communication development and validations
when Python-based ML models are introduced in the RTHS loop.
Two scenarios for calling the Python models from local computer
as well as a cluster of high-performance computing are presented.
Finally, results from online RTHS tests without test specimens,
but with LSTM networks that represent non-linear analytical
substructures, are discussed, and key findings are summarized.

SIMPLIFIED MACHINE LEARNING
MODEL FOR RTHS

This section first introduces the HS setup and verification with a
simplified ML model. An LR model is selected, and the training
and model assumptions are explained in detail. In this section,
the ML model is built and complied into Simulink, which is a
common RTHS test setup.

HS System Components
The compact HS setup recently developed and assembled
by the authors at the Large-Scale Structures Laboratory
at the University of Nevada, Reno (UNR), is used for
this study (Bas et al., 2020b). This small-scale setup has
been developed for investigating computational challenges in
substructuring (e.g., Bas and Moustafa, 2020; Bas et al., 2020a),
educational demonstrations, developing new substructuring
concepts in HS/RTHS, and developing innovative approaches
for computational substructures as discussed in this article.
Figure 1 shows the components of the HS setup, which
consists of the following: (1) a small-scale load frame with a
dynamic actuator that is run by an isolated hydraulic pump;
(2) MTS STS controller (MTS 493) with 2048 Hz clock speed;
(3) real-time high-performance Simulink machine (Speedgoat
xPC target); (4) Windows machine (host PC) for analytical
substructures (such as MATLAB, OpenSees, or Python) and
the HS middleware OpenFresco; (5) SCRAMNetGT ring that
provides shared memory locations for real-time communication.

The small-scale load frame is used for the experimental
substructure in this setup with an actuator with 31.14 kN (7
kips) maximum load capacity and±25.4 mm (±1 in) stroke. The
actuator’s peak velocity at no load is 338.84 mm/s (13.34 in/s).
The isolated hydraulic power supply system includes a pumping
capacity of 8.71 lt/min (2.3 gpm), and the reservoir capacity of oil
volume is 56.78 lt (15 gallons).

The FEM of the analytical substructures can be modeled in
either OpenSees or Simulink. The setup is capable of running
both real-time and slow (pseudodynamic) HS experiments. The
slow HS case can be conducted using a predictor–corrector

algorithm to control different time ranges that is defined in
OpenFresco middleware (Schellenberg et al., 2009a,b). The host
PC and xPC target machine have a TCP/IP connection to
initialize and map the SCRAMNetGT memory locations. The
xPC target machine is an environment that connects Simulink
and Stateflow models to the physical components. The xPC solves
Simulink-based analytical models. For the models other than
Simulink, the analytical substructures are run from the host PC.
For the applications where OpenSees/OpenFresco architecture
is used, the xPC target is used as a middleware that transfers
data between the analytical and experimental substructure.
The calculated analytical substructure response is sent to the
controller through the xPC target machine.

The STS controller has four channels that can control
up to four actuators simultaneously, but using the current
setup in Figure 1, only one channel is used to control one
actuator. Displacement control is preferred for the actuator
where computed displacement input controls the actuator, and
the force feedback is measured and fed back to the physical
substructure. It is important to mention that all HS components
have SCRAMNetGT card, which uses shared memory locations
with fiber optic communications to transfer data in real time.
More details about the HS system development and verification
where FEM is used can be found in Bas et al. (2020b).

In this research, this setup is used first with a simplified ML
model, which is straightforward enough to model directly in
Simulink. Therefore, no additional communication other than
what is explained above is necessary. When a more complex ML
model is introduced, some modifications and/or developments
were sought on the communication side as explained later in
Communication Development and Verification.

Modeling Assumptions and Training
Dataset
A one-story, one-bay steel concentrically braced frame
(CBF) with diagonal brace configuration was selected for the
verifications and evaluations in this study. CBFs are convenient
for the substructuring where the columns and beams of CBFs
can be modeled with high accuracy, i.e., form the analytical
substructure. Meanwhile, braces are better tested physically
to accurately capture complex behavior such as buckling, and
in turn, braces make the experimental substructure. A single
small-scale brace can be tested as the experimental substructure
in the used HS setup and can be combined with a prototype
steel frame at full scale for the analytical substructure. For the
sake of this study, a linear analytical model is first used, and
then a heavily non-linear analytical substructure is considered
for the advanced ML modeling. In both cases, no physical
braces were used, and instead, a multiplier of the actuator’s
actual achieved displacement is fed back to the RTHS loop
to represent a hypothetical linear elastic test specimen as
explained later. In other words, a non-linear experimental
behavior was not considered in this study to make it simpler for
verification purposes.

Figure 2 shows the CBF substructuring for HS testing. The
analytical substructure involves two columns (W14 × 311),

Frontiers in Built Environment | www.frontiersin.org 3 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 4

Bas and Moustafa Communication RTHS ML Models

FIGURE 1 | Compact HS/RTHS test setup at UNR.

FIGURE 2 | Model and substructuring of diagonal CBF for HS testing.

which are fixed at the base and a beam (W36 × 150) that
has moment connections to the columns. The brace, on the
other hand, has a pinned connection at both ends, where it
works as an axial element. The bay width and the height of
the frame are about 3.7 m. For this section, both columns and
the beam are considered to be linear elastic. The mass and
the damping are also considered to be a part of the analytical
substructure. For simplicity in the validation and modeling
purposes, the CBF is simplified as a single degree of freedom
model. The mass of the system is selected to be 1.75 kN-
s2/mm. The frame stiffness (analytical substructure stiffness) is
calculated to be 176.75 kN/mm, where the axial brace stiffness is
1,224.1 kN/mm. The natural period of the system is calculated
to be 0.294 s. A 2% Rayleigh damping is assumed to be the
inherent damping of the structure. The pure analytical model
of the overall system is developed in Simulink. The explicit
integration algorithm provided by Chang (2009) is used to solve
the equation of motion with 1/2,048-s time step. This explicit
algorithm is unconditionally stable for linear systems and any
instantaneous stiffness softening systems and conditionally stable
for instantaneous stiffness hardening systems. Here, the time step
of the controller and the integration algorithm are selected to be
the same to synchronize the data transfer. The 1940 El-Centro
ground motion acceleration (Figure 3A) was selected to be used
for both training and HS testing purposes in this study.

As mentioned earlier, an LR method is used as a simplified
metamodel for the first part of this study, which was trained by
using a pure analytical solution of the CBF. An LR is one of the

simplest ML algorithms that perform a task to make predictions
based on the weighted sum of the input values and a bias term as
a constant (Géron, 2017). The general equation is shown in Eq. 1,
where ŷ is the predicted value, n is the number of the features, xi
is the ith feature, and θj is the jth model parameter (θ0 is the bias
term, where θ1, θ2, . . . , θn are the feature weights).

ŷ = θ0 + θ1x1 + θ2x2 + . . .+ θnxn (1)

The training dataset was obtained from a pure analytical
dynamic analysis of the overall system. The brace displacement
and force time histories were obtained in local coordinates and
used as training datasets in addition to the ground motion
acceleration (see Figure 3 for these training components).
Because the dataset is provided offline, the model is considered
as batch learning. In total, five input features were selected
to train the model to predict the output, which would be the
command displacement of the experimental substructure of the
HS system. The training features were selected to be (i) ground
motion acceleration, (ii) displacement feedback value of the brace
(from experimental substructure), (iii) force feedback value of the
brace (from experimental substructure), (iv) one previous step
of the predicted displacement, and (v) two previous steps of the
predicted displacement. Because the pure analytical solution is
used for the training dataset, an estimated 28-time-steps delay has
also been considered to better represent the feedback that should
come from the experimental substructure. However, to obtain a

Frontiers in Built Environment | www.frontiersin.org 4 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 5

Bas and Moustafa Communication RTHS ML Models

FIGURE 3 | Datasets used for LR model training: (A) El-Centro ground motion acceleration, (B) brace displacement history, and (C) force history, both in local brace
coordinates as obtained from the pure analysis.

more accurate delay estimation better than the assumed 28-time
steps, the trained model was run in the HS setup first without
including the actuator’s feedback, which were obtained to be
used in the next training phase. Then, a more refined model was
generated by using these “real” displacement and force feedback
data with the other three features.

A brief overview of how the LR training was conducted is as
follows. In this study, the “Regression Learner” app in MATLAB,
which is under the ML group, was used to train the LR algorithm.
First, the predictors and response were defined, and then a
validation method was selected. The cross-validation with five
folds was selected to protect the model against overfitting by
partitioning the datasets into folds and estimating the accuracy
of each fold. A session was started next for training, and an LR
model was selected. Afterward, the model training was done, and
the model root mean square error (RMSE) values were checked.
Once the model was trained, the model was exported to the
workspace to obtain the LR parameters to make new predictions.
After getting the parameters, a Simulink model was generated
to represent the HS case where at every step the predicted
displacement is calculated, and the determined force feedback is
fed back to the system to make new predictions.

