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Coastal civil infrastructure can be susceptible to damages caused by hurricanes

throughout its service life. Vulnerability assessment is a key component in hazard risk

management of civil infrastructure systems. Previously, most studies assume storm

parameters are independent when computing the vulnerability of infrastructure to

hurricanes. Due to the complicated interactive effects between storm parameters during

hurricanes, the independent model may mis-specify such intercorrelation, thus resulting

in inaccurate estimation of the probability of failure. This paper proposes a copula-based

vulnerability assessment framework to investigate the impact of dependent storm

parameters on the vulnerability of civil infrastructure subjected to hurricanes. The

developed framework is applied to a typical simply supported bridge to compute

the probability with respect to deck unseating failure under hurricane hazards. The

copula approach provides superior efficiency in modeling dependency between the

maximum wave height and peak water level, by separately considering marginal

distributions and the joint effects. Probabilistic wave-induced load acting on the bridge

deck is computed using a three-dimensional computational fluid dynamics model,

incorporating uncertainties associated with hazard parameters. The effect of correlated

storm parameters and the tail dependence characteristics on the bridge vulnerability is

investigated by using different copula models, including Clayton, Gaussian, and Hüsler-

Reiss copula functions. By incorporating dependent hazard parameters, the failure

probability of the bridge may be significantly increased for non-major hurricanes (e.g.,

with a 50-year return period), while the failure probability under major hurricanes (e.g.,

with a 500-year return period) may not be severely affected.

Keywords: hurricanes, natural hazard, copula, joint probability, vulnerability analysis

INTRODUCTION

Recently, substantial financial and social losses caused by hurricane events, such as Hurricane
Harvey 2017 and Hurricane Irma 2017, raised awareness of the government and the public to
risk assessment and management. For instance, as stated by the U.S. Federal Emergency Agency
(FEMA), commodities and essential resources including water and meals were exhausted during
the emergency responses to Hurricanes Harvey and Irma (Raymond et al., 2020). Though efforts
were made to minimize damages and losses, hurricanes remain one of the most hazardous and
costly natural hazards [NOAA National Centers for Environmental Information (NECI), 2020].
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In hurricane-prone areas, coastal civil infrastructure systems,
such as highway bridges, are exposed to hurricane hazards
throughout their lifetime. The repair and replacement of these
systems may cause significant social disruption and economic
consequences to the community. In order to manage such
risks and enhance the resilience of coastal communities, it is
crucial to assess the vulnerability of civil infrastructure under
hurricane hazards.

Hazards have either independent or interacting effects with
respect to their source, frequency, intensity, and region of
impact. Multiple hazards can be divided into three categories:
independent, successive, and concurrent. For instance,
independent hazards are discrete and there is no natural
interaction. Successive hazards refer to the scenario that a
hazard is triggered, broadened, or intensified by another, while
concurrent hazards are defined as hazards that overlap or occur
simultaneously over time (Zaghi et al., 2016; Akiyama et al.,
2020). A hurricane reflects a multi-hazard feature, due to the
joint occurrence of strong wind, high waves, and significant
storm surge (Bjarnadottir et al., 2014; Gidaris et al., 2017).
During hurricanes, coastal infrastructure systems are vulnerable
to damages resulting from hurricane-induced storm surge and
wave loading. For instance, a total number of 44 highway bridges
along the American Gulf Coast region were damaged during
Hurricane Katrina [Technical Lifelines Council for Earthquake
Engineering (TCLEE), 2006]. Most of these bridges were simply
supported and destroyed due to wave and surge forces, thus
resulting in unseating of bridge superstructures (Padgett et al.,
2008). Such unseating failure occurs when the uplift wave force
on the deck exceeds vertical capacity (Ataei and Padgett, 2013;
Mondoro et al., 2017; Zhu and Dong, 2020). Subsequently, the
impact of hurricanes on coastal infrastructure and bridges is
widely investigated, in terms of the vulnerability assessment
(Ataei and Padgett, 2013; Saeidpour et al., 2019). By considering
uncertainties in structural and hazard parameters, probabilistic
modeling of capacity and demand of bridges can be performed.
Based on the modeling, fragility models of a bridge considering
different intensity measures can be developed and the probability
of failure can be assessed (Porter, 2003; Qian and Dong, 2020).
These results are significant information for the subsequent risk
assessment with respect to loss estimation and decision making
on the repair and retrofitting (Frangopol et al., 2017).

In the vulnerability assessment, appropriate modeling of
capacity and demand plays a vital role. A conventional approach
to assess vulnerability subjected to hurricane hazards is based on
a single parameter, e.g., the wave height. The main limitation
of such univariate assessment is that the prediction of failure
probability of infrastructure is highly dependent on the selected
parameter. In consequence, the impact of model parameter
variation on infrastructure performance has to be assessed by
costly re-analysis of different sets of parameter combinations
(Ghosh et al., 2013). To address such limitations, multivariate
fragility analysis has been increasingly applied in hazard risk
assessment. For instance, Jane et al. (2018) presented a fragility
representation for shingle beaches based on multiple variables,
including wave height, period, and water level. The dependence
between geometric parameters was modeled by a Gaussian

copula. By incorporating the inundation hazard assessment
model, Vorogushyn et al. (2010) conducted a comprehensive
flood hazard assessment to compute the probability of failure of
dike breaches.Multiple intensity indicators were involved in their
work, such as flow velocity, inundation depth, and inundation
duration. Charvet et al. (2015) proposed the representation
of multivariate fragility functions for the city of Kesennuma
subjected to tsunami damage, by considering different tsunami
intensity measures (e.g., the surveyed flow depth, simulated flow
velocity, and the debris impact). Segura et al. (2020) presented a
multivariate fragility assessment framework to generate seismic
fragility surfaces of concrete gravity dams incorporating machine
learning techniques.

