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Non-intrusive monitoring of fine-grained activities of daily living (ADL) enables various

smart healthcare applications. For example, ADL pattern analysis for older adults at risk

can be used to assess their loss of safety or independence. Prior work in the area of ADL

recognition has focused on coarse-grained ADL recognition at the context-level (e.g.,

cooking, cleaning, sleeping), and/or activity duration segmentation (hourly or minutely).

It also typically relies on a high-density deployment of a variety of sensors. In this

work, we target a finer-grained ADL recognition at the action-level to provide more

detailed ADL information, which is crucial for enabling the assessment of patients’

activity patterns and potential changes in behavior. To achieve this fine-grained ADL

monitoring, we present a heterogeneous multi-modal cyber-physical system, where we

use (1) distributed vibration sensors to capture the action-induced structural vibrations

and their spatial characteristics for information aggregation, and (2) single point electrical

sensor to capture appliance usage with high temporal resolution. To evaluate our system,

we conducted real-world experiments with multiple human subjects to demonstrate the

complementary information from these two sensing modalities. Our system achieved an

average 90% accuracy in recognizing activities, which is up to 2.6× higher than baseline

systems considering each state-of-the-art sensing modality separately.

Keywords: heterogeneous, ensemble, non-intrusive human sensing, electrical load sensing, structural vibration

sensing, fine-grained activity recognition, activity of daily living (ADL), complementary spatiotemporal

characteristics

1. INTRODUCTION

The Internet of Things (IoT) and its rapid development enables various smart home applications
that have the potential to support independent living for older adults (Azimi et al., 2017; Kokku,
2017). Engagement in activities of daily living (ADL) is an important metric for these smart home
applications to monitor, as engagement in ADL is associated with the risk of disability and all-cause
mortality for older adults (Wu et al., 2016). One way that variation in an ADL can be detected is
by the length of time or missed steps within an ADL. For example, an older adult with cognitive
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impairments may insidiously decline in the engagement of ADL
(e.g., take longer to perform an ADL or miss-steps within an
ADL) as their cognitive impairments progress (Rodakowski et al.,
2014). Non-intrusive, fine-grained and in-homeADLmonitoring
provides a critical platform to detect variation in ADL and ensure
safety and independence in the home.

Prior work in ADL monitoring mainly focuses on duration
segmentation and type recognition to describe ADL patterns.
ADL duration segmentation relies on the dense deployment
of sensors that capture a sequence of human interaction
with ambient objects (e.g., drawers, doors) to determine the
duration of an activity (Kodeswaran et al., 2016a,b). Activity type
recognition methods leverage learning algorithms to improve
the accuracy and robustness for classifying given sensing signals
(Castanedo, 2013; De-La-Hoz-Franco et al., 2018). Combined,
these efforts focus on context-level information with the time-
resolution of minute or hour, which is coarse-grained. It is
indeed challenging to achieve fine-grained, which we define as
sub-second-level and event/action-level, ADL recognition non-
intrusively and sparsely because each ADL consists of several
events or actions. Nonetheless, fine-grained ADL monitoring
provides detailed ADL action information, which enables a
nuanced understanding of ADL patterns and, most importantly,
provides knowledge of when changes in ADL patterns occur.
A potential change in ADL patterns may be an indication of
changes in disease status or safety for living independently. Prior
attempts for fine-grained ADL monitoring combine electrical
sensors and passive RFID sensors, where the on-wrist RFID
provides locations and an electrical sensor provides appliance
usage information. These methods (e.g., Fortin-Simard et al.,
2014) require high-density sensor deployment and people
carrying devices or tags during their activities. Older adults,
especially those with cognitive impairments, may find it difficult
to remember to wear or uncomfortable to wear such devices.

Two lines of research suggest that structural vibration
and electrical load monitoring provide distinct and unique
information about ADL patterns. On the one hand, researchers
have noted that when people interact with their ambient
environments their actions induce the structures to vibrate, and
have used this vibration to infer various types of information
(Pan et al., 2017b; Mirshekari et al., 2018) including the action (or
motion) of the person (Fagert et al., 2017; Bonde et al., 2020). The
distributed vibration sensors also provide spatial information
in terms of indoor activities. Additionally, non-intrusive load
monitoring methods have been shown to detect appliance usage
duration (Berges et al., 2008) from aggregatemeasurements at the
main electrical meter. The load monitoring sensor provides high
temporal resolution appliance usage detection and recognition.
Thus, we combine these two complementary non-intrusive
and passive sensing modalities to cover two important aspects
of ADL patterns—occupant action and appliance usage—with
fine granularity.