RTHS Test Results
Once the model is trained for the features explained above,
a Simulink model with MATLAB function was prepared to
represent the LR model but was first assessed against the pure
analytical FEM solution. The developed LR model formulation
is shown in Eq. 2, where x is represented as displacement of the
brace, F is the force of the brace, and ẍg is the ground motion
acceleration. Table 1 shows the model parameters that belong to
the trained model.

xprediction,i+1 = f
(..

xg, xfeedback,i, Ffeedback,i, xprediction,i,

xprediction, i−1
)

= θ1
..
xg + θ2xfeedback,i + θ3Ffeedback,i

+ θ4xprediction,i + θ5xprediction,i−1 (2)

TABLE 1 | LR model parameters.

θ1 θ2 θ3 θ4 θ5

−6.51e-05 0 3.46e-11 −0.998 1.997

The brace displacement response of the FE model and the
prediction from the LR metamodel were compared as the two
alternative pure analytical solutions. The FE model response was
considered to be the exact solution, and in turn, a normalized
RMSE (NRMSE) was calculated to evaluate the comparison. It
should be noted that for the pure analytical response, because
there is no feedback from the actuator included yet, the
displacement feedbacks are generated using 28-time-steps delay
as discussed earlier. Figure 4 shows the comparison between the
pure analytical brace displacement response of the FE model and
the LR model. The NRMSE value was calculated as 0.15%, which
confirms that the LR prediction can be used further.

Moreover, for complete evaluation of using the LR model,
RTHS validation tests were conducted using the LR model and
compared to the pure analytical FE solution. The validation tests
were considered for a hypothetical linear elastic experimental
specimen where the displacement command was multiplied with
the constant stiffness value of the specimen to represent a force
feedback value. The verified MATLAB-based LR metamodel
explained above was then compiled in the xPC Target machine.
Two types of RTHS tests were conducted, namely, offline and
online RTHS tests. The offline test is where the feedback from
the experimental model is taken from the command of the
system’s controller, i.e., without actually moving the actuator.
For the offline RTHS test, again, instead of using the actual
actuator’s feedback, the command displacement value was used
with a 28-time step delay from the predicted displacement value.
Figure 5A shows the brace displacement time history comparison
for the pure analytical model and from offline RTHS with the LR
metamodel. The NRMSE value was calculated as 0.15%, which is
very reasonable given the simplicity of the problem and test.

Next, an online test was considered where the hydraulic
system is turned on and the actuator was moved, and the
actual feedback was fed into the analytical model. This is to
test the capability of the metamodel to derive the actuator
in the closed loop RTHS setting. The displacement value was
obtained from the actual actuator displacement, and again
the force feedback was obtained from a constant stiffness
to mimic a linear elastic specimen. For such tests, the ATS
compensator mentioned above (Chae et al., 2013) was used
to compensate for the actuator delay. Figure 5B shows the
online RTHS results for brace displacement comparison with
the pure analytical model. The NRMSE value was calculated
to be 0.07%, which verifies the acceptable performance of the
metamodel-driven system. It is noted that the conducted test

Frontiers in Built Environment | www.frontiersin.org 5 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 6

Bas and Moustafa Communication RTHS ML Models

FIGURE 4 | Comparison of the brace displacement time histories from FE model and LR metamodel.

FIGURE 5 | Results from (A) offline and (B) online RTHS with the LR metamodel and validation against pure analytical solution.

considered linear elastic analytical and hypothetical experimental
substructures. Thus, the dynamic response was accurately
obtained from pure analytical solutions and in turn accurately
trained the LR metamodel. So, the low error is not meant
to assess the quality of LR metamodel predictions, but rather
confirm the performance of the overall RTHS hardware and
communication system.

Such simple linear elastic case was possible to easily model
with the LR algorithm, which was also simple enough to code
using MATLAB and Simulink functions and directly compile
it into the RTHS hardware. However, the modeling capacity of
LR models is rather limited and cannot be used for complex
non-linear systems. Thus, more complicated ML algorithms are
likely to be used to push the boundaries of future RTHS testing,
which motivated the next part of the study. More complex
ML algorithms such as deep learning were considered, which
required integrating Python into the RTHS loop. Developing
the ML models for the next phase of validation is the focus of
the next section, which is then followed by the communication
schemes development and verification for RTHS with Python-
based complex ML models.

ADVANCED ML TECHNIQUES FOR RTHS

This section provides first a brief overview of more complex
ML models, which includes the LSTM model used in this study.
The section also provides more details on LSTM model features,
training sets used for this study, and sensitivity analysis to
understand the performance of the model as it pertains to the
structural modeling problem in hand.

One of the subgroups of ML methods is deep learning, which
uses neural networks with many layers. Deep learning studies
deep neural networks, which is a form of stacking several layers
of ANNs. The most straightforward architecture of ANN is
the perceptron, which takes the weighted sum of the inputs
and then multiplies this sum with an activation function and
outputs the result. The perceptrons are not capable of learning
complex patterns; thus, multilayer perceptron (MLP), which is a
stacked version of multiple perceptrons, is suggested to improve
some of the limitations. This type of ANNs contains one input
layer, one or more hidden layers, and an output layer. For
these models, the input-to-output flow is only one way, which
represents a feedforward neural network. An ANN has simple
architecture and is used for both classification and regression
problems. However, more advanced models developed recently,
such as CNN and RNN, offer more opportunities while modeling
non-linear structural responses due to their impressive feature
extraction (Zhang et al., 2019b).

Convolutional neural networks are a family of deep learning,
which is mostly used for image classification. However, they
are also capable of handling long sequence data for regression
analysis (LeCun and Yoshua, 1995). The architecture of CNN is
inspired by the brain’s visual cortex, which uses the function of
pattern connectivity function that the brain has. CNN has two
different layers than the regular ANN, which are convolutional
layers and pooling layers. The most critical difference in CNN is
the convolutional layer, where the previous layer’s inputs are only
connected to their receptive fields, which defines the neurons’
weight. By using this feature, the network hierarchically splits
the input features, and each neuron analyzes the small region
of the image. On the other hand, the pooling layer aims to

Frontiers in Built Environment | www.frontiersin.org 6 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 7

Bas and Moustafa Communication RTHS ML Models

subsample the image, which also reduces the computational load
and the possible overfitting. These advances separate CNN from
other deep neural networks because it is beneficial on large
inputs by reducing the connections and correspondingly the
training parameters.

The other crucial neural network is RNN, which has
connections to the previous input points. The difference of the
RNN from previously defined neural networks is these backward
connections where the previous ones are feedforward neural
networks. The architecture of the RNNs includes a recurrent
neuron which receives the output from the previous time
step with the input. This allows this type of network to be
capable of time-series forecasting. Although it is successful in
sequence datasets, the method has two main disadvantages for
longer sequences: (i) unstable gradients and (ii) utilizing a very
limited short-time memory (Bengio et al., 1994). To overcome
these problems, the LSTM cell was proposed, which can detect
long-term dependencies, rapidly converge, and perform better
(Hochreiter and Jürgen, 1997).

In this study, the LSTM networks were selected and used for
the purpose of modeling and dynamic response prediction of the
analytical substructures needed for the sought communication
schemes development and RTHS demonstration. The modeling
assumptions, training, and model tuning are explained in detail
in the following sections.

LSTM Networks
The LSTM networks were developed, especially to answer the
need in long sequence datasets. Figure 6A shows a typical deep
LSTM network, with input, hidden, and output layers. The
architecture of an LSTM cell is shown in Figure 6B. In particular,
an LSTM cell includes h(t) and c(t) apart from inputs (x(t))
and outputs (y(t)), which are representing short- and long-term
states, respectively.