For the multivariate analysis under extreme events, it is
commonly necessary to evaluate the interaction of hydrodynamic
variables, as the sea state condition primarily relies on these
parameters simultaneously [DET NORSKE VERITAS (DNV),
2014]. For instance, during hurricanes, elevated sea level and
extreme waves can be caused by atmospheric pressure change
and extreme wind (Mousavi et al., 2011). Masina et al. (2015)
demonstrated that there is a non-negligible positive correlation
among variables such as significant wave height and peak water
level under storm events. Chebana and Ouarda (2011) showed
that the univariate variables cannot provide a comprehensive
representation of the multivariate nature of hydrological events.
Moreover, due to the interaction between parameters, the
compounding impact of non-severe environmental activities
may result in significant consequences. For instance, Serafin
et al. (2019) investigated the impact of multiple loads on along-
river water levels and indicated that there was a portion of
peak storm surge observed during low-wave events along the
coastal river. In their study, a surrogate model was applied
to simulate the joint relationship between river discharge and
wave height based on hydraulic modeling. Hence, analyses
based on exclusively univariate distributions may mis-specify the
coastal conditions, thus resulting in inaccurate estimation of the
associated damages or consequences, e.g., Corbella and Stretch
(2012). Therefore, the joint impact of storm variables should be
accounted for the vulnerability assessment and risk management
of coastal infrastructure.

In previous studies, the multivariate impact was commonly
taken into account by assuming the joint probability distribution
based on empirical models. For instance, Ataei and Padgett
(2013) conducted a fragility analysis of coastal bridges subjected
to hurricanes considering intensity measures with respect to
relative surge elevation and wave height. A joint probabilistic
density function was used to describe the dependence between
wave height and wave period. Lucas and Soares (2015) proposed
the bivariate distributions of the mean wave period and
significant wave height based on a conditional modeling
method. Nevertheless, the dependency structure between
variables using the joint probability distributions is limited
to simple relationships with constant correlation coefficients.
Consequently, advanced mathematical techniques such as
copulas should be employed to address such limitations.

The copula approach can be employed to model the
dependence of storm variables for the probabilistic vulnerability
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assessment of infrastructure subjected to hurricanes. A copula
function couples the multivariate distribution function to their
marginal distribution functions (Nelsen, 2006). Compared with
the conventional joint model, the copula approach provides
significant flexibility, as it specifies the dependence structure and
the univariate distributions separately. Due to its merits, the
copula tool has been widely applied to coastal hazard analysis to
model dependency among hazard parameters. For instance, De
Michele and Salvadori (2003) proposed a 2-Copula to describe
the dependence between the average rainfall intensity and storm
duration during storm rainfall, in which both variables have
heavy tail distributions. Bushra et al. (2019) employed the
Gumbel copula to model the dependence of storm surge on the
cyclone wind speed along the coastline of the Bay of Bengal.
Another study performed by Trepanier et al. (2017) assessed the
risk of more than 20 coastal cities in the United States Gulf of
Mexico under the combined effects of extreme cyclone winds and
storm surge. The dependence structure between the two storm
parameters was modeled by the extreme value Archimedean
copula. Moftakhari et al. (2017) assessed the increase in flooding
probability caused by sea level rise in a warming climate. The
proposed bivariate copula model provided an effective approach
for computing the combined effects of fluvial flooding and sea
level rise.

Copula models are also increasingly applied to investigate the
dependence between wave height and water levels. As stated by
Gouldby et al. (2014), extreme sea condition parameters (e.g.,
significant wave height and sea level) are essential parameters for
coastal structural design and flood risk analysis. In their study,
a multivariate extreme value method was applied to estimate
the joint probability distribution of sea condition variables, e.g.,
significant wave height, sea level, andmean wave period. Another
study conducted by Wahl et al. (2016) evaluated the flooding
and erosion risk in the northern Gulf of Mexico based on a
large number of observations of wave and water level from
1980 to 2013. Dependency analysis between six hydrodynamic
parameters affecting the total water level was performed based
on the goodness-of-fit test of the data. The Student’s t-copula
was suggested to model the dependence structure between
variables. Additionally, a copula-based approach was applied
to evaluate the probability of flooding at a coastal site under
storm events (Masina et al., 2015). In their study, the positive
correlation of significant wave height and peak water level was
modeled by a copula function, and the tail behavior of storm
variables was quantified in the copula modeling using the tail
dependence coefficients.

In this context, dependence (or correlation) refers to the
statistical association between random variables (Joe, 2014). The
tail dependence implies the correlation between variables at the
tail of the distribution. For instance, the lower tail dependence
indicates correlation in the lower-left quadrant and the upper
tail dependence is associated with the upper-right quadrant
(Nelsen, 2006; Joe, 2014). Such tail phenomena are commonly
observed in data associated with extreme events (Salvadori et al.,
2007), particularly among storm (Wahl et al., 2015) and marine
variables (Zhang et al., 2018). Different copula functions are
capable of representing different degrees of tail dependence.

Therefore, the copula approach can be an efficient tool to
model the correlation of hazard parameters, thus aiding the
vulnerability assessment and hazard risk management. To the
best of the authors’ knowledge, copula models have not been
incorporated in hurricane hazard analysis to identify the effect
of correlated storm parameters on infrastructure vulnerability.