Our system conducts event detection and event-based ADL
recognition on these two sensing modalities. The system
integrates these estimates over high-resolution time windows
using an ensemble algorithm (Pan et al., 2019). The contributions
of this work are as follows:

• We introduce a fine-grained (sub-second-level, event/action-
level) ADL detection and recognition system using structural
vibration and electrical sensing.

• We present an event-based ADL detection and recognition
framework, and an ensemble algorithm to fuse ADL
predictions from structural vibration and electrical sensing.

• We conduct real-world experiments to evaluate our systems
and demonstrate its effectiveness and complementary nature
of the selected sensing modalities.

In this extended version, we further highlight the complementary
analysis on the spatiotemporal characteristics of the multimodal
sensing configuration. The rest of the paper is organized as
follows. Section 2 discusses the related work and contrast it to
our approach. Then, section 3 presents the design of our system
in detail. Next, section 4 demonstrates the results and analysis
of real-world experiments and evaluations. Section 7 discusses
limitations as well as future directions. Finally, we conclude in
section 8.

2. RELATED WORK

In this section, we introduce the related work in the domain of the
Internet of Things (IoT). We summarize prior work on sensing
systems and learning algorithms in three categories.

2.1. Multi-Modal ADL Monitoring Systems
Various cyber-physical sensing systems targeting ADL
monitoring have been explored, including both coarse- and
fine- grained ADL.

2.1.1. Coarse-Grained (Context-Level) ADL
Kokku et al. proposed the concept of activity signatures in the
smart home environment with a variety of sensors (Kodeswaran
et al., 2016a,b; Kokku, 2017). They leveraged temporal-, sensor-,
and frequency-cut to determine the activity segments at the
context-level, e.g., sleeping, bathing, eating. Their context-level
activity segment is relatively coarse-grained, and in this work we
target action-level fine-grained activity.

2.1.2. Fine-Grained (Action-Level) ADL
Fortin-Simard et al. fused electrical load and the passive RFID
sensors to achieve home activity recognition, where the on-
wrist RFID provides locations and electrical load sensor provides
appliance usage information (Fortin-Simard et al., 2014). Moriya
et al. explored this direction with Echonet Lite (Moriya et al.,
2017). These systems allowed fine-grained activities monitoring.
However, they either require dense deployments or people to
wear devices, which may not be practical for the elderly with
dementia. Compared to them, our system is device-free and
can detect more types of movements without requiring human
subjects to wear any device nor dense deployment on each
monitored appliance.

2.2. Structural Vibration-Based Human
Sensing
Structural vibration signals have been used for human
information acquisition in a passive and non-intrusive way.
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It has been explored to obtain occupant information (Poston
et al., 2017) including identity (Pan et al., 2017b), location
(Mirshekari et al., 2018), heart rate (Jia et al., 2017), hand
washing activities (Fagert et al., 2017), office activities (Bonde
et al., 2020), etc. When the occupant interacts with ambient
objects, such as floor, table, walls, bed, sink, etc., the interactions
induce the structure to vibrate in a unique way such that their
frequency components reflect the mode excited by different
excitation sources (Fagert et al., 2017). Compared to other
sensing modalities, it does not require that the user wear a device
and, as a result, it allows ubiquitous indoor activity monitoring.

2.3. Electrical Sensing for Appliance Usage
Monitoring
Non-Intrusive Load Monitoring (NILM) has been explored as
an efficient way to monitor in-home appliance usage and related
activities by disaggregating the total electrical usage of a building
into its constituent components (i.e., appliances) (Hart, 1992;
Liao et al., 2014). Though the field has largely focused on
inferring appliance usage using a variety of different approaches
[e.g., voltage noise (Patel et al., 2007; Froehlich et al., 2010; Gupta
et al., 2010), harmonic power (Berges et al., 2008; Giri et al., 2013),
etc.] new research has started to look into derivative objectives,
such as fault detection and diagnosis of appliance patterns and,
relevant to this work, monitoring ADLs (e.g., Alcala et al., 2017).

Accurate detection and recognition of different appliance
usage is an important aspect of ADL monitoring, and these
prior works have shown the feasibility and robustness of the
recognition. As a result, we believe the combination of structural
vibration and electrical load covers two important aspects of
human activity in home scenarios—with or without using
appliances. We focus on the combination of these two non-
intrusive sensing modalities.