In each time step, the LSTM cell receives two input vectors
that are the current time step input vector x(t) and previous time
step output vector h(t−1) (which is also y(t−1)) and fed into four
different fully connected layers. The output of g(t) analyzes these
two inputs, which is the weighted sum of the inputs followed
with an activation function (tanh function). A regular RNN cell
only has this feature, which directly gives the output. However, in
the LSTM cell, three other layers, which are the gate controllers,
help control the memory information. These three gates use
logistic function, σ(.), as an activation function where the output
changes from 0 to 1. The forget gate (output of f(t)), is where
the unnecessary parts of the long-term state are erased. On the
other hand, the input gate (output of i(t)), controls the parts of
g(t) to be added in the long-term state. Lastly, the output gate
manages the parts of the long-term state that should be read and
output to both h(t) and y(t). The LSTM computations are briefly
outlined and given in Eqs 3 through 8. In these equations, the
input vector of the current state x(t) in each layer is connected
with the weight matrices of each layer Wxi, Wxf , Wxf , and Wxf ,
where the previous short-term state vector h(t−1) is connected to
their layers with the weight matrices of Whi, Whf , Whf , and Whf .
In each layer, bi, bf , bo, and bg are the bias terms. Lastly, ⊗ is
the element-wise multiplication. It should also be noted that, as

suggested by Jozefowicz et al. (2015), the bias term of the forget
gate (bf) is initialized as “1”s to prevent forgetting everything at
the beginning of the training.

i(t) = σ
(
WT

xix(t) +WT
hih(t−1) + bi

)
(3)

f (t) = σ
(
WT

xf x(t) +WT
hf h(t−1) + bf

)
(4)

o(t) = σ
(
WT

xox(t) +WT
hoh(t−1) + bo

)
(5)

g(t) = tanh
(
WT

xgx(t) +WT
hgh(t−1) + bg

)
(6)

c(t) = f (t) ⊗ c(t−1) + i(t) ⊗ g(t) (7)

y(t) = h(t) = o(t) ⊗ tanh
(
c(t)
)

(8)

Briefly, an LSTM cell can observe the input importance,
remember the long history of time series while storing them
in the long-term state, and store longer information as long
as it is needed and remove whenever it is unnecessary.
Therefore, even if the problem is highly non-linear, the LSTM
is capable of capturing long-term patterns in the time series
(Zhang et al., 2019b).

Training Datasets
A similar one-story, one-bay steel braced frame as discussed
in Simplified Machine Learning Model for RTHS, but with
some modifications, was selected for this part of the study
for generating training datasets. The analytical substructure
was designed to be non-linear for the RTHS tests where this
non-linear analytical substructure is to be represented with an
advanced ML model. Again, the main goal of this fundamental
study is to explore validity of using ML modeling for RTHS and
develop/verify the needed communication schemes. Hence, the
experimental element was selected to be linear elastic so that it
can be still combined with the non-linear analytical substructure
to obtain pure analytical solutions for validating the RTHS tests.

The pure analytical model of the overall system was modeled
in OpenSees (McKenna et al., 2000), which offers a wide range
of material models, elements, and solution algorithms. The
columns (W36 × 150) and beam (W14 × 311) elements were
defined using fiber sections with non-linear material behavior
as illustrated in Figure 7. The non-linear material behavior was
defined with Steel02 material in OpenSees (Figure 7C), which is
uniaxial Giuffre–Menegotto–Pinto steel material with isotropic
strain hardening (Filippou et al., 1983). The implicit Newmark
method was used for all the conducted analysis to obtain the
training dataset, and the parameters were set as γ = 0.50 and
β = 0.25.

The yield stress of the material was selected to be 345 MPa
with modulus of elasticity of 200 GPa. On the other hand,
the brace, which is the experimental substructure in the RTHS
tests, was modeled to be linear elastic with axial stiffness of 278
kN/mm. The choice of the brace stiffness allowed the CBF to
experience larger displacements and higher non-linearities to
provide a wider range of behavior for training the ML model.
The mass of the system was selected to be 1.75 kN-s2/mm. The

Frontiers in Built Environment | www.frontiersin.org 7 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 8

Bas and Moustafa Communication RTHS ML Models

FIGURE 6 | (A) A deep LSTM network through time, (B) LSTM cell architecture.

FIGURE 7 | (A) Pure analytical model of the CBF, (B) distributed plasticity with fiber sections for non-linear elements, (C) steel 02 model stress–strain relationship.

natural period of this CBF system was calculated to be 0.47 s.
A 2% Rayleigh damping was assumed for modeling the inherent
damping of the structure.

The non-linear time history analysis of the pure analytical
model of the overall system was obtained using the implicit
Newmark method (average acceleration), which is considered the
“correct” solution for the further investigation and validation in
this study. A proper convergence study was carried out, and the
time step for the integration was selected to be 0.02 s, which is
also equal to the ground motion time step. The 1940 El-Centro
earthquake was selected again for this part. While the duration of
the earthquake record is 31.2 s, the analyses were carried out for
full 32 s, which generated 1,600 data points for each response.

The training dataset for the deep LSTM model of the non-
linear analytical substructure was selected to be the ground
motion acceleration and brace force time histories. The brace
axial displacement in local coordinates, i.e., the scaled actuator
command in the used substructured test setup shown in Figure 2,
was selected to be the output for the model training purposes.
This is to be later sought as the ML model output or prediction
when in the RTHS loop. Thus, the ML model used two inputs
to give the brace displacement command prediction to the
experimental substructure. It should be noted that, during an
online RTHS test, the system is a closed-loop one, and the brace
force is dependent on the predicted brace displacement. This
dependence between the input and output brings a high level of

uncertainty, and the model can become unstable even in the pure
analytical examination of the model.

Moreover, the experimental setup can also bring addition
sources of errors and uncertainties due to the nature of the
servo hydraulic system. Therefore, a systematic error, which
is referred to as bias here for simplicity, was introduced to
expand the training environment. This bias is added only to the
brace force time history and is meant to account for unforeseen
experimental errors and metamodel non-linearity due to input
output correlation. For instance, the ML model is trained to
predict, for example, a 25-mm displacement output value for 25-
kN force feedback input and 0.25-g ground motion excitation.
However, the actual force feedback looped back to the ML model
during the RTHS test and needed to make the next prediction for
the 0.25-g ground motion acceleration could be 26 kN instead of
25 kN because of the experimental errors. Thus, for the ML model
to still predict the intended 25-mm displacement, it needs to have
been trained that at 0.25-g ground motion input, the force could
be 25 or 26 kN or something else. For this purpose, additional
force histories where generated using ± 5, ± 10, ± 15% of the
brace force and were added to create the biased dataset.

The original dataset along with the six conceived datasets with
the added bias were stacked together for the overall training
dataset. This required the same ground motion to be repeated
seven times to go with the seven cases of force input to prepare the
ML model that, for a given ground motion input, the force could

Frontiers in Built Environment | www.frontiersin.org 8 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 9

Bas and Moustafa Communication RTHS ML Models

FIGURE 8 | Stacked ground motion acceleration dataset (Input 1).

FIGURE 9 | Stacked brace force dataset (Input 2).

FIGURE 10 | Stacked brace displacement dataset (output).

have one of seven possible values based on the devised bias. This
training scheme resulted in a total of 11,200 data points for the
force input and the seven-times repeated ground motion input.
The stacked ground motion acceleration, i.e., Input 1, and the
stacked force time history of the brace, i.e., Input 2, are shown in
Figures 8, 9, respectively. The stacked brace displacement dataset
obtained from the OpenSees analysis and used to represent the
output of the training is shown in Figure 10.

Once the training dataset is generated, it should be modified
and reshaped to be able to train the LSTM model. The
input sequences of LSTM networks are formatted to be three-
dimensional (3D) arrays, as in other time-series prediction
models (Géron, 2017) and as illustrated in Figure 11. The first

dimension is the batch size or the number of samples of the
dataset. The second dimension is the lookback, which defines
how many past time steps that the model should get. Finally, the
third dimension is the size of the input dimension or number of
features. The lookback parameter is one of the key parameters
that should be tuned carefully as it makes LSTMs more reliable
because it allows the algorithm to look back in the past time steps
to make better future predictions. Although it extends the used
information, it might increase the memory requirements. On the
other hand, the output shape can be either 2D or 3D arrays, which
depends on the return sequences. Generally, in between the layers
of the deep LSTM network, the return sequence is set to be true
except for the last layer, which means the final output contains

Frontiers in Built Environment | www.frontiersin.org 9 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 10

Bas and Moustafa Communication RTHS ML Models

FIGURE 11 | (A) Schematic representation of 3D data format, (B) input dataset in 2D format, and (C) input dataset when reshaped into 3D format.

a single output value per time step. For this study, the 2D data
format was considered for the output shape of the model.

Figure 11A shows a schematic representation of the 3D data
format, where each color represents different input feature (input
dimension). In this study, the number of features is two, i.e., Input
1 and Input 2, as mentioned earlier. In Figure 11B, these two
inputs are represented in 2D data shape, and Figure 11C presents
the reshaped version of the data. For simplicity, only one ground
motion and corresponding brace force time history are shown in
the figure instead of a full stack of the input datasets.