This paper aims to propose a copula-based probabilistic
framework for coastal infrastructure to assess vulnerability
subjected to hurricanes. The copula function is applied to model
the dependence between storm parameters when modeling the
probabilistic demand of highway bridges. An illustrative example
is provided to calculate the probability with respect to deck
unseating failure of a typical simply supported highway bridge. A
three-dimensional computational fluid dynamics (CFD) model
of the bridge is established to compute the surge and wave
loads acting on the bridge deck. The vulnerability of the
investigated bridge is assessed considering various uncertainties
springing from parameters associated with demand and capacity.
Dependence between peak water level andmaximumwave height
is modeled by the fitted Clayton copula based on the data
record extracted from Wahl et al. (2016). The peak water level
refers to the fluctuation peaks of sea level, consisting of the
impact of storm surge and tide in this context. Different copula
models, including Gaussian and a special case of the Extreme
Value copula, are used to identify the impact of tail dependence
behavior in storm parameters on structural vulnerability. The
dependence between peak water level and maximum wave
height is considered only for hurricane events. Due to the
flexibility of the copula approach, the proposed framework
is not limited to illustrate the interrelationship of hurricane
parameters, which can be implemented to dependence analyses
under various hazards. Consequently, a copula-based framework
for vulnerability analysis is developed to aid risk assessment and
management of civil infrastructure by considering dependent
hazard parameters.

COPULA-BASED DEPENDENCE MODEL

A copula couples the marginal distributions to the multivariate
distribution function, in which the marginal distribution for
each variable is uniform over the unit interval (Nelsen, 2006).
Let a series of random variables X1, X2, . . . , Xd have marginal
distribution functions Fi(xi), i = 1, . . . , d. The joint distribution
function of these random variables is defined as J. According to
Sklar’s theorem (Sklar, 1959), there exists a copula C: [0, 1]d →
[0, 1] such that

J(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (1)

If the marginals Fi(xi) are all continuous, the d-dimensional
copula C is unique

C(u1, . . . , ud) = J(F−1
1 (u1), . . . , F

−1
d

(ud)). (2)

The probabilistic density function of copula C can be
denoted as c(u)
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c(u) =
∂dC(u1, . . . , ud)

∂u1 . . . ud
. (3)

Accordingly, the joint density fX(x1, x2, . . . , xd) of random
variables can be expressed as

fX(x1, . . . , xd) = c
{

F1(x1), . . . , Fd(xd)
}

d
∏

i=1

fi(xi). (4)

As shown in Equation (4), the copula function establishes the
dependency structure separately from the marginals. In other
words, the dependence between random variables is governed
by a copula regardless of the selection of univariate distributions.
Compared to directly dealing with the complex joint probability
J, the theorem of copula offers significant flexibility during
applications (Jane et al., 2018; Zhang et al., 2018).

In this study, the bivariate relationships are considered. The
three most commonly used copula families are introduced:
elliptical copulas, Archimedean copulas, and Extreme Value
copulas. The elliptical family is based on elliptical distribution
functions and consists of the Gaussian copula and Student’s t-
copula. The Gaussian copula is the most popular one in practice.
It is given by

C(x1, x2) = 8ζ (8
−1(x1), 8

−1(x2)), (5)

in which 8(.) is the cumulative distribution function (CDF) of a
multivariate normal distribution; ζ is the correlation matrix; and
8−1(.) is the inverse CDF of the standard normal distribution.
The Gaussian copula does not have tail dependence, i.e., lower
and upper tail dependence are zero.

The Student’s t-copula is a generalization of the Gaussian
copula. Compared with the Gaussian copula having one
dependence parameter, the Student’s t-copula is associated with
two parameters, resulting in more probability density at the tails.
The function of the Student’s t-copula can be written as

C(x1, x2) = tv, ξ (tv
−1(x1), tv

−1(x2)), (6)

where tv(.) is the CDF of a multivariate standardized student’s t
distribution; v is the parameter indicating degree of freedom; ζ is
the correlation matrix; and tv

−1(.) is the inverse of the CDF of the
standard student’s t variable. The Student’s t-copula has identical
lower and upper tail dependence, which can be computed as

λl = λu = 2tv+1(−

√

(v+1)(1−ρ)
1+ρ ). (7)

Instead of relying on probabilistic distribution functions, the
Archimedean copulas are constructed incorporating monotonic
characteristics. Commonly used Archimedean copulas include
Clayton, Gumbel, and Frank copulas, in which the Gumbel

TABLE 1 | Examples of Archimedean copulas and their tail dependence

characteristics.

Name Copula function Tail

dependence

(lower, upper)

Clayton (x1
−θ + x2

−θ − 1)
−1/θ

, θ > 0 (2−1/θ , 0)

Gumbel exp
[

−((− ln x1)
θ
+ (− ln x2)

θ )
1/θ

]

, θ ≥ 1 (0, 2-21/θ )

Frank − 1
θ
ln

(

1+
(exp(−θx1 )−1)(exp(−θx2 )−1)

exp(−θ )−1

)

, θ ∈ R (0, 0)

copula is also an Extreme Value copula (Genest and Rivest, 1989).
The three copulas have only one dependence parameter and
exhibit different tail dependence conditions. For instance, the
Clayton copula has lower tail dependence but has no upper tail
dependence. In contrast, the Gumbel copula interprets upper tail
dependence with no lower tail dependence. The Frank copula has
no tail dependence. Table 1 gives the copula functions and tail
dependence characteristics of the Clayton, Gumbel, and Frank
copulas using the dependence parameter θ .