3. SYSTEM DESIGN

To achieve non-intrusive fine-grained ADL detection and
recognition for long-term monitoring, we measure two essential
aspects of in-home activity—human actions (via structural
vibration sensor) and appliances usage (via electrical sensor).
As shown in Figure 1, our system first obtains signals from
both structural vibration and electrical sensors. Then, it conducts
event detection on signals from each sensor. Next, the system
classifies the activities at the event-level. Finally, our system
conducts an event-based prediction ensemble to provide accurate
recognition for sub-second time windows.

3.1. Complementary Sensing Modalities
To achieve non-intrusive monitoring for smart home
applications, we selected structural vibration and electrical
sensor as the primary sensing modalities. These two sensing
modalities are selected because they are both non-intrusive—
indirectly inferring activities instead of directly measuring—and
complementary with each other. Table 1 lists the different
aspects of their complementary properties.

The structural vibration sensing captures the human
interaction with the ambient environment, which is mostly the

FIGURE 1 | System overview.

TABLE 1 | Complementary sensing modalities.

Properties\Modality Electrical Vibration

Sensing type Single point Multiple points

Target information Appliance usage Body motion

Information precision Temporal Spatio

impulsive excitation (Fagert et al., 2017; Han et al., 2017; Pan
et al., 2017b; Poston et al., 2017; Mirshekari et al., 2018). It also
captures the appliance machinery vibration, such as a motor
or a compressor, as well as appliance usage induced vibration,
such as water or food boiling. The structural vibration sensing
system often consists of multiple sensors, each covers a range of
3–5 m radius. As a result, these sensors of different deployment
locations can provide the spatial information of the activity when
they collaboratively conduct the estimation.

On the other hand, the electrical sensor precisely detects the
appliance usage time and duration, which the structural vibration
sensing may not (Hart, 1992; Parson et al., 2012; Giri et al.,
2013; Song et al., 2014). Since each appliance usage can trigger
immediate changes in voltage signals, they can be accurately
detected by the electrical load sensor when they are turned on
or off. As a result, the electrical load sensing provides appliance
usage information with high temporal precision.

Since the appliance usage, as well as human motion or
interaction with the appliance, are the two significant aspects
of human activities (Fortin-Simard et al., 2014; Moriya et al.,
2017). Considering their advantage of capturing the spatial and
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FIGURE 2 | Structural vibration sensor and electrical load sensor used in this work. (A) Structural vibration sensor. (B) Electrical load sensing.

temporal characteristics of these target activities, we believe that
these two sensing modalities are complimentary for our purpose.

3.2. Sensing System
Our sensing system consists of structural vibration sensing and
electrical sensing. The load sensor measures the appliances. The
primary structural surfaces (e.g., the countertop and the floor)
are equipped with vibration sensors to capture human action
caused vibration.

3.2.1. Structural Vibration Sensing
The structural vibration can be used to infer the occupants’
actions causing the vibration. When people interact with objects
or structures around them, the interaction causes the surface
of the object or structure to deform (Pan et al., 2017b; Poston
et al., 2017; Mirshekari et al., 2018). The surface deformation
causes mechanical waves dominated by the Rayleigh-Lamb wave.
These waves propagate through the structural and are captured
by the sensor. Since different activities or interactions excite
different modes of the structure (Fagert et al., 2017), they induce
vibration with different frequency domain characteristics, which
can be used as features to recognize them. We place vibration
sensors on the surfaces, including floor and countertops, where
the human and appliance interact directly. A vibration sensor
consists mainly of three modules—a geophone that obtains the
surface vibration, an amplifier module that amplifies the surface
waves, and an ADC module that converts the analog signal to
digital. Figure 2A shows an example of the structural vibration
sensor on a countertop. The Geophone in the figure is SM-24
(Input/Output, Inc., 2006). The opamp board has a modified gain
for the monitored surface.

3.2.2. Electrical Sensing
All electrical measurements were collected using a 16-bit
National Instruments (NI-9215) data acquisition interface. The
current was measured with a Fluke i200 AC current clamp with
a cut-off frequency of 10 kHz and voltage was measured with a
Pico-TA041 Oscilloscope probe. Both measurements were done
on a power strip to which all appliances in the testbed were
connected to, as shown in Figure 2B. The setup we used is similar
to the one used in Gao et al. (2014).

FIGURE 3 | Examples of event detection. Solid blue lines in (A–C) are the

sensor signals. Green lines mark the beginning of events, and red lines mark

the end of events. (A) Countertop Vib. (B) Floor Vib. (C) Electrical load. (D)

Labels.