Implementation Methodology and
Sensitivity Analysis for LSTM Model
The deep LSTM model used in this study was trained and
generated in the Python environment using Tensorflow 2.0
framework, which is a high-performance computing library
introduced by Google (Abadi et al., 2015). Tensorflow offers
many packages and features, and one of the most popular
ones it supports is Keras (Chollet, 2015). Keras is a high-
level Application Program Interface that is highly attractive
for building and training deep learning models. Generating
workflows in Keras is simple because there are several standalone
modules, such as neural layers, optimizers, cost functions, and
user-defined modules. Thus, one can easily connect and stack
these modules to generate an ML model. The inputs and output
training datasets were fed into the deep LSTM models to tune
the hyperparameters, i.e., size of the hidden layer, number of
layers, number of neurons, batch size, lookback size, number of
epochs, learning rate, etc. To train a large deep neural network,
a faster optimizer should be used because the training time can
take longer. The Adam (Adaptive Moment Estimator) optimizer
was selected to train for the models used in this study, with
a learning rate of 0.001, because it is computationally efficient
and well-suited for problems with large datasets (Kingma and
Ba, 2015). The number of epochs was set to be 103. Moreover,
the model was trained to minimize the cost function defined
in Eq. 9, which is mean square error (MSE) between the

given displacement values (xn) and the predicted displacement
values (x̂n).

J (θ) = MSE =
1
N

N∑
n=1

(
xn − x̂n

)2 (9)

In this study, several layer numbers with different sizes of
hidden layers were evaluated. The models had an input layer, four
LSTM layers with 30 units in each layer, and one dense layer,
which is a fully connected layer that outputs the prediction. For
these models, different lookback values, i.e., 1, 5, 10, 15, and 20,
were selected to select and fine-tune the most accurate model
to be used as computational substructure in the RTHS loop.
Moreover, 70% of the dataset was set to be the “training” part
of the dataset, and the rest was used as the “test” dataset. The
brace displacement response prediction values from the LSTM
models with different lookback values were compared against the
pure analytical model response. The performance of the model
prediction was evaluated using the NRMSE, normalized energy
error (NEE), and maximum amplitude error (MAE) given in Eqs
10 to 12. The NRMSE is an adequate way of evaluating the overall
model performance, whereas the NEE and MAE are more focused
on amplitude errors between the datasets.

NRMSE =

√
1
N
∑N

n=1
(
xn − x̂n

)2

max
(
x̂
)
−min

(
x̂
) (10)

NEE =

∣∣∣∣∣
∑N

n=1 (xn)
2
−
∑N

n=1
(
x̂n
)2∑N

n=1
(
x̂n
)2

∣∣∣∣∣ (11)

MAE =

∣∣∣∣∣max(|x|)−max(
∣∣x̂∣∣)

max(
∣∣x̂∣∣)

∣∣∣∣∣ (12)

For the pure analytical assessment of the metamodel response,
there was no real feedback from the actuator. That is because

Frontiers in Built Environment | www.frontiersin.org 10 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 11

Bas and Moustafa Communication RTHS ML Models

TABLE 2 | Deep LSTM model comparison for different lookback values.

Lookbacks Comparison plots for exact and predicted displacement time histories Errors (%)

1 NRMSE = 21.55

NEE = 395.81

MAE = 18.54

5 NRMSE = 14.34

NEE = 4.6

MAE = 18.14

10 NRMSE = 1.57

NEE = 3.25

MAE = 0.3

15 NRMSE = 1.60

NEE = 0.078

MAE = 0.7

20 NRMSE = 1.63

NEE = 3.57

MAE = 0.19

the brace force used as input for the model at a given time
step was obtained from multiplying the predicted displacement
response from previous step by the axial stiffness of the brace.
Table 2 summarizes the performance evaluation of the deep
LSTM models with different lookback values. It can be seen from
the error calculations and the plots that the model trained with
only one lookback data has the worst performance compared
with the others. When this value was increased to five, the model
performed slightly better in terms of amplitude; however, the
prediction resulted in a very noisy signal. The models trained
and evaluated with 10, 15, and 20 performed relatively close to
each other. However, the model with 15 lookbacks stood out for
best performance. The LSTM models with 15 and 20 lookbacks,
referred to as Model 1 and Model 2, respectively, were selected
and used for the validation and demonstration RTHS tests.

COMMUNICATION DEVELOPMENT AND
VERIFICATION

One of the critical aspects of HS/RTHS is the proper
data communication between the analytical substructure and
experimental substructure. The UNR setup components and
configuration information are given above in HS System
Components. As mentioned earlier, the analytical substructure of
the HS/RTHS tests can be modeled in either Simulink directly
or in an FE software such as OpenSees along with a middleware
such as OpenFresco (Schellenberg et al., 2009a). OpenFresco
is a software that connects FE models to the controllers and

data acquisition systems in laboratories to enable HS. It allows
interfacing different computational drivers. In this study, a
novel communication scheme was developed to connect the
Python-based models to the HS/RTHS loop via OpenFresco as a
middleware. The authors have previous experience in developing
and verifying new HS communication schemes that also used
OpenFresco (Moustafa and Mosalam, 2015a,b).

To assess the online performance of the LSTM models in
providing a prediction and in anticipation of future models
that could be more complex and larger in size, two scenarios
for calling the LSTM models were considered and tested.
The first case used a local PC that was physically part of
the RTHS, and the second considered a high-performance
computing cluster. The communication details for Python-based
metamodel substructures when located in local PC (host PC) are
presented first.

Figure 12 shows the hardware components and the
communication details schematically. In this configuration,
Python is located at the host PC, where the xPC connection and
the SCRAMNetGT initializations are made. Python can be run
either from the command prompt (i.e., python.exe) or Anaconda
prompt or Jupyter notebook. The OpenFresco architecture for
Python connection is the “client&middle-tier server,” where
OpenFresco serves as a middle-tier server, and Python is the
client. At the OpenFresco side, the server is started by opening
a UDP/TCP channel, and the simulation application site is set.
On the other hand, Python has a “socket” module to set the
connection and send and receive data with either TCP or UDP
protocols. In this study, the data communication between Python

Frontiers in Built Environment | www.frontiersin.org 11 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 12

Bas and Moustafa Communication RTHS ML Models

FIGURE 12 | HS/RTHS communication details for Python-based analytical substructure (metamodel) located and called from local PC.

and OpenFresco is provided with the UDP communication
protocol. The experimental site is also connected with this
middle-tier server, which is a local experimental site in this
study. Moreover, the experimental control, which is the interface
with the laboratory hardware system, should be defined. This is
where the data to/from the controller through the xPC target
are transferred. The connection between the host PC and the
xPC Target can be set up with either TCP/IP or SCRAMNetGT
connection. The SCRAMNetGT connection was considered here
because it provides more stable and faster data transfer.

The communication details when a high-performance
computer cluster is considered are provided next. The cluster
that has been used in this study belongs to UNR’s Department
of Computer Science and Engineering and used for teaching
and simple research studies. Python packages and modules can
be run from a cluster, especially when complicated calculations
are needed to be done at high speeds. For this communication,
Python models were run in the cluster, while OpenFresco is in
the host PC. The cluster and the host PC were connected through
the Secure Shell (SSH) network protocol. The data transfer was
performed with UDP tunneling through the SSH connection.
The schematic communication details of this configuration are
shown in Figure 13. Other than this, the data transfer procedure
is the same as it is explained for local PC.

The overall concept of the data transfer in this RTHS setting is
as follows. The trained deep LSTM network model (metamodel),
which is the analytical substructure of the RTHS test, runs from
Python. Python can be run from either the local PC or the
cluster. At each time step, this metamodel calculates the input
displacement and sends it as displacement command to the
experimental substructure. Then, the experimental substructure
sends the measured force from the specimen and feeds it back to
the metamodel. OpenFresco has a predictor–corrector algorithm,

which is programmed in Simulink and Stateflow, and runs in
the xPC target machine to manage the real-time environment,
which synchronizes the integration time step, the simulation
time step, and the controller time step (Schellenberg et al.,
2009b). The predictor–corrector algorithm generates smooth
command signals at the same rate as the control system base
clock frequency, and this allows generating displacement targets
from the non-deterministic rate numerical models (Serebanha
et al., 2019). For real-time tests, the simulation time step
should be equal to the integration time step. During the
RTHS, the numerical model solves the new target displacement,
and the predictor–corrector algorithm generates command
displacements based on polynomial forward prediction. The new
target displacement should be calculated and sent within 60%
of the simulation time step to allow the remaining time frame
for data transfer for RTHS. If this is not satisfied at a single
point, then the predictor–corrector provides a solution with
slowing down the command displacement until the new target
is received (Serebanha et al., 2019). In the proposed system with
metamodels, i.e., no integration for the equation of motion is
needed, the integration time becomes the prediction time step.
The prediction time step was set to be 0.02 s, which was the same
as the training time step.