In addition to elliptical and Archimedean copulas, the
Extreme Value family plays an important role in dependence
analysis. As the Extreme Value copulas arise naturally from the
extreme value theory, they are able to model the tail dependence
associated with extreme events (Gudendorf and Segers, 2010).
The Extreme Value copulas are generated from the Extreme
Value theory to describe the limit characteristics of values
associated with extreme events, such as natural hazards (Joe,
1997; Gudendorf and Segers, 2010). The Hüsler-Reiss copula, as
a special case of Extreme Value copulas, is introduced herein. It is
given by (Hüsler and Reiss, 1989)

C(x1, x2)

= exp

{

−x̃18

[

1

θ
+

1

2
θ ln(

x̃1

x̃2
)

]

− x̃28

[

1

θ
+

1

2
θ ln(

x̃2

x̃1
)

]}

,

(8)

in which the dependence parameter θ is larger than or equal to
zero; x̃1 = − ln x1; and x̃2 = − ln x2. For the Extreme Value
copulas, the parametric submodel can be determined by using
the Pickands dependence function (Gudendorf and Segers, 2010).
For instance, the Pickands dependence function of Hüsler-Reiss
copula can be written as

A(y) = y8

[

1

θ
+

1

2
θ ln(

y

1− y
)

]

+(1− y)8

[

1

θ
−

1

2
θ ln(

y

1− y
)

]

. (9)

By using Equation (9), the upper tail dependence λu associated
with the Hüsler-Reiss copula can be computed as shown in
Equation (10).

λu = 2(1− A(1/2)). (10)
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The lower tail dependence of Extreme Value copulas is zero,
except for the case with perfect dependence A(1/2) = 1/2.
In other words, lower tails of Extreme Value copulas are
asymptotically independent.

Copula models can be applied to describe various dependence
relationships. Statistical inference of the dependence structure
relies on the measure of association. Previously, the degree of
dependence among variables is widely assessed by Pearson’s
correlation coefficient due to its simplicity and convenience.
Pearson’s coefficient measures the linear correlation between
variables (Joe, 2014). Due to its limited application range,
other measures such as Kendall’s tau and Spearman’s rho are
developed to evaluate the association. In this paper, Kendall’s tau
is employed. This correlation coefficient computes the variation
between probabilities of discordance and concordance (Joe,
2014). For two independently and identically distributed random
vectors (X1, Y1) and (X2, Y2) with the identical joint probability
distribution, Kendall’s τ is given by

τ = P[(X1 − X2)(Y1 − Y2) > 0]− P[(X1 − X2)(Y1 − Y2) < 0].

(11)

Let C(u, v) refers to the copula function of X and Y, Kendall’s tau
can be written as

τ = 4

∫∫

[0,1]2

C(u, v)dC(u, v)− 1. (12)

For the random vector (X, Y) with a sample size of n, Kendall’s
tau can be presented as

τn =
(Nc − Nd)

Nc + Nd
, (13)

where Nc and Nd are the number of concordant pairs and the
number of discordant pairs, respectively.

VULNERABILITY ANALYSIS UNDER
HURRICANES

The vulnerability analysis evaluates the performance and the
probability of failure of civil infrastructure subjected to hazards.
The hurricane-induced wave and surge forces may lead to deck
unseating damage of coastal simply supported bridges. The
vulnerability assessment considering probabilistic modeling of
demand and capacity incorporating dependent storm parameters
is presented in this section.

Evaluating the failure probability under hurricanes is
conditioned on the intensity measure. Due to the complex
interaction between storm parameters, it is inappropriate to
concentrate on a single wave or surge parameter to quantify the
demand or failure probability. Thus, there should be at least
two intensity measure parameters employed to maintain the
efficiency and accuracy of the probabilistic vulnerability analysis.

There are several parameters associated with the hurricane
hazard, such as wave height, wave period, and relative surge
elevation. Ataei and Padgett (2013) selected the maximum
wave height and relative surge height as the intensity measures
to conduct fragility analysis for coastal highway bridges, as
these two parameters are essential inputs for the equations of
wave and surge loads [American Association of State Highway
Transportation Officials (AASHTO), 2008].

Herein, owing to the dependency analysis in Wahl et al.
(2016) and Masina et al. (2015) and the inputs for the proposed
probabilistic demand model, the dependence between the peak
water level and maximum wave height is considered. Such
dependence is considered only for hurricane events. These two
parameters are utilized to compute the probabilistic demand. The
peak water level refers to the relative elevation of storm surge and
tide, above mean sea level. The mean value of storm surge can be
computed from the maximum wind speed. For instance, Liang
and Julius (2017) proposed a linear relationship between the
storm surge and maximum wind speed, based on 58 wind-surge
events that occurred near Chesapeake Bay, Virginia, from 1995
to 2015. The surge height is assumed to be uniformly distributed
ranging from 80 to 120% of the mean (Saeidpour et al., 2019).
The initial water depth is assumed to be deterministic. The
average tide level is set as zero. The probabilistic distribution
of annual tidal is determined by using the density histogram
of the hydrodynamic model presented in McInnes et al. (2013).
Subsequently, the marginal distribution of the peak water level
can be fitted based on the surge and tide. Wahl et al. (2016)
indicated that the water level can be fitted by the generalized
extreme value (GEV) distribution using historical observations.
The PDF of the GEV distributed peak water levelW is

fW(w) =
1

σ
Q(w)ξ+1 exp(−Q(w)), and Q(w)

=

{

(1+ ξ (w−ε
σ

))
−1/ξ

, ξ 6= 0,
exp(−w−ε

σ
), ξ = 0,

(14)

where ξ is the shape parameter; ε is the location parameter; and
σ is the scale parameter. It should be noted that the wind speed
informs the parameters of the surge distribution, thus the wind
speed also affects the marginal parameters of the GEV distributed
peak water level. When different return period scenarios of
hurricanes are considered, the marginal parameters of the peak
water level should be assessed by using the hurricane-induced
wind speed for each return period. The maximum wave heightH
can be computed by a classical Rayleighmodel (Longuet-Higgins,
1980)

fH(h) =
4h

H2
S

exp

(

−
2h2

H2
S

)

, (15)

where fH(h) is the PDF of themaximumwave height andHs is the
significant wave height, defined as the mean height of the highest
third of waves.

