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Geomatic Engineering, ETH Zürich, Zürich, Switzerland

We present a method for control in real-time hybrid simulation (RTHS) that relies

exclusively on data processing. Our approach bypasses conventional control techniques,

which presume availability of a mathematical model for the description of the control plant

(e.g., the transfer system and the experimental substructure) and applies a simple plug

’n play framework for tuning of an adaptive inverse controller for use in a feedforward

manner, avoiding thus any feedback loops. Our methodology involves (i) a forward

adaptation part, in which a noise-free estimate of the control plant’s dynamics is derived;

(ii) an inverse adaptation part that performs estimation of the inverse controller; and (iii) the

integration of a standard polynomial extrapolation algorithm for the compensation of the

delay. One particular advantage of the method is that it requires tuning of a limited set of

hyper-parameters (essentially three) for proper adaptation. The efficacy of our framework

is assessed via implementation on a virtual RTHS (vRTHS) benchmark problem that was

recently made available to the community. The attained results indicate that data-driven

RTHS may form a competitive alternative to conventional control.

Keywords: real-time hybrid simulation, adaptive signal processing, adaptive inverse control, feedforward,

decorrelated LMS, DCT-LMS

1. INTRODUCTION

Whilst numerical simulation methods play an ever increasing role in the analysis and design
of structures, these remain insufficient in the case of complex structural systems under extreme
loading conditions. As such, physical tests cannot be fully removed from the analysis and
assessment process. Hybrid testing (Takanashi and Nakashima, 1987; Mahin et al., 1989) can
work complimentary with numerical modeling by allowing physical testing of those regions or
components of greatest interest or complexity without incurring the high costs associated with
physical testing of the whole system. The presence of significant non-linearities are often a
motivation for the use of hybrid simulation due to the difficulties associated in properly modeling
this behavior. Non-linear components can often exhibit considerable rate dependent behavior, with
this rate-dependency often not adequately compensated by scaling. This motivates the use of RTHS
as the “gold standard” of hybrid simulation. Real-time in this case implies that the time scales
of the numerical and physical system are the same; this allows for tests which incorporate rate
dependent non-linearities in the physical component and are hence more representative of the true
system (Nakashima et al., 1992; Nakashima, 2001; Benson Shing, 2008).

The real-time aspect of RTHS brings significant difficulties in comparison to an increased time
scale test or pseudo-dynamic testing (Bayer et al., 2005; Pegon, 2008). Notable challenges involve
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the integration of the numerical system, which now must be
executed in real-time, as well as enforcing robust and accurate
actuator control. The ability of a hybrid simulation to recreate
realistic testing conditions is reliant upon the accuracy of the
applied boundary conditions. As such, the accurate recreation of
the signals from the numerical substructure by the actuator are
of paramount importance. With real-time testing, the accurate
reproduction of these signals becomes more challenging. The
dynamics of the actuation system and interaction with the test-
piece can have significant effects on the reproduction of the
reference signal as well as the effect of signal processing artifact.
This results in two key control issues when implementing a
RTHS scheme, namely, (i) the accurate reproduction (through
the transfer system) of the reference signal that corresponds
to the common boundaries between the experimental and the
numerical substructure; and (ii) the suppression of the time
delay, which is inevitably introduced by the transfer system
(actuators, analog-to-digital and digital-to-analog converters,
ADC and DAC, respectively, etc.) and possibly by the control
scheme itself. The first issue is a typical control problem, while
the second is a problem of prediction.

Initial control approaches implemented for RTHS focused
on time domain approaches. The problem was first considered
by Horiuchi et al. (1999), wherein a polynomial extrapolation
method was used to reduce actuator delay. This method was
further developed allowing for adaptation of the polynomial
coefficients in Wallace et al. (2005). Further work exploited
model-based control, wherein a model of the control plant is
identified and used tomake corrections to the reference signal for
improving tracking (Carrion and B. F. Spencer, 2006; Chen and
Ricles, 2009). Current state of the art methods focus on adaptive
control schemes due to their superior robustness. Adaptive
model based control schemes as in Najafi and Spencer (2019)
demonstrate good performance, albeit present the drawback of
requiring a mathematical model of the plant to be formulated.
Ning et al. (2019) also demonstrate an adaptive method making
use of an H∞ filter for tracking error and a polynomial
extrapolation for delay compensation. This method yields good
performance but requires an offline identification stage in which
a second order model form is assumed and identified to replicate
the plant behavior.

Within the framework of methods for adaptive tracking
control, a class of algorithms is exclusively based on data
processing, rather than the integration of conventional control.
As such, they require no prior knowledge on the dynamics
of the transfer system, the experimental substructure and
their interaction. Among other works, the adaptive time series
compensator developed by Chae et al. (2013) has shown very
good performance, but requires the careful prescription of user-
defined limits on its hyper-parameters for ensuring the stability of
test. Dertimanis et al. (2015a,b) apply adaptive signal processing
concepts and succeed in reproducing reference signals with a
high degree of efficacy. These algorithms can be applied online
and in hard real-time, thus proving particularly beneficial in
terms of robustness as the filters are adaptively optimized to
the test conditions, even if these change between tests. However,
although they have been experimentally validated, via a 10 Mgr

linear specimen on a shaking table, they have not yet been
integrated into RTHS.

The present study extends the research conducted in
Dertimanis et al. (2015a,b) and proposes a data-driven, adaptive
inverse control (AIC) framework for RTHS. It proceeds by
first formulating a set of specifications that data-driven control
schemes should meet and then splits the adaptive process into
two phases, which can be executed either simultaneously, or
successively, both in online and offline mode. In the first phase,
the decorrelated least mean square (LMS) algorithm is applied
to the identification of the control plant, while in the second
phase the discrete-cosine transform LMS (DCT-LMS) takes on
the tuning of the inverse controller. It is shown that the cascade
of the latter and the control plant closely approximates a perfect
delay, allowing thus the signal of the numerical substructure to be
driven to the experimental substructure with unaltered dynamics.
Accordingly, the method adopts a polynomial extrapolation
method (Horiuchi et al., 1999; Wallace et al., 2005) for the
compensation of the time delay, ensuring thus the stability of the
RTHS loop. A particular advantage of the developed scheme is
its dependence to a very small number of hyper-parameters that
must be provided by the uses, an important feature that favors
robustness, safety, transparency, and ease of use.