The validation for the aforementioned communication
scheme is first tested between the computer and controller and
checked against the pure analytical case. For this validation
scenario, offline RTHS tests were conducted while the hydraulic
system was off. Because no actual actuator feedback was available
yet, the force feedback was obtained from the command of
the system, where the stiffness multiplier was applied to the
displacement command, as opposed to the actual actuator
feedback in online tests. It is noted again that for all
tests considered in this study, a linear elastic experimental

Frontiers in Built Environment | www.frontiersin.org 12 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 13

Bas and Moustafa Communication RTHS ML Models

FIGURE 13 | HS/RTHS communication details for Python-based analytical substructure (metamodel) located at and called from high-performance computer.

substructure was considered through the stiffness multiplier
to make it possible to compare with pure analytical cases for
verification. The offline RTHS test results are presented in
Figures 14A,B for the deep LSTM network model with 15 and
20 lookbacks, i.e., Model 1 and Model 2, respectively, located at
the local PC. Moreover, Figure 15 shows the same comparisons
for the RTHS tests that were conducted from the cluster. The
RTHS test results, i.e., brace displacement, were compared with
the pure analytical response to estimate NRMSE, NEE, and MAE.
All error values from for both experiments are provided in the
figures. The figures show that Model 2 with 20 lookbacks had
overall less NRMSE and MAE values than Model 1. However,
for all cases, the RTHS results were very comparable to the pure
analytical solutions, which verifies the real-time communications
for both host PC and the cluster.

ONLINE RTHS TESTS

In this section, the deep LSTM network models with lookbacks 15
and 20 are further used to evaluate the ML-based RTHS approach
and communication among different components using full
online tests. Thus, for all the RTHS tests that are presented and
discussed in this section, the hydraulic system was on with the
actuator free to move, and in turn, actual feedback from the
actuator was obtained and fed into the analytical substructure. At
each time step, the actual achieved actuator’s displacement was
modified using the constant brace stiffness multiplier to feedback
an equivalent, yet representative, force feedback of a linear elastic
experimental substructure. Different geometric scales (SL) were
considered for the mock experimental specimen to test the RTHS
system and ML-driven actuator at wide range of displacements
and velocities for better assessment. The relevant considered
scale factors were SL for length and SL

2 for the force values,

and these scale factors are controlled through Simulink blocks
that are compiled in xPC Target. Several tests were conducted,
and the respective discussion is presented in three subsections
to make proper comparisons. First, results from online RTHS
with conventional non-linear FE models are presented to serve
as reference for ML-based tests verification. Next, computational
time is evaluated and compared for RTHS test results with the
ML model located at local PC and cluster to explore whether
there are benefits in using cluster as opposed to local PC. Finally,
the RTHS tests that used local PC are discussed further through
comparisons against both RTHS tests with FE models and the
pure analytical solution. A total of 40 different online RTHS were
conducted with different geometric scales, varying LSTM models,
and with or without using a dedicated time delay compensator.
Selected results are shown, but all error calculations (NRMSE,
NEE, and MAE) for the 40 tests are summarized and discussed
in the last subsection.

Online RTHS With FE Model
Conducting RTHS with large or heavily non-linear analytical
substructure models could be challenging and has limitations
that could be mostly associated with insufficient computational
time within the RTHS loop. For example, when both stiffness
and strength degradation are considered, direct integration
methods were found to have some limitations, only for RTHS
(Bas and Moustafa, 2020). The idea of using an ML approach
or metamodels could eliminate such limitations, which is the
motivation behind this study. Thus, the system capabilities and
online RTHS tests are first evaluated with the FE model. For these
tests, OpenSees was used to model the analytical substructure.
The model properties and modeling assumptions were the same
as given in Training Datasets. For the experimental substructure,
several length scale factors were considered at 5, 10, 15, 20,

Frontiers in Built Environment | www.frontiersin.org 13 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 14

Bas and Moustafa Communication RTHS ML Models

FIGURE 14 | Brace response from pure analysis and offline RTHS tests with deep LSTM network model located at local PC and trained using (A) 15 and (B) 20
lookbacks.

FIGURE 15 | Brace response from pure analysis and offline RTHS tests with deep LSTM network model located at high-performance computer cluster and trained
using (A) 15 and (B) 20 lookbacks.

and 25. All tests were conducted in real time where both the
integration and simulation time steps were set to 0.02 s. The
integration algorithm was selected to be the explicit KR-α (Kolay
et al., 2015). Two sets of tests were conducted with and without
using the ATS compensator to correct for the actuator delay.
The KR-α integration and ATS compensator initial parameters
that were used in the RTHS tests are listed in Table 3. A side
convergence study was conducted to obtain the best input value
for one of the integration parameters, i.e., ρ∞, as illustrated in
Figure 16. The brace displacement time histories were obtained
for different ρ∞ values, and the NRMS errors were calculated
for assessment. Although there were no significant differences
between 0.75 and 1.0, the ρ∞ was assigned to be 1.0 because this
was the case that corresponded to the least error. All tests were
compared against the pure analytical solution of non-linear CBF,
which used implicit integration methods and considered to be the
“correct” solution when only the brace is considered linear elastic
as explained before.

Figure 17 shows the test results from the online RTHS with
FE model and without using ATS compensator. Five tests with
different geometric scales are shown and compared against the
pure analytical solution. Same tests were conducted but with
using the ATC actuator delay compensator, and results are shown
in Figure 18. For all tests, the obtained brace displacements are
shown at the prototype scale so that the different scale tests could

be compared. From the figures, it shown that the geometric scale
of the experimental substructure, i.e., different range of actuator
displacements and velocities, did not affect the test results, which
demonstrates the capability of the hydraulic system and actuator.
However, it can be clearly seen that the delay of the actuator
affected the response in terms of phase difference and amplitude.
The ATS is shown to significantly improve the test performance
and critically needed for RTHS, which might not be the case
when ML models are used in lieu of FE models as discussed in
the last section.

To demonstrate whether the prototype CBF goes non-linear
under the 100% scale El Centro ground motion used throughout
this study, the force–displacement relationship of the full frame
is shown in Figure 19. The figure compares the pure analytical
case and one of the online RTHS tests with FE model (with ATS
and SL = 15) as an example. It is shown that even when ATS is

TABLE 3 | Initial parameters for defining KR-α integration and ATS compensator
for RTHS tests.

KR-α integration parameters ATS parameters

ρ∞ Ke
eq Ce

eq a0k a1k a2k

1.00 278 kN/mm 0 1.20 0.014 9.8E-05

Frontiers in Built Environment | www.frontiersin.org 14 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 15

Bas and Moustafa Communication RTHS ML Models

FIGURE 16 | Brace displacement response time histories for different ρ∞ parameter values along with NRMS errors with respect to the implicit Newmark method.

FIGURE 17 | Comparison of brace displacements from online RTHS tests without using ATS compensator (for different geometric scales) against pure analytical
solution.

FIGURE 18 | Comparison of brace displacements from online RTHS tests with using ATS compensator (for different geometric scales) against pure analytical
solution.

used the FE solution for the non-linear model becomes erroneous
during online RTHS tests. This error might be attributed to
improper estimation of the equivalent initial elastic stiffness or
damping matrix for instance. However, such results confirm the
need of proper parameters estimation and careful investigation
to conduct reliable RTHS tests, which is discussed in detail in
Bas and Moustafa (2020). Moreover, to further quantify the
performance when non-linear FE model is used for RTHS and to
establish a reference case for further ML validations, the NRMSE,
NEE, and MAE values were calculated and listed in Table 4. The
error values from the cases with and without ATS confirm the
importance of using an error compensator for RTHS with FE

analytical substructure. The table also confirms that even with
ATS, there is still considerable error with respect to the pure
analytical solution. Lastly, the error values suggest that system
becomes relatively more erroneous at larger geometric scales
leading to much smaller actuator displacements.

RTHS Testing With ML Models From
Local PC and Cluster
As previously mentioned, two ways of running the LSTM
ML models have been considered. The data communication is
possible when the Python model is run from a high-performance

Frontiers in Built Environment | www.frontiersin.org 15 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 16

Bas and Moustafa Communication RTHS ML Models

FIGURE 19 | Comparison of global force–displacement relationship for prototype CBF as obtained from pure OpenSees analytical solution and online RTHS with FE
model (with ATS and SL = 15).

TABLE 4 | Errors (%) in brace displacement response from online RTHS with FE model as compared to the pure analytical solution.

Error metrics SL = 05 SL = 10 SL = 15 SL = 20 SL = 25

With
ATS

Without
ATS

With
ATS

Without
ATS

With
ATS

Without
ATS

With
ATS

Without
ATS

With
ATS

Without
ATS

NRMSE (%) 3.7 12.4 7.1 13.3 8.0 13.6 9.0 13.9 9.6 14.1

NEE (%) 14.5 45.3 27.8 51.7 32.5 54.2 30.6 55.4 35.7 56.4

MAE (%) 8.2 22.1 6.5 28.2 3.7 30.7 1.3 32.2 0.9 33.4

FIGURE 20 | Computational time for RTHS tests with Model 1 located at (A) local PC and (B) cluster.

computer or the local computer (i.e., host PC in the UNR setup).
In this section, the computational time at each analysis step is
presented for both ways of conducting the ML-based RTHS tests.
The considered time steps included the time spent for the ML
model to evaluate the prediction, i.e., calculation time, the time
spent to receive the data from the experimental substructure, and
the total data transfer time. It should be noted that the prediction
time step and the simulation time step were set to be 0.02 s.