Given the marginal density functions associated with storm
parameters, the CDFs of both the peak water level W and
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maximum wave height H can be determined, and they are
denoted as FW(w) and FH(h), respectively. Subsequently, the
copula function of the random vector (W, H) is given by

J(w, h) = C(FW(w), FH(h)). (16)

As the relevant parameters (e.g., water level) are sensitive to
regional/local factors, e.g., bathymetry and the shape of the
coast, different copulas could be selected for different investigated
regions. When there are data available, the copula model can
be determined by using goodness-of-fit tests (Jane et al., 2018;
Zhang et al., 2018). The process of finding the optimal copula
model typically requires two stages. The first stage is to determine
appropriate distributions for the univariate variables. Candidate
distributions can be chosen from empirical models for the
investigated storm variable (Trepanier et al., 2017). Graphical
approaches such as the L-moments method (Hosking andWallis,
1997) can be applied. L-moments refer to linear combinations
of order statistics (similar to the statistical moments), which
can be used to describe information about the shape, location,
and dispersion of a probability distribution (Hosking andWallis,
1997). By plotting the L-moment ratio diagram, the candidate
distribution that has the closest L-skewness and L-kurtosis
values to data should be adopted for the following copula
analysis (Um et al., 2017). Subsequently, the probability plot
correlation coefficient (PPCC) test (Vogel and Kroll, 1989; Heo
et al., 2008) can be used to perform the goodness-of-fit test
for the univariate distribution. The second stage is to find
the optimal copula model. Candidate copulas can be selected
from different copula families, as introduced in the previous
section. Dependence parameters with respect to each copula
function can be determined by the maximum likelihood method.
For instance, by incorporating the corrected Akaike and/or
Bayesian information criterion (Burnham and Anderson, 2004),
the candidate copula with the smallest information criterion is
recommended (Masina et al., 2015). For validation, the goodness-
of-fit assessment for this stage can be checked by using the
approach delivered by Genest et al. (2006), by checking the
Cramér-von Mises statistics Sn. A smaller value of Sn indicates
a better copula model among the candidates. The bootstrap
method presented by Genest et al. (2009) can be applied to
compute the p-value associated with the statistics Sn, and a larger
p-value implies a better fit.

For the vulnerability assessment, the probability of failure of
the bridge under the unseating failure mode can be determined
by assessing the structural capacity and demand incorporating
uncertainties. The failure probability of the bridge Pf is the
likelihood that the demand D exceeds structural capacity C (Li
and Ellingwood, 2006; Li et al., 2020)

Pf = P[(C − D) < 0]. (17)

The demand, i.e., the maximum vertical wave loads acting
upon the deck, can be assessed by the CFD modeling. Two-
dimensional CFD models are commonly adopted in fragility

analysis (Li et al., 2020; Zhu and Dong, 2020). Although the
two-dimensional numerical model reduces the computation
cost, the analysis of the fluid-structure interaction is limited to
the longitudinal axis, thus providing less accurate results. The
simulation results attained by the two-dimensional model can be
relatively different from the analytical outcomes (Jin and Meng,
2011). Xu et al. (2016) indicated that the wave-bridge interaction
based on the two-dimensional model may not completely capture
the wave components. Moreover, inappropriate simplification
by the two-dimensional model may result in errors in the
wave results (Bozorgnia and Lee, 2012). Therefore, a three-
dimensional CFD model is established in this paper to study
the fluid-structure interaction and evaluate the external wave
loads on the bridge model. The correlated maximum wave
height and peak water level are inputs for the CFD modeling.
The wave loads acting upon the bridge deck can be assessed
accordingly. The detailed CFD model is described in the
illustrative example.

The capacity of the bridge under hurricane-induced wave
force refers to the vertical resistance, consisting of the self-weight
of the bridge deck and connection strength between deck and
substructure (Ataei and Padgett, 2013; Mondoro et al., 2017). The
weight of superstructureWs can be computed as

Ws = (dbW0 + Agng)γ l, (18)

in which db and W0 are the thickness and width of the deck,
respectively; Ag is the cross-sectional area of girders; ng is the
number of girders; γ is the unit weight of the material; and l
is the length of span. For simply supported bridges, the vertical
connectivity provided by the anchor bolts can be estimated by the
concrete breakout strength. The total breakout strength Fc can be
computed as the product of the total number of bolts and the
connection strength of a single bolt, as shown in Equation (19)
[American Concrete Institute (ACI), 2005]

FC = ncb ×
AN

AN0

ψ2ψ3Nb, (19)

in which ncb is the number of bolts; AN is the projected area of
the failure for the anchor; AN0 is the projected area of the failure
surface of a single anchor remote from edges; Nb is the basic
concrete breakout strength of a single anchor; and ψ2 and ψ3

are modification factors.
The above functions illustrate the computation process

of deterministic demand and capacity. Subsequently, the
vulnerability of the bridge can be assessed by the probabilistic
demand and capacity considering various uncertainties in hazard
and structural parameters based on Monte Carlo simulation
(Tu et al., 2017). Uncertainties in the probabilistic demand
modeling focus on the hazard parameters, i.e., wave height and
peak water level. Uncertainties associated with the structural
capacity mainly result from construction materials, construction
error, and workmanship error, etc. The densities of concrete and
steel are assumed to be normally distributed [Joint Committee
on Structural Safety (JCSS), 2001]. The expected density of
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FIGURE 1 | The study area of the bridge in Escambia Bay, Florida, and tracks of historical tropical cyclones, including Hurricane Ivan (adapted from NOAA 2020).

reinforced concrete is 2,400 kg/m3, with a coefficient of variation
of 0.04. The mean density for steel is 7,850 kg/m3 and the
coefficient of variation is 0.01. The deck thickness follows a
uniform distribution with the mean ranging from 95 to 105%
considering construction and workmanship errors. Additionally,
a model error is used to account for the uncertainty in concrete
strength, with a mean of one and the coefficient of variation of
0.23 (Eligehausen et al., 2006).