We assess our AIC method via the recently established
linear vRTHS benchmark problem of Silva et al. (2020). It
must be emphasized that, whilst the benchmark problem dealt
with herein considers the control of a linear plant, the AIC
framework has previously been successfully extended to non-
linear systems on multiple occasions. In Widrow and Plett
(1996), it is discussed how the AIC framework for linear
filters can be extended to take into account non-linear filtering.
The demonstration of AIC to a theoretical non-linear plant
then followed in Widrow et al. (1998), wherein the non-
linear filters took the form of neural networks whereby the
weights are updated with a gradient descent method. A full
consideration of the non-linear AIC framework is given in Plett
(2003). Alternative methods have made use of other regression
techniques such as support vector machines for constructing
non-linear filters (Yuan et al., 2008). Physical implementations
of non-linear AIC have been demonstrated on piezo-electric
actuators featuring hysteresis effects (Li and Chen, 2013), on a
magnetic bearing system (Jeng, 2000) and in the control of an
electronic throttle system (Xiaofang et al., 2010). Furthermore,
the AIC method using linear filters has been applied to physical
systems that are similar to those considered in this benchmark
problem, i.e., electrohydraulic shaking table, and demonstrated
success both in the case of conventional real-time dynamic
tests (Shen et al., 2011; Dertimanis et al., 2015a).

The contributions of this study are (i) the treatment of
RTHS in a purely data-driven fashion; (ii) the establishment
of a set of specifications that such an approach should meet;
(iii) the derivation of a simple, plug-n-play, adaptive modeling
framework for the proper estimation of a feed-forward adaptive
inverse controller for RTHS; and (iv) the assessment of our
methodology via the vRTHS benchmark problem of Silva et al.
(2020). The context is structured as follows: in section 2 the
problem is formulated, along with the list of specifications and
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a brief introduction to adaptive filtering is offered. Section 3
outlines the method, while section 4 contains the application
study. Finally, in section 5 the outcomes of the study are
summarized directions for future research are given.

2. PROBLEM FORMULATION

Figure 1A illustrates a typical RTHS loop, where a structure
is split into a numerical and an experimental part and their
interaction is assured via the use of a transfer system. A minimal
configuration of the latter contains a set of ADC and DAC
devices, a controller and an actuator (oftentimes integrating an
inner control loop) that is firmly attached to the experimental
substructure. Inevitably, this firm attachment causes an evolution
of dynamics along two paths: this is termed controller-structure
interaction (CSI) in the literature and is represented by an
additional feedback loop (not shown in Figure 1, refer to
Figure 1). The control plant thus consists of the transfer system
and the experimental substructure.

In more detail, it is assumed that an external excitation, u[k] is
applied to the numerical substructure and the kinematics at the
boundary are calculated by applying an appropriate numerical
integration scheme that solves the equations of motion (Shing,
2008). The calculated reference signal, xR [k], which can be in the

form of displacement, velocity, or acceleration, is then applied
though the transfer system to the experimental substructure. The
response of the latter is monitored and the dynamics at the
boundary, usually in the form of a force, is fed back as additional
input to the numerical substructure, in order to proceed to the
next step of the loop.

For the effective implementation of a RTHS loop, two
fundamental problems must be solved. The first corresponds
to the dynamics of the control plant and is treated by
introducing an additional controller (termed the RTHS controller
in Figure 1A). The second problem pertains to the delay that
the transfer path inherits, which is tackled via an appropriate
delay compensation method. Under this enriched configuration,
the reference signal is predicted 1 steps forward, where 1

is an estimate of the transfer path’s overall delay, and then
appropriately modified via the RTHS controller to form the
command signal for the transfer system. A careful tuning of
all the individual blocks results in an achieved signal at the
experimental substructure that is equal to the reference one, e.g.,
xA [k] = xR [k]; this equality forms the hard constraint of any
RTHS loop. Under this setting, the challenge that this study
aims to tackle is summarized in the following question: is it
possible to tune a RTHS controller and a delay compensation
algorithm without any prior information on the dynamics of

FIGURE 1 | Layout of the RTHS framework. (A) The RTHS loop. (B) The cascade of the RTHS controller and the control plant, which ideally should compose a

delayed unit impulse.
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the control plant, given only the availability of the reference and
achieved signals?

Leaving out the delay problem for the moment, the data-
driven attack to the establishment of a RTHS controller
is illustrated in Figure 1B and reads as follows: under the
availability of xR [k] and xA [k], a controller that forms the inverse
of the control plant should be estimated, causing the cascade
to perform as a perfect delay, e.g., xA [k] = xR [k − 1]. Then,
the addition of the delay compensation method should result
in fulfilling the hard constraint condition of the RTHS loop. In
designing such a controller, Dertimanis et al. (2015a) described a
set of specifications, which are herein reformulated and enriched.
According to these, a controller should be:

1. Data-driven: no need for analytical models of individual
components (valves, cylinders, etc.) and identification of
system parameters (stiffness, damping, oil constants, flow
rates, etc.)

2. Feedforward-driven: no need for additional feedback loops.
3. Discrete-time oriented: no need for discretization of

continuous-time models. Everything should be digital.
4. Minimally parametrized: the number of parameters,

henceforth referred to as hyper-parameters, required for the
proper tuning of the controller should be kept as small as
possible. The controller should not be “too sensitive” on these
hyper-parameters.

5. Of guaranteed stability: exclusive use of finite impulse
response (FIR) models (refer to section 2.1), instead of infinite
impulse response models in order to enforce stability and
safety during test.

6. Robust: the RTHS controller should compensate for all
uncertainties of the control plant, as well as the CSI problem.

7. Of minimum discrepancies: the cascade frequency response
should follow the zero dB line in the maximum possible
frequency band. The phase delay should be constant within
this band.