The computational time spent for the online RTHS where
Model 1 (with 15 lookbacks) was used as the computational

substructure is shown in Figure 20A for the local computer
and Figure 20B for the cluster. The average time spent for the
ML prediction is estimated to be 10.2 ms for the local PC and
9.4 ms for the cluster. Moreover, the figure shows the overall
data transfer time for each analysis step, which is desired to be
20 ms to satisfy the real-time testing through proper OpenFresco
handling. It can be seen from Figure 20A that some of the time
steps showed minor spikes that took slightly longer than the
simulation time step when the tests were conducted from the
host PC. However, the total data transfer time remained less than

Frontiers in Built Environment | www.frontiersin.org 16 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 17

Bas and Moustafa Communication RTHS ML Models

FIGURE 21 | Computational time for RTHS tests with Model 2 located at (A) local PC and (B) cluster.

FIGURE 22 | RTHS response comparison with analytical solution for Model 1 (SL = 15) with and without using ATS when the first row of the force input was selected
to be updated.

FIGURE 23 | RTHS response comparison with analytical solution for Model 1 (SL = 15) with and without using ATS when the last row of the force input was selected
to be updated.

FIGURE 24 | RTHS (A) NRMSE and (B) NEE calculation for Model 1 (all geometric scales).

Frontiers in Built Environment | www.frontiersin.org 17 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 18

Bas and Moustafa Communication RTHS ML Models

or equal to 20 ms when cluster communication was provided
through the SSH network protocol. Figure 21 shows the same
comparison when Model 2 with 20 lookbacks was used. The
average calculation time for Model 2 was estimated as 11.8 ms
for local PC and 10.7 ms for the cluster. It should be noted
that Model 2 has a larger dataset dimension (lookback), which
slightly increases the prediction time when Models 1 and 2 are
compared. Overall, the observations show that the prediction
takes slightly less time for cluster than the local computer for
both models. For both configurations, the data transmission is
done through the UDP channel. However, the UDP channel is
provided through SSH network protocol for the cluster, which
provides highly stable communication and ensures the desired
simulation time step is achieved.

Validation of RTHS Tests With ML Models
and Effect of Delay Compensator
A series of 40 RTHS tests were conducted, which included
different ML models and scale factor. The same two advanced
LSTM models as before, i.e., Models 1 and 2, were used when
located at the local PC, and tests were conducted also at same
geometrical scale factors as before, i.e., 5, 10, 15, 20, and 25.
Models 1 and 2 were also handled differently to create two
more subgroups of models as discussed in the next paragraphs.
Additional tests were also conducted using the cluster. However,
there was no significant difference in test results when using
the local PC and cluster. Therefore, this section only presents
the RTHS tests where advanced ML models located and ran
from the local PC.

The data shapes of the inputs for Models 1 and 2 are in
three dimensions as explained before in Advanced ML Techniques
for RTHS. For the RTHS testing, the single value of the force
feedback that is obtained from the experimental substructure at
each time step is fed into the LSTM model. However, such online
value can be used to overwrite, or simply update, one or more
of the dimensions of the LSTM lookbacks, i.e., 15 predefined
brace force input values, for instance. In this study, two different
submodels for both Models 1 and 2 were investigated, which
considered two arbitrary dimensions for the update. For first case,
the overwritten/updated value was the first row of the 15 or 20
force input lookbacks, which was updated with the online force
feedback. The other case considered using the force feedback
to update the last row of the lookbacks instead. The two cases
are referred to as FIRST and LAST for the remainder of the
discussion. For brevity, only few plots from selected RTHS tests
are presented, which were obtained for Model 1 with SL = 15.
However, a summary of results from all tests is still provided
in terms of error estimation with respect to the pure analytical
FE model response.

Figure 22 presents the brace displacement response as
adopted from the actuator for RTHS with ML model and with and
without using ATS. The figure also compares the RTHS response
against the pure analytical solution. The results shown are from
a “FIRST”-type case where only the first term on the force
input’s lookback dimension was updated with the force feedback
obtained from the experimental substructure. The first main and

TABLE 5 | Error estimation (%) for all conducted online RTHS tests with different
ML models with respect to the pure analytical solution.

Model 1 Model 2

NRMSE NEE MAE NRMSE NEE MAE

SL = 5 FIRST With 4.3 11.2 1.0 3.1 7.1 6.4

ATS

Without 4.8 8.1 0.7 3.3 9.1 5.3

ATS

LAST With 4.8 0.3 7.4 6.9 1.3 4.0

ATS

Without 4.2 7.6 5.1 5.3 10.8 2.1

ATS

SL = 10 FIRST With 4.4 11.2 0.2 3.2 8.7 5.5

ATS

Without 5.0 8.8 1.0 3.4 8.7 4.9

ATS

LAST With 5.5 1.1 5.6 10.8 25.0 17.7

ATS

Without 4.4 7.8 4.8 7.5 20.3 3.9

ATS

SL = 15 FIRST With 4.5 9.5 0.7 3.3 13.7 7.5

ATS

Without 5.1 9.0 0.9 3.6 8.2 4.5

ATS

LAST With 6.6 2.2 3.5 14.1 48.9 28.5

ATS

Without 4.5 7.7 5.0 4.7 7.7 1.2

ATS

SL = 20 FIRST With 4.5 9.5 0.7 3.8 25.5 2.9

ATS

Without 5.1 9.1 1.0 3.7 7.6 4.7

ATS

LAST With 5.8 17.0 0.3 15.4 64.5 40.7

ATS

Without 4.7 7.3 5.0 4.4 5.7 0.1

ATS

SL = 25 FIRST With 4.7 7.7 4.2 4.3 39.7 1.7

ATS

Without 5.3 9.9 0.9 3.8 7.1 4.3

ATS

LAST With 6.7 37.1 1.9 20.1 69.8 33.9

ATS

Without 4.8 6.7 5.0 4.6 5.6 1.1

ATS

big observation is that RTHS testing with advanced ML model
used for non-linear analytical substructure is demonstrated to be
a valid approach with very comparable results when compared
to analytical solution. The displacement command was predicted
well-enough, based on the online received feedback, to conduct
the RTHS tests successfully. Results from another test that used
the same model but considered the last row of the force input
for updating are shown in Figure 23. When the cases with and
without ATS are compared in both Figures 22, 23, there is no
significant effect on the response. In fact, the feedback that was

Frontiers in Built Environment | www.frontiersin.org 18 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 19

Bas and Moustafa Communication RTHS ML Models

obtained from the case with ATS was worse and noisier in some
cases as in the sample shown in Figure 23, i.e., the actuator
became more sensitive to the updated force value when the last
term in the lookbacks is overwritten. Nonetheless, even with the
added noise in some ML model cases, the response of the actuator
remained stable, and the RTHS tests were successfully completed.

To comprehensively assess all conducted tests, the NRMSE
and NEE values were obtained and summarized in Figure 24 and
Table 5. Figure 24 shows the error values for Model 1 for all the
RTHS tests with different geometric scales. It can be observed
that the effect of the ATS compensator is more pronounced when
the last row of the force input is updated with the feedback
value from the actuator and at larger-scale factors where smaller
actuator displacements were expected. However, this effect of
using ATS is even an adverse effect. For instance, using ATS for
the case with SL = 25 led to dramatic increase in error value.
Regardless of the ATS effect, it is shown that ML models do not
need to be used with actuator delay compensation because of
the nature of the model training that indirectly accommodates
actuator delays. This preliminary observation is worth further
investigation where ML models could be considered to improve
actuator control in cases of non-linear dynamic systems.

Table 5 presents all the error metrics for 40 different RTHS
tests with ML models located at host PC. Detailed evaluations
for Models 1 and 2 are reported in terms of NRMSE, NEE,
and MAE. All RTHS tests were successfully completed for each
model and geometric scale factor. In most cases, the RMSE is
less than 5%, which is reasonably accurate to confidently validate
the proposed concept of using ML models to replace FE models
within the RTHS loop. Moreover, Models 1 and 2 do not show
any significant differences for most of the considered tests. It is
observed that the most problematic cases were observed when
the last row of the force input was updated, and larger geometric
scales were used with the ATS compensator. However, even for
these cases, the tests remained stable, and none of the tests were
stopped unlike what was previously reported for using non-linear
FE models (Bas and Moustafa, 2020). The results are encouraging
in terms of eliminating the need for any delay compensator when
ML models are used for RTHS. In summary, this study sets the
stage for a new way of conducting RTHS testing in the future.
However, the results also show that the hardware, geometric
scale, and type of ML model could have significant effect on
accuracy of RTHS testing and justify the call for further research
studies to identify best ML practices and modeling procedures for
future RTHS testing.