ILLUSTRATIVE EXAMPLE

The proposed copula-based vulnerability assessment framework
is applied to compute the vulnerability of a highway bridge
under hurricanes. The investigated bridge is an I-10 bridge
over Escambia Bay, Florida, and it was severely damaged by
Hurricane Ivan in 2004 (Douglass et al., 2004). The bridge
is simply supported and susceptible to deck unseating during
hurricanes. The study area graphic and tracks of historical
tropical cyclones (the track of Hurricane Ivan is highlighted) are
shown in Figure 1. A three-dimensional CFDmodel of the bridge
is established to assess the probabilistic wave-induced load. Four
scenarios of hurricane hazard are considered, with return periods
of 50 years, 75 years, 100 years, and 500 years, respectively. The
vulnerability of a bridge subjected to these hurricane scenarios is
assessed. Dependent storm parameters are modeled using copula
functions. The Clayton, Gaussian, and Hüsler-Reiss copulas are
employed to explore the effect of different copula families and
tail dependence characteristics on the structural vulnerability.

The bridge has a span of 15.85 m and a width of 9.14
m. Dimensions of the bridge superstructure are illustrated in

Figure 2A. The distance from the initial water level to the
bottom of girder is assumed to be 6.3 m. A three-dimensional
numerical model of the bridge superstructure is established by
using the CFD software ANSYS Fluent (V.17.2). The I-shaped
girders are modeled with rectangular sections to reduce the
computational expense. The CFD model of the bridge is shown
in Figure 2B, and the diagram of computation domain of the
CFD model is demonstrated in Figure 2C. The plane CD is
the water level, which indicates the interface between air and
water. Planes AE and BF refer to the velocity inlet and pressure
outlet, respectively. The top plane AB is set as the constant
atmospheric pressure, and the bottom EF is defined as the no-slip
stationary wall condition. The total force component is computed
as the sum of the dot product of the pressure and viscous forces
on each face with the specified force vector (ANSYS, 2009).
Based on the CFD modeling, the wave-air-structure interaction
can be evaluated. The three-dimensional model shows insights
about the interactive effects. For instance, the wave-air-deck
interaction with a relative clearance (Zc) at 1.5m and amaximum
wave height (H) of 3 m is shown in Figure 3. The wave-air-
deck interaction effects are shown on the left column [i.e.,
Figures 3A,C,E], and the associated wave profiles are shown
on the right column [i.e., Figures 3B,D,F]. The solitary wave
starts from the origin and flows along the x-axis. The water
volume fraction is represented by different colors according to
the volume of fluid method. For instance, the water volume
fraction of the water phase is one, while the value of the air phase
is zero. In Figure 3, three chronological stages of the wave acting
upon the deck are presented. Initially, there is a constant water
level. When there is a wave generated, the water surface starts to
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FIGURE 2 | (A) Geometry of the bridge deck; (B) The three-dimensional model of the bridge deck; and (C) Diagram of the computational domain of the CFD modeling.

FIGURE 3 | An illustrative diagram of the wave-air-structure interaction effects

in the three-dimensional CFD model. (A,C,E) Show the wave-air-deck

interaction at three different chronological stages when the wave acts upon the

deck; (B,D,F) indicate the associated wave profiles, respectively.

rise. Subsequently, the wave arrives, and overtopping occurs, thus
resulting in loading acting on the bridge deck.

Given the return period, the relevant hurricane-induced wind
speed can be computed using the model developed by Vickery
et al. (2000). Li and Ellingwood (2006) andMondoro et al. (2017)
indicated that theWeibull distribution can be adopted to describe
the wind speed V. For instance, the log transform of the CDF of
the Weibull distributed wind speed FV (v) can be written as

ln[− ln(1− FV (v))] = αv ln(v)− αv ln(µv), (20)

in which µv and αv are scale and shape parameters. The CDF
of wind speed FV (v) can be expressed by the return period T

(Vickery et al., 2000)

FV (v) = P[V ≤ v] = 1−
1

T
. (21)

Accordingly, scale and shape parameters for Equation (20) can
be determined from the design wind speed maps (i.e., maps of
hurricane-induced wind speeds) associated with different storm
return levels (Vickery et al., 2000).