8. Straightforward to implement to existing facilities: the
RTHS controller should be opeational in conjunction with
conventional fixed-gain controllers.

9. Applicable to a wide range of transfer systems: from small-
scale actuators and light specimens, to shaking tables and
specimens of several megagrams.

10. Functional for all types of command signals: both
acceleration and displacement reference signals should
be handled.

11. Straightforward to realize-execute: immediate
implementation in commercial hardware and execution
in real time. No need for sophisticated software design.

Our approach for establishing such an inverse controller utilizes
the theory of adaptive signal processing (Widrow and Wallach,
2007; Diniz, 2008) and it can be implemented either online, or
offline. Its effectiveness inmodeling facilities for structural testing
has already been demonstrated in Dertimanis et al. (2015a,b).

2.1. Brief Review of Adaptive Filtering
For convenience, this section offers a brief outline of the
most fundamental concepts of adaptive signal processing. The

familiarized reader can safely skip this summary. A sound
treatment to the topic is given in Diniz (2008), Hayes (1996),
and Manolakis et al. (2005). Glentis et al. (1999) provide an
excellent review on adaptive filters, including the presentation of
a comprehensive review of associated algorithms.

Consider an unknown plant that can be effectively described
by its impulse response g[k] in the discrete-time domain, or by
its transfer functionG(z) in theZ-domain. The plant is driven by
a wide-sense stationary input signal u[k] and the response x[k]
is measured in a noise-corrupted fashion, under the assumption
of an additive disturbance d[k] at the plant’s output, which is
random and uncorrelated to x[k]. Using an FIR parametrization,
we can represent the input-output dynamics as

x[k] =
n
∑

i=0

g[i]u[k− i]+ d[k] (1)

with n corresponding to the model order. For g =
[

g[0] g[1] . . . g[n]
]T

and u[k] =
[

u[k] u[k− 1] . . . u[k− n]
]T

Equation (1) can be cast into a regression form

x[k] = uT[k]g+ d[k] (2)

Suppose now that measurements of u[k] and x[k] are acquired
and the aim is to estimate a FIR model of the plant. Our
model reads

x̂[k] =
n
∑

i=0

ĝ[i]u[k− i] = uT[k]ĝ (3)

where x̂[k] is the model’s output and ĝ the vector of unknown
filter weights. This is a typical parametric identification problem,
which can be solved by collecting measurements over a time
interval and then solving a linear least-squares problem for
recovering g. Clearly, this non-recursive strategy cannot be
applied in real-time, since it requires batch-processing of
stored data.

An alternative approach is to proceed in a recursive estimation
of the weights, whenever new data becomes available. The
key idea, illustrated in Figure 2, is to update the weights via

FIGURE 2 | Sketch of the adaptive filtering concept for the system

identification problem.
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the stochastic approximation of a deterministic optimization
algorithm, in which the direction is calculated using unbiased
estimates on the basis of the current time index. For example,
consider the steepest descent algorithm

ĝ[k+ 1] = ĝ[k]− µ∇V(ĝ[k]) (4)

where µ is the step size and V(ĝ[k]) is the objective function,
defined as the instantaneousmean square error (MSE)

V(ĝ[k]) = E{e2[k]} = E{(x[k]− x̂[k])2} (5)

Plugging Equation (3) and differentiating with respect to
ĝ[k] implies

∇V(ĝ[k]) = −2E{e[k]u[k]} (6)

Approximating the expectation operator E{e[k]u[k]} as e[k]u[k]
and substituting to Equation (4) yields

ĝ[k+ 1] = ĝ[k]+ 2µe[k]u[k] (7)

This is the celebrated least mean square (LMS) adaptive filter
developed by Widrow and Hoff (1960). Expectedly, the behavior
of the algorithm depends on the step size. When d[k] is wide-
sense stationary and the unknown plant is time-invariant, the
LMS filter converges in the mean to the optimal Wiener solution,
provided that µ is bounded as

0 < µ <
1

λmax
(8)

where λmax is the largest eigenvalue of the input’s
autocorrelation matrix

Ŵuu =











γuu[0] γuu[1] . . . γuu[n]
γuu[1] γuu[0] . . . γuu[n− 1]

...
...

. . .
...

γuu[n] γuu[n− 1] . . . γuu[0]











(9)

for γuu[h] = E{u[k+h]u[k]}. The condition of Equation (8) does
not, however, ensure stability. This is succeeded by

0 < µ <
1

tr{Ŵuu}
= 1

(n+ 1)σ 2
uu

(10)

an expression that is widely used in practice, since it is based
on the energy of the input signal, which is easier to calculate
than the eigenvalues. Finally, maximum convergence speed is
achieved when

µ = 1

λmin + λmax
(11)

with λmin denoting the smallest eigenvalue of Ŵuu. Equation (11)
indicates that the speed is controlled by the eigenvalue spread of
Ŵuu, e.g.,

eigenvalue spread = λmax

λmin
(12)

From Equations (11, 12) it is easy to conclude that convergence
speed requires an eigenvalue spread close to one. When the input
signal can be selected by the user, the best option is to let u[k]
being a realization of a zero-mean Gaussian white noise process,
since Ŵuu = σ 2

uuIn+1 and the spread is equal to one.