SUMMARY AND CONCLUSION

In this article, the idea of using complex ML models to
replace FE models for RTHS was validated, and foundational
work was provided for RTHS communication development and
verification for Python-based deep learning ML metamodels.
This study was motivated by the potential for ML-based
computational substructures to advance RTHS testing and help
explore new research areas in the future. The article touches
on ML models sensitivity and performance for time-series

prediction, as well as using high-performance computers for
running online ML models. The need for commonly used
practices in RTHS testing, e.g., actuator delay compensation,
was also assessed when ML metamodels are used for the
computational substructures. For all ML models and system
evaluations, a one-bay, one-story steel braced frame was selected.
The columns and beam defined the analytical substructure,
whereas the brace defined the experimental substructure for
RTHS testing. The key aspects of the study along with the main
findings can be summarized as follows.

• A simplified ML model was first generated with LR
algorithms for a linear elastic system. The LR model
was coded using MATLAB/Simulink and compiled on
the xPC machine as part of the RTHS loop. No specific
communication scheme was needed, and the simple tests
showed that using metamodels to derive the actuator in an
RTHS setting is possible.
• For accurate modeling of dynamic response of non-

linear braced frames, LR models could not be used, and
more advanced ML algorithms were needed. Deep LSTM
networks were selected because of their capability of
capturing long-term patterns in time series. Python was
used to generate the LSTM models using training datasets
obtained from analytical OpenSees models. A linear elastic
brace was considered along with the non-linear frame,
and several ML models were evaluated against the pure
analytical FE model response to tune the hyperparameters
of the model. Two LSTM metamodels were demonstrated
to accurately predict non-linear response and in turn,
selected to be used further in the RTHS tests.
• The training domain is crucial and should be devised

carefully for a robust ML model. In this study, in order
to consider the uncertainties due to force–displacement
dependencies and hardware errors (e.g., initial load frame
feedback, noise from actuator, etc.), the training domain
was expanded using seven episodes of the force input to the
LSTM model with introduced bias. Although this approach
helped, there is need to devise other different training
approaches in future studies to account for wide range
of uncertainties.
• In order to use Python as a computational driver for

ML-based RTHS tests, a communication scheme that
uses OpenFresco was proposed and successfully verified.
OpenFresco serves a middle-tier server, and Python is the
client in this form of architecture. The data transfer is made
through UDP socket between Python and OpenFresco.
Data communication from both local PC and high-
performance computer cluster was verified. The cluster
communication is achieved through UDP socket but under
the secure shell portal.
• When comparing the use of local PC versus cluster for

running online RTHS Python LSTM models, no significant
improvement in computational time is observed for the
considered CBF structure. However, it is reported that
using the cluster through the secure shell network protocol
provides more stable communication than local PC where

Frontiers in Built Environment | www.frontiersin.org 19 September 2020 | Volume 6 | Article 574965

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 20

Bas and Moustafa Communication RTHS ML Models

no data transfer time spikes were observed. The data
transfer time for each analysis step was always guaranteed
to be equal to or less than the defined simulation time step
when the cluster was used.
• Several RTHSs were successfully conducted, and their

results were used to assess the performance of the developed
communication, as well as the python-based deep LSTM
model validity. Several RTHS tests were conducted using
non-linear FE to better assess the benefits of the ML
modeling approach. It was shown that FE models, in case
of non-linearity, could result in relatively more errors and
is much more dependent on actuator delay compensators
when compared to ML models.
• The preliminary results presented in this study suggest

that a dedicated actuator delay compensator might not
be needed. Instead, such compensation can be embedded
within the ML model, which works with recurrent data, and
considered a priori as part of the training. While sufficient
evidence and verification are still needed, this observation
is worth further investigation to explore the use of ML
models to improve actuator control in cases of non-linear
dynamic systems.
• Overall, the communication developments for RTHS tests

with advanced Python-based ML models are successfully
validated for the first time. The goal of the article was
not necessarily to present most the accurate or exact ML

models for a given non-linear analytical substructure, but
rather to demonstrate the concept of using ML algorithms
within the HS loop. The study shows the applicability
of using robust clusters and calls for future research
to consider supercomputers, clusters with GPU, etc., for
running ML models for RTHS. One main limitation in
this study is not using realistic or non-linear experimental
substructures. Thus, future work is recommended to
consider new ML methods that can be trained for non-
linear specimen response.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

EB: system development, testing, data collection and analysis,
data and results interpretation, and writing original manuscript.
MM: conceptualization, data and results interpretation,
reviewing and editing manuscript, and project supervising.
Both authors contributed to the article and approved the
submitted version.

REFERENCES
Abadi, M., Ashish, A., Paul, B., Eugene, B., Zhifeng, C., Craig, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. Available online at: http://arxiv.org/abs/1603.04467 (accessed June 3,
2020).

Abbiati, G., Lanese, I., Cazzador, E., Bursi, O. S., and Pavese, A. (2019). A
computational framework for fast-time hybrid simulation based on partitioned
time integration and state-space modeling. Struct. Contr. Health Monit. 26,
1–28. doi: 10.1002/stc.2419

Ahmadizadeh, M., Gilberto, M., and Andrei, M. R. (2008). Compensation
of actuator delay and dynamics for real-time hybrid structural simulation.
Earthquake Engin. Struct. Dynam. 37, 21–42. doi: 10.1002/eqe.743

Bas, E. E., and Moustafa, A. M. (2020). Performance and limitations of real-time
hybrid simulation with nonlinear computational subsructures. Exper. Techniq.
2020, 121. doi: 10.1007/s40799-020-00385-6

Bas, E. E., Moustafa, M. A., Feil-Seifer, D., and Blankenburg, J. (2020a). Using
machine learning approach for computational substructure in real-time hybrid
simulation. arXiv 2004:02037.

Bas, E. E., Mohamed, A. M., and Gokhan, P. (2020b). Compact hybrid simulation
system: validation and applications for braced frames seismic testing. J. Earthqu.
Engin. 2020, 1–30. doi: 10.1080/13632469.2020.1733138

Bengio, Y., Patrice, S., and Paolo, F. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transac. Neur. Net. 5, 157–166. doi:
10.1109/72.279181

Bonelli, A., and Bursi, S. O. (2005). Predictor-corrector procedures for pseudo-
dynamic tests. Engin. Comput. 22, 783–834. doi: 10.1108/02644400510619530

Carrion, J. E., and Spencer, B. F. (2007). Model-Based Strategies for Real-
Time Hybrid Testing. NSEL Report No. NSEL-006 India: Indian Institute Of
Technology.

Chae, Y., Karim, K., and James, M. R. (2013). Adaptive time series compansator for
delay compensation of servo-hydraulic actuator systems for real-time hybrid
simulation. Earthquake Engin. Struct. Dynam. 42, 1697–1715. doi: 10.1002/eqe.
2294

Chang, S.-Y. (2002). Explicit pseudodynamic algorithm with unconditional
stability. J. Engin. Mechan. 128, 935–947. doi: 10.1061/(ASCE)0733-9399(2002)
128:9(935)

Chang, S.-Y. (2009). An explicit method with improved stability property.
Int. J. Num. Method. Engin. 77, 1100–1120. doi: 10.1002/nme.
2452

Chen, C., and Ricles, J. M. (2010). Tracking error-based servohydraulic actuator
adaptive compensation for real-time hybrid simulation. J. Struct. Engin. 136,
432–440. doi: 10.1061/(ASCE)ST.1943-541X.0000124

Chen, C., Ricles, J. M., Marullo, T. M., and Mercan, O. (2009). Real-time hybrid
testing using the unconditionally stable explicit CR integration algorithm.
Earthquake Engin. Struct. Dynam. 38, 23–44. doi: 10.1002/eqe.838

Chollet, F. (2015). Keras: Deep Learning Library for Theano and Tensorflow.
Available online at: https://keras.io/k (accessed June 3, 2020).

Darby, A. P., Williams, M. S., and Blakeborough, A. (2002). Stability and delay
compensation for real-time substructure testing. J. Engin. Mechan. 128, 1276–
1284. doi: 10.1061/(ASCE)0733-93992002128:121276

Del Carpio, M., Hashemi, M. J., and Mosqueda, G. (2017). Evaluation of integration
methods for hybrid simulation of complex structural systems through
collapse. Earthquake Engin. Vibr. 16, 745–759. doi: 10.1007/s11803-017-
0411-z

Filippou, F. C., Popov, E. P., and Bertero, V. V. (1983). Effects of Bond Deteroriation
on Hysteretic Behavior of Reinforced Concrete Joints. Report No. UCB/EERC-
83/19 California, CA: UCB.

Géron, A. (2017). Hands-on Machine Learning with Scikit-Learn and TensorFlow.
Massachusetts: O’Reilly Media, Inc.