Subsequently, the wind speed of the four investigated
hurricane scenarios with return periods of 50, 75, 100, and
500 years can be computed as 47 m/s, 57 m/s, 63 m/s, and 72
m/s, respectively. Other models of the estimated return levels
can also be applied, e.g., Malmstadt et al. (2010). Herein, the
analytical approach developed by Vickery et al. (2000) is adopted.
Based on the Saffir–Simpson Hurricane wind scale (Schott et al.,
2019), the hurricane scenario with a 50-year return period
can be considered as a non-major hurricane, while the other
three scenarios can be classified as major hurricanes. The wind
speed informs the mean value of storm surge following the
model of Liang and Julius (2017) as introduced in the previous
section. Probabilistic surge and tide are computed based on the
aforementioned empirical models. Subsequently, the marginal
distribution of the peak water level is fitted to a GEV distribution.
Herein, the estimation of tide and surge is based on empirical
models, and the interaction between them is not considered.
Tide and surge are independently modeled using their univariate
probabilistic distribution. Based on Wahl et al. (2016), there can
be some dependence between these two parameters, which could
affect the peak water level. Further studies are needed to assess
the interaction and pairing of tides and surges. The significant
wave heightHs can be assessed from the wind speed based on the
Shore Protection Manual [Coastal Engineering Research Center
(CERC), 1984]

HS = 5.112× 10−4UAF
0.5, (22)
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in which UA = 0.71V1.23 is the adjusted wind velocity based
on the wind velocity V ; and F is the fetch length and assumed
to be 1,000m. The maximum wave height H is taken as 1.8
times of the significant wave height Hs (e.g., H = 1.8 Hs)
[American Association of State Highway Transportation Officials
(AASHTO), 2008]. Consequently, different parameters of the
marginal distributions associated with the peak water level and
maximum wave height are related to the wind speeds at different
return periods. Based on these marginal parameters, the two
storm parameters (i.e., W and H) can be simulated from the
copula function and transformed back to the original scale.

The copula function associated with the maximum wave
height and peak water level can be determined using goodness-
of-fit tests based on observed data. Wahl et al. (2016) assessed
the flooding and erosion risk in the northern Gulf of Mexico
by modeling six hydrodynamic variables (i.e., astronomical tide,
storm surge, significant wave height, peak wave period, wave
direction, and sea-storm event duration) affecting the total water
level. In their study, 67 groups of annual average significant
wave height and the averaged peak water level for sea-storm
events were extracted from observation records at a tide gauge
on Dauphin Island from 1980 to 2013. According to Wahl et al.
(2016), sea-storm events are identified when the hourly total
water level exceeding a critical threshold, i.e., 1.2m above the
North American Vertical Datum of 1988. Additionally, average
significant wave heights associated with the events are selected
when the heights exceed 1.6m and 1.4m for winter and summer,
respectively. The detailed processing procedure of the data can be
found in Wahl et al. (2016).

Based on their 67 groups of observed data, we assessed the
copula function of the correlated maximum wave height and
peak water level using goodness-of-fit tests. Herein, the impact
of seasonal cycles on the dependence structure between variables
is neglected, but it can be considered in future studies. For
the marginal distribution, it is identified that there are many
distribution options to fit the marginal distribution, due to
the limited data record. In this study, marginal distributions
of the significant wave height and peak water level are fitted
using the Rayleigh and GEV distributions, respectively. For
dependence modeling, Kendall’s tau correlation coefficient is
0.41. Different copula candidates are employed for the goodness-
of-fit tests, including Gaussian, Student’s t, Clayton, Gumbel,
Frank, and Hüsler-Reiss copulas. Subsequently, based on the
Akaike information criterion (AIC), the Clayton copula is
adopted among the copula candidates, with the smallest Sn
(= 0.0191) and largest p-value (= 0.6176). In comparison, the
elliptical and Extreme Value families show deficient performance
in fitting the dataset. For instance, the Sn and p-value for the
Gaussian copula are 0.0350 and 0.0490, respectively, while values
for the Hüsler-Reiss copula are 0.0652 and 0.0098, respectively.
Figure 4 shows the scatter plot of observed and simulated values
at the site in the Gulf of Mexico, in which there are 500 samples
simulated from the Clayton copula.

In this illustrative example, as the data record extracted from
Wahl et al. (2016) are close to the investigated region, the
fitted Clayton copula can be an appropriate option to model
the positive correlation between the maximum wave height and

FIGURE 4 | Scatter plot of observed and simulated maximum wave height

and peak water level based on the selected Clayton copula.

peak water level. In the field of risk assessment, when there is
a lack of data, dependence models may be constructed based
on the correlation coefficient (Hong et al., 2014; Wang et al.,
2020). In order to investigate the effect of copula family and
tail dependence behavior between hazard parameters on the
structural vulnerability, the Gaussian and Hüsler-Reiss copulas
are also employed in this study. The Clayton copula allows
for lower tail dependence, while the Hüsler-Reiss interprets
upper tail dependence. The Gaussian copula indicates no tail
dependence. Different values of Kendall’s tau (equal to 0.1,
0.5, and 0.9) are considered to identify the impact of the
degree of dependence between storm parameters on the bridge
vulnerability. An illustrated diagram of correlated maximum
wave height H and peak water level W in the copula domain
with 1,000 samples is shown in Figure 5. It can be identified that
the correlation between variables increases with Kendall’s tau.
The tail dependence behavior can also be observed. For instance,
the correlation resulting from the Hüsler-Reiss copula is more
pronounced in the upper tail area, while the correlation caused
by Clayton copula is more prominent in the lower tail region.

The vulnerability of a bridge associated with the four hazard
scenarios (50-, 75-, 100-, and 500-year return periods) is
calculated by performing Monte Carlo simulations, as shown
in Table 2. For a given return period and Kendall’s tau value, a
range of storm and structural parameters are generated with a
sample size of 500,000. When the maximum wave height and
peak water level are independent, the structural vulnerability
can be computed by setting Kendall’s tau as zero. At the 50-
year return period, the probability of the bridge failing under
the case with dependent storm parameters increases significantly
compared with the independent case. For example, the failure
probability associated with the Clayton copula model is nearly
tripled compared to the independent result. For the scenario
with a 75-year return period, copulas have a moderate impact
on the probability of failure (i.e., a modest increase in the
failure probability), compared with the 50-year return period
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FIGURE 5 | Samples of correlated H and W in the copula domain using Hüsler-Reiss, Gaussian, and Clayton copula functions considering Kendall’s tau equal to 0.1,

0.5, and 0.9.

scenario. Under the same degree of correlation (e.g., with the
same Kendall’s tau), the vulnerability of the bridge differs with
respect to each copula model, due to different tail dependence
characteristics in copula models. For instance, for the 50-year
scenario, when there is medium correlation (Kendall’s tau equal
to 0.5), the probability of failure is 0.0445 with the Clayton copula
and is 0.0605 with the Hüsler-Reiss copula.