2.2. The Problem of Inverse Identification
Assume that the control plant can be described by the following
digital rational transfer function

G(z) = θ(z)

φ(z)
= θ0 + θ1z

−1 + θ2z
−2 + · · · + θnθ

z−nθ

1+ φ1z−1 + φ2z−2 + · · · + φnφ
z−nφ

(13)

Then, the problem of identifying an inverse controller is reduced
in approximating the inverse transfer function

G−1(z) =
1+ φ1z

−1 + φ2z
−2 + · · · + φnφ

z−nφ

θ0 + θ1z−1 + θ2z−2 + · · · + θnθ
z−nθ

(14)

If G(z) is strictly minimum phase (e.g., poles and zeros inside
the unit circle), then the problem has a straightforward solution,
sinceG−1(z) will be alsominimum phase, admitting a convergent
expansion of the form

G−1(z) =
∞
∑

i=0

gI [i]z
−i (15)

with gI [0] = 1 and

∞
∑

i=0

|gI [i]| < ∞ (16)

Thus, by truncating the infinite sum up to an order nI , it is
possible to derive a FIR representation for the inverse controller.
If, however, G(z) is non-minimum phase, the poles of G−1(z)
[e.g., the zeros of G(z)] are located outside the unit circle and the
power expansion of Equation (15) diverges. To cope with this
issue, recall that a digital transfer function admits two inverse
Z-transforms, a causal and a non-causal one, depending on the
region of convergence (Oppenheim et al., 1999, Chapter 3). In
the case of the non-minimum phase G(z), the causal inverse
transform is unstable, but the non-causal is stable. A stable,
non-causal expansion of G−1(z) can be written as

G−1(z) =
n1
∑

i=0

gI [i]z
−i +

∞
∑

ℓ=0

gI [ℓ]z
ℓ (17)

where, usually, the causal part is limited to very few terms
(e.g., n1 is small). If the weights of the non-causal part are
significant, attempting to adapt an inverse controller would
render quite poor results. However, if one would consider
multiplying Equation (17) by a pure delay, z−1, it would cause
1 weights to jump from the non-causal to the causal part,
increasing thus the accuracy of the inverse (Widrow andWallach,
2007, Chapter 5).
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To summarize, the adaptation of the inverse controller aims at
satisfying the following equation

z−1G−1(z)G(z) −→ 1 (18)

In practice, this implies that the reference signal passes through
a pure delay before being fed to the adaptation block. It is
emphasized that, even if the continuous-time transfer function of
a plant is minimum phase, its digital counterpart may oftentimes
result non-minimum phase.

3. ADAPTIVE INVERSE CONTROL FOR
RTHS

3.1. Description
The control strategy implemented herein essentially pertains to
applying the adaptive filtering concepts previously outlined in
identifying an appropriate inverse controller. The latter is then
placed before the plant in the signal path, such that the cascade
results ideally in a delayed unit impulse response. Accordingly,
by integrating an appropriate delay compensation method, the
achieved signal may follow the reference one with a reasonable
accuracy, at a certain frequency band.

The strategy used for the adaptation of this inverse controller
is based on the simple architecture shown at Figure 3 and consists
of two stages that are implemented in (hard) real-time:

- The forward adaptation stage, where an FIR estimate of g[k],
ĝF [k], is obtained.

- The inverse adaptation stage, where an FIR estimate of the
inverse of g[k], ĝI [k], is obtained, making use of ĝF [k].

These two phases can either be performed successively or
simultaneously, in the sense that it is not necessary to wait for
the full convergence of the forward controller, in order to start
the adaptation of the inverse one (Widrow and Wallach, 2007).

The adaptation process initiates by supplying a reference
signal, xR [k], of favorable properties (see below), to the control
plant. This signal, together with the noise-corrupted achieved

response of the plant, xA [k] are fed to the forward adaptation
block, for estimating a FIR filter that describes the end-to-
end reference-achieved signal dynamics. The term end-to-end
herein implies that the path from the reference to the achieved
signal contains all individual software/hardware components,
including ADCs, DACs, signal conditioners, etc., besides the
control plant.

When the forward and inverse adaptation are carried out
simultaneously, e.g., in synchronous mode, the instantaneous
estimate of the achieved response, x̂A [k], together with a delayed
version of the original reference signal, are fed to the inverse
adaptation block and a FIR filter is tuned for describing the
achieved-(delayed) reference signal dynamics. The output of this
block is an estimate of xR [k−1] (see Figure 3). The delay1 is an
algorithmic parameter (it is included in the set of method’s hyper-
parameters, listed in Table 1) and its size depends heavily on the
qualitative characteristics of the control plant.

A key detail of the presented algorithm is that the inverse
filter weights are not adapted by directly feeding the output of
the control plant to the inverse block, in order to avoid the
propagation of the disturbance. When both stages have been
successfully executed and convergence has been achieved, the
inverse FIR filter can be copied before the control plant and it
is implemented as an inverse controller. Ideally, the cascade of
the inverse controller and the control plant form a unit impulse
that reproduces a delayed version of any reference signal. It is
noted that more sophisticated algorithms can be implemented
as adaptive inverse controllers, as the modified filtered-X one
presented in the work of Dertimanis et al. (2015a).

3.2. Forward Adaptation
Our choice for the algorithm that implements the forward
adaptation path is based on (i) the reported convergence rates;
and (ii) the reduction of the required tuning parameters. Based
on previous results (Dertimanis et al., 2015a,b) we apply the
decorrelated LMS algorithmDoherty and Porayath (1997), which
belong to the class of instrumental variable methods (Glentis

FIGURE 3 | The learning process of the adaptive inverse controller.
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TABLE 1 | Method’s hyper-parameters.

Parameter Symbol Default value Comments

Order of the forward filter nF - Depends on control

plant

Order of the inverse filter nI - Depends on control

plant

Delay 1
nI
2

Order of polynomial

extrapolation

nP 3

Coefficients of polynomial

extrapolation

pi {4,−6, 4,−1} when nP = 3

Decorrelated LMS “stability”

parameter

ǫF 2.22044 · · · × 10−16

DCT-LMS “stability”

parameter

ǫI 10−3

DCT-LMS power update

factor

γ 0.95

DCT-LMS step size µ 0 < µ < 2
3nI

Requires careful

tuning

Boldface entries indicate the minimum required subset of hyper-parameters that must be
supplied by the user.

et al., 1999). At each step, the adaptive filter’s output is
calculated as

x̂A [k] = xT
R
[k]gF [k] (19)

where

xR [k] =
[

xR [k] xR [k− 1] . . . xR [k− nF ]
]T

(20)

ĝT
F
[k] =

[

ĝF [k, 0] ĝF [k, 1] . . . ĝF [k, nF ]
]T

(21)

and nF is the order of the filter. The coefficients are updated by

ĝF [k+ 1] = ĝF [k]+ µ[k]w[k] (22)

for a step size µ[k]

µ[k] = eF [k]

xT
R
[k]w[k]+ ǫF

(23)

In Equation (23), ǫF is a small constant (“stability” parameter),
eF [k] = xA [k]− x̂A [k] is the error between the measured and the
predicted signal and w[k] is the filter gradient, updated by

w[k] = xR [k]− α[k]xR [k− 1] (24)

with a[k] denoting the decorrelation coefficient

a[k] =
xT
R
[k]xR [k− 1]

xT
R
[k− 1]xR [k− 1]

(25)

The properties of the decorrelated LMS algorithm are studied
in Doherty and Porayath (1997). See also (Douglas et al., 1999;
Rørtveit and Husøy, 2009). As an alternative to the decorrelated
LMS, the normalized LMS algorithm (Diniz, 2008, Chapter 4) can
be also applied to the forward adaptation path, at the cost of an
additional hyper-parameter that controls the adaptation step.