Hochreiter, S., and Jürgen, S. (1997). Long short-term memory. Neur. Comput. 9,
1735–1780. doi: 10.1162/neco.1997.9.8.1735

Jozefowicz, R., Wojciech, Z., and Ilya, S. (2015). “An empirical exploration of
recurrent network architectures,” in Proceedings of the 32nd International
Conference on Machine Learning (France: ICML).

Kingma, D. P., and Ba, L. J. (2015). “Adam: a method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings (France: ICML), 1–15.

Frontiers in Built Environment | www.frontiersin.org 20 September 2020 | Volume 6 | Article 574965

http://arxiv.org/abs/1603.04467
https://doi.org/10.1002/stc.2419
https://doi.org/10.1002/eqe.743
https://doi.org/10.1007/s40799-020-00385-6
https://doi.org/10.1080/13632469.2020.1733138
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://doi.org/10.1108/02644400510619530
https://doi.org/10.1002/eqe.2294
https://doi.org/10.1002/eqe.2294
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:9(935)
https://doi.org/10.1002/nme.2452
https://doi.org/10.1002/nme.2452
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000124
https://doi.org/10.1002/eqe.838
https://keras.io/k
https://doi.org/10.1061/(ASCE)0733-93992002128:121276
https://doi.org/10.1007/s11803-017-0411-z
https://doi.org/10.1007/s11803-017-0411-z
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

fbuil-06-574965 September 10, 2020 Time: 19:40 # 21

Bas and Moustafa Communication RTHS ML Models

Kolay, C., James, M. R., Marullo, T. M., Mashvashmohammadi, A., and Sause, R.
(2015). Implementation and application of the unconditionally stable explicit
parametrically dissipative KR-Alpha method for real-time hybrid simulation.
Earthquake Engin. Struct. Dynam. 44, 735–755. doi: 10.1002/eqe.2484

Kolay, C., and Ricles, M. J. (2014). Development of a family of unconditionally
stable explicit direct integration algorithms with controllable numerical
energy dissipation. Earthquake Engin. Struct. Dynam. 43, 1361–1380. doi: 10.
1002/eqe

Lagaros, N. D., and Manolis, P. (2012). Neural network based prediction schemes
of the non-linear seismic response of 3D buildings. Adv. Engin. Soft. 44, 92–115.
doi: 10.1016/j.advengsoft.2011.05.033

LeCun, Y., and Yoshua, B. (1995). “Convolutional networks for images, speech, and
time-series,” in The Handbook of Brain Theory and Neural Networks, ed. M. A.
Arbib (Cambridge: MIT Press), 255–258.

Mai, C. V., Spiridonakos, M. D., Chatzi, E. N., and Sudret, B. (2016). Surrogate
modelling for stochastic dynamical systems by combining NARX models and
polynomial chaos expansions. arXiv 1604.07627.

McKenna, F., Fenves, G. L., and Scott, M. H. (2000). Open System for
Earthquake Engineering Simulation Pacific Earthquake Engineering Research
Center. Belgium: PEER.

Miraglia, G., Petrovic, M., Abbiati, G., Mojsilovic, N., and Stojadinovic, B. (2020). A
model-order reduction framework for hybrid simulation based on component-
mode synthesis. Earthquake Engin. Struct. Dynam. 49, 737–753. doi: 10.1002/
eqe.3262

Moustafa, M. A., and Mosalam, K. M. (2015a). “Development of hybrid simulation
system for multi-degree-of-freedom large-scale testing,” in 6th International
Conference on Advances in Experimental Structural Engineering (Urbana:
University of Illinois).

Moustafa, M. A., and Mosalam, K. M. (2015b). Structural Behavior of Column-
Bent Cap Beam-Box Girder Systems in Reinforced Concrete Bridges Subjected to
Gravity and Seismic Loads Part II: Hybrid Simulation and Post-Test Analysis.
California: University of California, Berkeley.

Mucha, W. (2019). Application of artificial neural networks in hybrid simulation.
Appl. Sci. 9:4495. doi: 10.3390/app9214495

Phillips, B. M., and Spencer, B. F. (2013). Model-based feedforward-feedback
actuator control for real-time hybrid simulation. J. Struct. Engin. 139, 1205–
1214. doi: 10.1061/(ASCE)ST.1943-541X.0000606

Schellenberg, A. H., Kim, H. K., and Mahin, S. A. (2009a). OpenFresco. California:
Universtiy of California, Berkeley.

Schellenberg, A. H., Mahin, S. A., and Fenves, G. L. (2009b). Advanced
Implementation of Hybrid Simulation. Report No. PEER 2009/104 California:
Berkeley.

Schellenberg, A., Kim, H. K., Fenves, G. L., and Mahin, S. A. (2009c).
OpenFresco Framework for Hybrid Simulation: Simulation Finite Element

Adapter Experimental Control Example. Engineering Simulation. California:
Berkeley.

Schellenberg, A., Kim, H. K., Takahashi, Y., Fenves, G. L., and Mahin, S. A. (2009d).
OpenFresco Command Language Manual. California: Berkeley.

Serebanha, A., Schellenberg, A. H., Schoettler, M. J., Mosqueda, G., and Mahin,
S. A. (2019). Real-time hybrid simulation of seismically isolated structures
with full-scale bearings and large computational models. CMES 120, 693–717.
doi: 10.32604/cmes.2019.04846

Takanashi, K., Udagawa, K., Seki, M., Okada, T., and Tanaka, H. (1975). Non-linear
earthquake response analysis of structures by a computer-actuator on-line
system. Transac. Arch. Instit. J. 229, 77–83. doi: 10.3130/aijsaxx.229.0_77

Wallace, M. I., Wagg, D. J., and Neild, S. A. (2005). An adaptive polynomial
based forward prediction algorithm for multi-actuator real-time dynamic
substructuring. Proc. Roy. Soc. A Math., Phys. Engin. Sci. 461, 3807–3826. doi:
dio: 10.1098/rspa.2005.1532

Wang, Y., Chong, W., Hui, L., and Zhao, R. (2009). “Artificial neural network
prediction for seismic response of bridge structure,” in 2009 International
Conference on Artificial Intelligence and Computational Intelligence AICI 2009,
Vol. 2 (Berlin: Springer), 503–506.

Xie, Y., Sichani, M. E., Padgett, J. E., and DesRoches, R. (2020). The promise of
implementing machine learning in earthquake engineering: a state-of-the-art
review. Earthquake Spectra 2020, 1–33. doi: 10.1177/8755293020919419

Zhang, R., Liu, Y., and Sun, H. (2019a). Physics-guided convolutional neural
network (PhyCNN) for data-driven seismic response modeling. arXiv
216:110604.

Zhang, R., Zhao, C., Chen, S., Zheng, J., Büyüköztürk, O., and Sun, H. (2019b).
Deep long short-term memory networks for nonlinear structural seismic
response prediction. Comput. Struct. 220, 55–68. doi: 10.1016/j.compstruc.
2019.05.006

Zhao, J., French, C., Shield, C., and Posbergh, T. (2003). Considerations for the
development of real-time dynamic testing using servo-hydraulic actuation.
Earthquake Engin. Struct. Dynam. 32, 1773–1794. doi: 10.1002/eqe.301

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Bas and Moustafa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Built Environment | www.frontiersin.org 21 September 2020 | Volume 6 | Article 574965

https://doi.org/10.1002/eqe.2484
https://doi.org/10.1002/eqe
https://doi.org/10.1002/eqe
https://doi.org/10.1016/j.advengsoft.2011.05.033
https://doi.org/10.1002/eqe.3262
https://doi.org/10.1002/eqe.3262
https://doi.org/10.3390/app9214495
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000606
https://doi.org/10.32604/cmes.2019.04846
https://doi.org/10.3130/aijsaxx.229.0_77
https://doi.org/dio:
https://doi.org/dio:
https://doi.org/10.1177/8755293020919419
https://doi.org/10.1016/j.compstruc.2019.05.006
https://doi.org/10.1016/j.compstruc.2019.05.006
https://doi.org/10.1002/eqe.301
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles

	Communication Development and Verification for Python-Based Machine Learning Models for Real-Time Hybrid Simulation
	Introduction
	Simplified Machine Learning Model for Rths
	HS System Components
	Modeling Assumptions and Training Dataset
	RTHS Test Results

	Advanced Ml Techniques for Rths
	LSTM Networks
	Training Datasets
	Implementation Methodology and Sensitivity Analysis for LSTM Model

	Communication Development and Verification
	Online Rths Tests
	Online RTHS With FE Model
	RTHS Testing With ML Models From Local PC and Cluster
	Validation of RTHS Tests With ML Models and Effect of Delay Compensator

	Summary and Conclusion
	Data Availability Statement
	Author Contributions
	References