For hurricane scenarios with return periods of 100 and 500
years, the vulnerability of a bridge is not significantly affected
by the dependent hazard parameters. The failure probability
computed using different copula functions may experience a
slight increase (e.g., at the 100-year return period) or fluctuate
around the result of independent case (e.g., at the 500-year return
period). Probably, under such intense hurricanes, uncertainties
caused by probabilistic modeling of demand and capacity have a
greater influence on the vulnerability of the bridge, compared to

uncertainties resulting from the copula modeling. For instance,
there may exist a larger dispersion (i.e., standard deviation)
in terms of the storm surge for the 500-year return period
scenario than the 50-year return period scenario. In this example,
the storm surge is uniformly distributed ranging from 80 to
120% of the mean. When there are strong hurricanes, both the
mean and standard deviation of surge are escalated with the
hurricane intensity. Subsequently, uncertainties associated with
probabilistic demand may be amplified. Additionally, under the
investigated scenarios, for a given Kendall’s tau, the Hüsler-Reiss
copula gives consistently greater failure probability estimates
than the other copulas at the 500-year return period. Further
studies should be conducted to investigate the effect of the
upper tail dependence on the extremes of storm variables
by considering different Extreme Value copulas and different
intensity measures.
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TABLE 2 | Probability of failure of the bridge associated with different copula models under 50-, 75-, 100-, and 500-year hurricane scenarios.

Return period 50 years 75 years

Kendall’s tau 0 0.1 0.5 0.9 0 0.1 0.5 0.9

Clayton copula 0.0251 0.0282 0.0445 0.0699 0.1687 0.1778 0.2090 0.2163

Gaussian copula 0.0251 0.0318 0.0563 0.0686 0.1687 0.1779 0.2012 0.2117

Hüsler-reiss copula 0.0251 0.0348 0.0605 0.0689 0.1687 0.1748 0.1984 0.2101

Return period 100 years 500 years

Kendall’s tau 0 0.1 0.5 0.9 0 0.1 0.5 0.9

Clayton copula 0.2980 0.3064 0.3278 0.3166 0.7897 0.7826 0.7648 0.7776

Gaussian copula 0.2980 0.3032 0.3111 0.3131 0.7987 0.7865 0.7869 0.7821

Hüsler-reiss copula 0.2980 0.2989 0.3032 0.3107 0.7897 0.7926 0.7956 0.7824

There are several limitations of the proposed approach. Due
to the limited data record, the Clayton copula is fitted based on
the annual average significant wave height and water level. Under
the circumstance, the goodness-of-fit result associated with the
Clayton copula may not be optimal for the investigated area. The
fitting of marginal distribution functions can also be enhanced
given more data. As sea condition parameters can be influenced
by seasonal cycles, further studies may investigate the impact
of seasonal change on the dependence structure between storm
parameters. The interaction between tide and surge needs to be
considered in future studies, as their pairing may have an impact
on the peak water levels.

CONCLUSIONS

This paper develops a copula-based vulnerability assessment
framework for civil infrastructure subjected to hurricane hazards.
A mathematical tool using copula function is introduced
to model dependent hazard parameters for the vulnerability
assessment. The proposed framework is applied to a typical
simply supported bridge. The Clayton, Gaussian, and Hüsler-
Reiss copulas are used to model the dependence structure
between the maximum wave height and peak water level.
These copula models are employed to identify the impact of
different tail dependence characteristics on the vulnerability of a
bridge. Given the deck unseating failure, probabilistic modeling
of demand, referring to hurricane-induced surge and wave
loading acting on the bridge deck, is calculated by establishing
a three-dimensional CFD model. The mathematical copula tool
delivers desired performance in modeling of dependent hazard
parameters, as themarginal distribution and the correlated effects
are considered separately.

The probability of failure with respect to the investigated
bridge can be affected by incorporating dependent storm
parameters. In the illustrative example, such effects may be
more pronounced for non-major hurricanes, compared with the
results for major hurricanes. Different degrees of correlation
between the maximum wave height and peak water level
are considered. For the investigated scenarios with return
periods of 50 and 75 years, the probability of the bridge
failing increases with the correlation coefficient. For scenarios
with return periods of 100 and 500 years, the vulnerability

incorporating the fitted Clayton copula is close to the result
of the independent case, which is insensitive to the change in
correlation coefficient. Three copula models, including Clayton,
Gaussian, and Hüsler-Reiss copulas, are employed to identify
the impact of tail dependence between storm parameters on the
structural vulnerability. Under the identical degree of correlation,
the vulnerability of the bridge differs with the tail dependence
behavior. Therefore, the tail dependence between hazard
parameters should be carefully considered and evaluated during
the assessment.

The proposed framework can be implied to the risk
management of civil infrastructure. Further studies may also
investigate the correlation between parameters in terms of the
probabilistic modeling of structural capacity. More efforts should
be performed to consider the upper tail dependence coefficient
in the process of copula selection, as the coefficient can be an
important indicator in the extreme value analysis (Masina et al.,
2015).
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