3.3. Inverse Adaptation
The signal that arrives at the input of the inverse adaptation
block, x̂A [k] is, in general, highly correlated (e.g., colored), since it
describes the dynamics of the control plant. Notice that when the
reference signal is Gaussian-like, the inverse adaptation pertains
essentially to a whitening process. This is because, the cascade
of the inverse controller and the plant should give an achieved
signal which is uncorrelated like the Gaussian input. As the
convergence rate of the conventional LMS algorithm (including
its normalized version) is adversely affected by correlated inputs,
it cannot be considered as a competitive candidate. Instead, an
effective solution to this problem is offered by transform domain
methods, which utilize an orthogonal transformation to a space
that is attributed with favorable properties (Beaufays, 1995; Diniz,
2008; Chergui and Bouguezel, 2017).

Setting temporarily x̂R [k − 1] = y[k] for notational
convenience (see Figure 3), the output of the inverse filter reads

y[k] =
nI
∑

i=0

ĝI [k, i]x̂A [k− i] = x̂T
A
[k]ĝI [k] (26)

For any orthogonal matrix S ∈ R
nI , the regression form of

Equation (26) can be written as

y[k] = x̂T
A
[k]STSĝI [k] = uT[k]c[k] (27)

for u[k] = Sx̂A [k] and c[k] = SĝI [k]. The orthogonal
transformation of the input can be considered as another type of
decorrelation. However, it has small effects on the convergence
rate. The latter is treated by normalizing the entries of the
transformed input vector by the square root of their power via

vi[k] =
1

√

Pi[k]+ ǫI
ui[k], i = 0, 1, . . . , nI (28)

where ǫI is a small constant (“stability” parameter),

Pi[k] = γPi[k− 1]+ (1− γ )u2i [k], i = 0, 1, . . . , nI (29)

and γ → 1 is the power update factor. The transformed weights
are then updated by a typical LMS filtering operation

c[k+ 1] = c[k]+ µe[k]v[k] (30)

with µ being the step size, eI [k] = xR [k − 1] − y[k] =
xR [k − 1] − x̂R [k − 1] the inverse adaptation error and v[k] =
[

v1[k] . . . vnI [k]
]T
.

There’s a plenty of options for the selection of the orthogonal
matrix S, including the discrete Fourier transform (DFT),
the discrete Hartley transform (DHT) and the discrete cosine
transform (DCT). Herein, we adopt the third option and we
construct the orthogonal matrix as

S =











Q0,0 Q0,1 . . . Q0,nI−1

Q1,0 Q1,1 . . . Q1,nI−1

...
...

. . .
...

QnI−1,0 QnI−1,1 . . . QnI−1,nI−1











(31)
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where

Qp,q =
√

2

nI

Kp cos

(

p(q+ 1/2)π

nI

)

, p, q = 0, 1, . . . , nI − 1

(32)
for

Kp =
{

1√
2
, p = 0

1, p 6= 0
(33)

Since the DCT transform is fully parametrized by the filter order,
the orthogonal matrix S can be formulated and stored prior to the
adaptive modeling process. Further details on the performance of
transform domain adaptive algorithms can be found in Zhao et al.
(2009), Kim and Wilde (2000), Lee and Un (1986), and Narayan
et al. (1983).

3.4. Delay Compensation and Method’s
Hyper-Parameters
The successful adaptive modeling of the control plant and
its inverse forces, ideally, the cascade to behave as a delayed
unit impulse. This implies that a reference signal is driven
to the control plant with unaltered dynamics, but at a delay
1. To compensate for this delay, we integrate a one-step
ahead prediction method, which is based on polynomial
extrapolation (Horiuchi et al., 1999; Darby et al., 2001; Wallace
et al., 2005). The reference signal that is driven to the inverse

controller is

xR [k+ 1] =
nP
∑

i=0

pixR [k− i1] (34)

where nP is the polynomial order and pi the polynomial
coefficients, which are calculated via the Lagrange basis function
and are predefined for a given order.

Table 1 gathers all the hyper-parameters of the method. The
most important of them pertain to the orders of the forward
and the inverse adaptive filters, as well as to the step size of
the DCT-LMS: these are essentially the quantities that the user
has to decide for, every time a new experimental substructure is
attached to a transfer system, composing thus the control plant.
The default order of the polynomial extrapolation is sufficient, as
long as the cascade is close to a pure delay. Higher orders do not,
in general improve accuracy; actually they might oftentimes lead
to instability, especially when 1 is large.

TABLE 2 | vRTHS partitioning cases.

Scheme Floor mass (kg) Modal damping (%)

Case 1 1,000 5

Case 2 1,100 4

Case 3 1,300 3

Case 4 1,000 3

Adapted from Silva et al. (2020) with permission from Elsevier.

FIGURE 4 | The reduced 3-DOF benchmark frame and its partitioning into an experimental and a numerical substructure. Reproduced from Silva et al. (2020) with

permission from Elsevier.
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4. APPLICATION STUDY

4.1. The vRTHS Benchmark Structure
In evaluating the performance of novel control schemes for
RTHS in a safe manner, vRTHS offers a useful platform.
VRTHS involves the implementation of a hybrid simulation
fully in silico, whereby both the numerical substructure and
the physical substructure are simulated. Crucially, vRTHS also
involves recreation of the transfer functions associated with the
actuation and signal artifacts associated to the actual physical
implementation. The use of vRTHS can allow for rapid and
safe assessment of various algorithms relating to the hybrid
simulation procedure. The robustness of any algorithm can also
be investigated by the introduction of uncertainty in the vRTHS.

The study of suitable control and delay compensation
algorithms for RTHS has resulted in proposition of alternatives
schemes, which have been investigated on disparate testing
setups. However, hybrid simulation setups tend to be unique and
hence it is difficult to fairly evaluate the relative performance of
control schemes implemented on different setups. This provides
themotivation for establishing benchmark problems, wherein the
only variable is the control regime implemented.

Such a benchmark problem is recently proposed by Silva et al.
(2020), who developed a vRTHS framework for the purpose of
evaluating different control regimes on a unified system. This
benchmark consists of a 2-bay, 3-story steel frame, in which
the structural mass is concentrated on the floors, motion is
allowed only horizontally on a single direction and damping
is proportional. An originally 30-degrees of freedom (DOFs)
linear elastic planar finite element model is reduced to a 3-
DOF model, pinned at ground and excited on its base, which
consists the reference structure (Figure 4). The benchmark is

implemented in SIMULINK© and is created such that the
controller block can easily be exchanged, whilst the rest of the
system is left unchanged. This allows for the fair comparison of
controllers. A number of uncertainties in the system parameters
is also offered, to allow for analysis of controller robustness,
along with a set of standardized performance metrics to
aid comparison.

For the vRTHS tests the reference structure is partitioned
into an “experimental” and a numerical substructure, with the
former corresponding to a single bay of the ground floor and
the latter consisting of the remainder of the structure (Figure 4).
The structural properties of the experimental substructure are
kept fixed, while the ones of the numerical substructure vary in
accordance to the partition schemes of Table 2

The dynamics of the control plant (transfer system plus
experimental substructure) are described as shown in Figure 5.
The open-loop transfer function between the command and the
achieved signals in continuous-time reads

G(s) = B0

A5s5 + A4s4 + A3s3 + A2s2 + A1s+ A0
(35)

for

B0 = α1β0A0 = keα3β2 + α1β0

A1 = keα3β1 + (ke + c3α3 + α2)β2

A2 = keα3 + (ke + c3α3 + α2)β1 + (ce +meα3)β2

A3 = (ke + c3α3 + α2)+ (ce +meα3)β1 +meβ2

A4 = ce +meα3 +meβ1

A5 = me (36)

TABLE 3 | Parameter values for the control plant of Figure 5.

Parameter Component Nominal value St. dev. Units

α1β0 Servo-valve 2.13× 1013 - m Pa/s

α2 Actuator 4.23× 106 - m Pa

α3 Actuator 3.3 1.3 1/s

β1 Servo-valve 425 3.3 -

β2 Servo-valve 10× 104 3.31× 103 1/s

me Exp. sub. 29.1 - kg

ce Exp. sub. 114.6 - kg/s

ke Exp. sub. 1.19× 106 5× 104 N/m

Adapted from Silva et al. (2020) with permission from Elsevier.

FIGURE 5 | Layout of the control plant. From left to right, the transfer functions on the upper branch correspond to the valve, actuator and experimental substructure

dynamics, respectively, while the transfer function on the inner feedback loop corresponds to the control-structure interaction dynamics. Adapted from Silva et al.

(2020) with permission from Elsevier.
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FIGURE 6 | Control plant’s impulse response. Upper: 4th-order Runge-Kutta integration. Lower: zero-order hold discretization of Equation (35). Rate fixed in both

cases at Fs = 4096 Hz.

The numerical values of all associated parameters are listed in
Table 3. To incorporate a degree of uncertainty, for testing the
robustness of a proposed controller, some parameters are defined
as normally distributed random variables.

All vRTHS tests are conducted in SIMULINK© through
the integration of the structural equations of motion via an
explicit 4th-order Runge-Kutta numerical framework, at a fixed
sampling rate Fs = 4, 096 Hz. It is emphasized that the
choice of the integration scheme has detrimental effects on the
evolution of the dynamics and, consequently, on the behavior
on the proposed adaptive modeling method. To demonstrate
this, Figure 6 displays the discrete-time impulse response of
the control plant under two different discretization schemes:
in the upper plot, g[k] is calculated via the aforementioned
integration, by applying a unit impulse excitation to the part

of the SIMULINK© model that corresponds to Figure 5. In the
lower part, the impulse response is obtained by the impulse-
invariance transformation of Equation (35), e.g., g[k] = Tsg(t =
kTs), where g(t) is the continuous-time impulse response (the
inverse Laplace transform of Equation 35). A quite different
“damped” behavior is observed, which renders the integration-
based impulse response attaining a much slower decay rate,
necessitating the use of very high order FIR models for effective
adaptive modeling of the control plant.

4.2. Adaptive Modeling
For generating the reference signal, a Markov-1 process of
the form

u[k]+ φ1u[k− 1] = e[k] (37)

is adopted, where e[k] is a zero-mean Gaussian white noise
stochastic process of variance σ 2

ee. In deciding for the values of φ1

and σ 2
ee, recall that the maximum and minimum eigenvalues of

Ŵuu are provided by the corresponding maximum and minimum
of the power spectrum of u[k], which is given by

Suu(f ) =
1

1+ 2 cos
(

2π
f
Fs

)

φ1 + φ2
1

σ 2
ee (38)

Thus,

λmax = (1− φ1)
2σ 2

ee

λmin = (1+ φ1)
2σ 2

ee

and the eigenvalue spread for Ŵuu is

eigenvalue spread =
(1− φ1

1+ φ1

)2
(39)

In order to maintain this number close to one, our choice is
φ1 = −0.01 (the minus sign is adopted for attributing Suu(f ) with
low pass characteristics). The variance of e[k] is then determined
by first setting 2σuu = 0.01, for constraining 95% of the
input’s amplitude within the±10mm range. From the theoretical
Markov-1 process variance

σ 2
uu = 1

1− φ2
1

σ 2
ee (40)

solving for σ 2
ee leads to σ 2

ee ≈ 2.5× 10−5.
The adaptation process is carried out simultaneously, that

is, the forward and the inverse adaptation counterparts operate
in synchronous mode. Having established the statistics of the
reference signal, several trials are performed for the rest of the
hyper-parameters of the method (e.g., the forward and inverse
filter orders and the step size of the DCT-LMS), while the total
adaptation time frame is fixed to 60 s. Some critical observations
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FIGURE 7 | Estimated forward (Top) and inverse (Middle) adaptive filters, and their cascade (Bottom).

during the evolution of the whole adaptation process can be
summarized by the following remarks:

- In all trials the convergence in synchronous mode is quite
fast and robust against the DCT-LMS step size. The forward
adaptation phase requires at least around 10–15 s for
proper convergence.

- Within this time the DCT-LMS makes a rapid improvement,
indicating that full convergence of the forward filter is not
necessary for adapting the inverse.

- A proper selection of the DCT-LMS step size is important.
In many cases, a quite fast convergence is observed, yet, the

final result is not optimal in terms of cascade dynamics, as the

corresponding impulse response returns “noisy.”
- It is noted that a fair number of trials is conducted by

applying non-Markovian inputs, as well as other adaptive

algorithms. Regarding the former, signals composed from
filtering Gaussian white noise at cut-off frequencies equal to

100Hz and Fs/2 are also tested. The result is a severe distortion
in the filters’ weights, followed by inability to converge within

the specified time frame. Very slow convergence is also

observed in the case where the normalized LMS algorithm
replaces the DCT-LMS one for the adaptation of the inverse

filter. This is, though, an expected result, attributed to the
inability of the algorithm to cope with colored inputs.

Aspects of these remarks can be visually validated from
Figures 7–10, which display the results for nF = 10, 000 and
nI = 100 (1 = 50, µ = 5 × 10−3), our final choice for
the forward and inverse FIR filters. The fact that ĝF [k] is very
long (Figure 7, top) is explained by the high sampling rate of the
simulation (4,096 Hz): in absolute times this impulse response
evolves over 2.14 s (the settling time of the control plant’s step
response is around 1 s). It is noted that when lower orders are
considered (for example 8,000 and 9,000 weights), an apparent
distortion around the last weights of the cascade is caused: in fact,
this is a practical way of detecting that the forward filter requires
higher orders. The absolute error (Figure 8, upper part) confirms
that convergence has been succeeded already after 15–20 s.

In contrast, the inverse filter dynamics are expanded in
a considerably smaller time frame (around 24 ms, Figure 7,
middle). The dominant part of ĝI [k] is located around the
chosen delay (which is typical for inverse filters) and there
exist many leading and trailing weights that could, potentially,
be treated as zeros. However, adaptation at lower order/delay
pairs (indicatively 80/40, 60/30, and 40/20), or at fixed order
(nI = 100) and lower delays (e.g., 1 = 40, 30, and 20) does not
improve the inverse controller. Thus, the 100/50 pair results as
the lowest possible accurate choice for this plant.

The absolute adaptation error (Figure 8, bottom) exhibits
fast convergence (after approximately 25-30 s), with longer time
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FIGURE 8 | Forward (Top) and inverse (Bottom) absolute adaptation errors for the filters of Figure 7.

FIGURE 9 | Left: delayed reference (continuous black line) and achieved (dashed red line) signals during the last 0.25 s of the adaptation process. Right:

synchronization plot of the signals on the left. NRMS, normalized root means square error (Figure 7).

needed however for a finer tuning of the weights; it is observed
that by reducing the adaptation time to half the fixed frame
(e.g., 30 s) and keeping all other hyper-parameters unaltered
leads to sub-par results. It is also worth mentioning that the
converged values for |eI [k]| are higher in comparison to the ones
of |eF [k]|. This is also expected since, as already mentioned in
section 3.3, the inverse adaptation performs as a whitening filter.
Indicatively, Figure 9 shows the synchronization plot between
the delayed reference and the achieved signals for the last 0.25 s
of the adaptation process. A normalized root-mean-square error,
defined as

NRMSE =

√

√

√

√

∑N
k=1(xR [k]− x̂R [k])

2

∑N
k=1 x

2
R
[k]

(41)

of approximately 7% is estimated.
The cascade of ĝF [k] and ĝI [k], the first 1,024 weights of

which are plotted in Figure 7, bottom, depicts a very good
approximation to a pure delay. This is verified in the frequency

domain against the perfect digital impulse with 1 = 50; as

Figure 10 displays, there is a quite close resemblance between
the frequency responses and the associated phase delays between

the estimated and the perfect delayed impulses. The highest

distortion in amplitude, located around 40 Hz, is not more
than −0.8 dB, whereas the largest difference in phase delay is

approximately 0.5 ms.
In order to obtain a better insight on the effects of the observed

distortions in the frequency domain, a number of open loop
simulations is conducted with the adaptive inverse controller
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FIGURE 10 | Frequency response of the cascade in the [0.1, 100] Hz band (Top: amplitude, Middle: phase), and associated phase delay (Bottom). The dashed red

lines correspond to the frequency response and phase delay of the perfect digital impulse response with 1 = 50.

FIGURE 11 | Synchronization plots between the delayed reference (1 = 50) and achieved signals during open loop adaptive inverse control simulations. (A) sinusoid

at 1 Hz, (B) sinusoid at 20 Hz, (C) sinusoid at 40 Hz, (D) chirp with linear frequency increase between [0, 10] Hz, (E) zero-mean Gaussian white noise low pass filtered

at 15 Hz, and (F) structural response of DOF x1 for the El Centro earthquake (40% scaling).

placed before the control plant. Different signals are selected as
references, including sinusoids at different frequencies, a chirp,
low pass filtered Gaussian white noise, as well as the structural

response of DOF x1 for the El Centro earthquake (40% scaling).
The results of the simulations are again interpreted in terms of
synchronization plots and are shown in Figure 11. Apart from
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TABLE 4 | vRTHS evaluation criteria for the partitioning cases of Table 2.

Quantity J1 (ms) J2 (%) J3 (%) J4 (%) J5 (%) J6 (%) J7 (%) J8 (%) J9 (%)

Case 1

Nominal 0.00 3.29 3.63 4.41 3.95 3.36 3.38 1.81 1.87

Mean 0.05 3.68 4.23 5.76 4.74 4.48 4.50 2.43 2.46

St. Dev. 0.16 0.57 0.91 2.06 1.19 2.31 2.31 1.20 1.21

Min. 0.00 2.98 3.01 3.13 2.96 0.59 0.60 0.47 0.45

Max. 0.70 5.10 6.46 9.62 6.85 8.90 8.92 4.65 4.61

Case 2

Nominal 0.00 3.10 3.64 4.18 3.43 3.25 3.25 1.80 1.83

Mean 0.06 3.52 4.21 5.31 4.13 4.26 4.27 2.37 2.38

St. Dev. 0.19 0.49 0.80 1.42 0.72 1.62 1.62 0.88 0.88

Min. 0.00 2.69 2.70 3.59 2.87 2.36 2.37 1.33 1.35

Max. 0.70 4.49 5.65 9.22 5.84 8.70 8.71 4.77 4.73

Case 3

Nominal 0.00 2.33 3.13 4.85 4.20 5.02 5.01 3.47 3.45

Mean 0.19 2.92 3.93 7.36 5.93 7.27 7.27 4.97 5.00

St. Dev. 0.38 0.75 1.06 4.37 3.05 4.73 4.73 3.22 3.23

Min. 0.00 1.85 2.13 2.09 2.10 1.37 1.37 0.96 0.99

Max. 1.00 4.38 6.02 15.81 11.72 16.50 16.48 11.24 11.34

Case 4

Nominal 0.00 2.85 3.42 5.98 4.23 5.59 5.60 2.84 2.87

Mean 0.16 3.27 4.13 8.52 5.64 7.87 7.88 3.97 3.96

St. Dev. 0.30 0.55 0.79 3.97 1.98 4.06 4.06 2.01 2.00

Min. 0.00 2.53 3.09 3.63 3.18 2.86 2.87 1.49 1.48

Max. 1.00 4.28 5.52 17.20 9.95 16.66 16.69 8.31 8.32

the case of 40 Hz (Figure 11C), which returns a NRMSE value of
approximately 8%, all other simulations produce achieved signals
of good quality in a wide frequency range.

4.3. vRTHS
We are now almost ready to integrate the estimated adaptive
inverse controller to the vRTHS closed loop. To this end, the
delay compensation scheme outlined in section 3.4 is applied and
the reference signal that is sent to the adaptive inverse controller
is calculated from Equation (34) as

xr[k+1] = 4x1[k]−6x1[k−1]+4x1[k−21]−x1[k−31] (42)

where x1[k] is the displacement of the interface DOF calculated
at time k and 1 = 50, which corresponds to a cascade delay of
12.2 ms. The numerical substructure is excited by the El Centro
earthquake at 40% intensity, while for each case of Table 2 20
individual simulations are executed. The results are presented in
terms of the criteria J1 to J9 that are reported in Silva et al. (2020)
and listed in Table 4.

The following points summarize the performance of the
proposed data-driven method:

- The delay between the reference and the achieved
displacement (e.g., J1) is exactly zero in all nominal
simulations, and very low in the perturbed simulations
of all partitioning case studies. The statistics of the perturbed
simulations are comparable, indicating robustness of the
controller against uncertainty. It is noted that the total
number of non-zero delay simulations are 3, 2, 5 and 5 in
partitioning case studies 1 to 4, respectively. This is illustrated
in Supplementary Tables 1–4.

- The NRMSE between the reference and the achieved
displacement (e.g., J2) is also kept quite low, ranging
from 2.85 to 3.29% in the nominal simulations. These
numbers are within the range of the NRMSEs shown at the
synchronization plots of Figure 11. The mean values of the
perturbed simulations follow closely the ones of their nominal
counterparts, whereas the corresponding standard deviations
are one order of magnitude lower.

- Expectedly, the normalized peak tracking error (e.g., J3)
returns a bit increased, compared to J2, but again is kept in
very low levels.

- Criteria J4 to J6 calculate the NRMSEs between the relative
displacements of the storys during vRTHSs and the ones
during the simulation of the reference structure (e.g., without
substructuring), while J7 to J9 the normalized peak tracking
errors of the same quantities. The associated errors never
exceed 6% in the nominal cases, whereas the mean values of
the perturbed simulations are higher (reaching up to 8.52% in
partitioning case study 4), followed by increased dispersions.
It is, however, noted that in the offered benchmark problem,
the simulation of the reference structure is accomplished
via a different discretization scheme (either zero, or first
order hold), to the one implemented for vRTHS (e.g., the
explicit 4th-order Runge-Kutta integration) and, as shown in
Figure 6 theremight be significant differences in the calculated
structural responses.

We conclude that the efficacy and robustness of the adaptive
inverse controller is quite competitive in all partitioning case
studies. In comparing the method presented herein, the reader
may refer to Silva et al. (2020), Wang et al. (2019), Najafi and
Spencer (2019), Fermandois (2019), and Ning et al. (2019),
where several alternative approaches for RTHS are developed and
assessed through the same vRTHT benchmark problem.

5. CONCLUSIONS

In this study, we explore the possibility of conducting RTHS
from a purely data-driven perspective. By setting a number
of specifications that such a framework should fulfill, we
demonstrate that this is indeed feasible and it is characterized by
several potential advantages, including transparency, robustness
and minimum tuning. Further improvements are possible, such
as a more rigorous methodology for automating/adapting the
selection of the method’s hyper-parameters to the examined
case study, the integration of the delay compensation to the
adaptation process, as well as techniques for reducing the
delay of the cascade’s impulse and increasing the effective
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frequency band of RTHS. These are left as objectives of
future work together with the design and conduction of
an extensive experimental campaign for the validation of
the method.
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