3.3. Event Detection
For each type of sensors, an event is defined as a segment of
signal that has distinguishing characteristics compared to the
signal segment when no human activities occur. Our system
conducts event detection on raw sensor signals. The intuition
is that when there are no activities—neither human interacting
with the ambient environment nor appliance usage—the signals
obtained by the two sensing modalities are considered as the
ambient noise. We analyze the signal with a sliding window.
The sliding window that covers the ambient noise signals has
different signal energy distribution compared to that of an event
(Pan et al., 2014). We model the sliding windows that cover
the segments of signals known as ambient noise with Gaussian
distribution, and we consider the tested sliding window that has
significantly higher signal energy as part of an event. One event
contains consecutive sliding windows that are detected as part
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of an event. We use anomaly detection algorithms (Pan et al.,
2017b) to detect and extracts the signal segments that are not
ambient noise as events. Figures 3A–C show examples of signals
captured by different sensors and the events detected based on
these signals. The solid green and red lines indicate the start
and the end of an event, which have a significant signal energy
difference compared to the ambient noise signal (the segments
between x-axis 0 and 1 s). Figure 3D shows the label of the
events. The event between 1 and 2 s is the interaction with the
stove, which demonstrates detectable events for the countertop
vibration sensor, as shown in Figure 3A. The events between
2.5 and 5 s are the footstep events, which showed a high signal
to noise ratio (SNR) for the floor vibration sensor, as shown in
Figure 3B. The event between 5 and 12 s is the kettle boiling
water, which is consistent with the electrical load sensing detected
event, as shown in Figure 3C.

3.4. Event-Based Activity Recognition
Our system enables non-intrusive passive sensing for action- or
event-level ADL recognition. For each sensor, the system first
conducts feature extraction on its detected event signal segments
(section 3.4.1). These features are then used to train a classifier
using the support vector machine (SVM) (section 3.4.2).

3.4.1. Feature Extraction and Normalization
For a detected event signal segment, our system extracts its
frequency domain characteristics—the power spectral density—
as features. We consider the power spectral density as the
feature because it is efficient for both electrical load signal
(section 3.4.1.1) and structural vibration sensing signal (section
??). The power spectral density is extracted from the signal
segments that are normalized by their signal energy to reduce the
activity completion variation from different people. For example,
different people using electrical stove may turn the nob to
different levels, which leads to different amplitude values for the
electrical load signals.

3.4.1.1. Electrical sensing
The load sensor signals have an energy concentration
approximately at 60 Hz in the frequency domain. It is because
the local alternating current is 60 Hz. On the other hand,
the non-linear loads in the circuit often induce the current
harmonics, which is unique for the particular circuit of the
appliance. As a result, the current harmonics induce frequency
characteristics that are distinguishable for different appliances.
Therefore, for events extracted from electrical sensing signals
Event_Loadi, where i = 1...Nload, Nload is the number of events
detected by the electrical load sensor, we first normalize the
signal by its energy to reduce the variation caused by different
appliance usage duration. Figure 4 shows the examples of the
electrical load signal from different events. Appliances, such
as kettle and stove are mainly linear load, while appliances,
such as microwave have unique current harmonics due to their
non-linear load.

For appliances that are mainly linear load, i.e., their frequency
components do not show current harmonics, which may make
the accurate classification difficult with only features from the

electrical load sensor. For example, the kettle and stove load
signal shown in Figures 4B,D demonstrate similar frequency
characteristics. In this case, we further explore the vibration
signal captured during the same time duration of Event_Loadi.
Figure 5 shows the time and frequency components during
the period of time for stove and kettle events. We observe
that even the electrical load signals in these cases do not
show significant distinguishing characteristics, their vibration
signal demonstrate a clear difference in the frequency domain.
Therefore, our system extracts the signal of the same time
duration of Event_Loadi from vibration sensors where the
monitored surface has multiple appliances on it. We refer to this
signal segment as Event_Load_Vibi,j, where j = 1...Smulti, and
Smulti is the number of surfaces that has multiple appliances on
them. Note that for signals collected from vibration sensors, the
signal segment of the same time duration may not be detected as
an event or a part of an event. The system takes the frequency
domain characteristics of Event_Loadi and Event_Load_Vibi,j

and concatenate them as the feature for the ith event detected by
the electrical load sensor.

3.4.1.2. Structural vibration sensing
Various human actions cause different parts of the structural
surface to vibrate. Most of the human interaction with an
ambient surface is impulsive, meaning the interaction excites the
surface and induces vibrations dominated by the Rayleigh-Lamb
waves (Pan et al., 2017a). For varying excitations occurring on the
same surface, they will generate different responses in the natural
frequencies of the surface structure (Fagert et al., 2017). For the
events detected by vibration sensor on surface k during ti, we
refer to this signal segment as Event_Vibk,i, where i = 1...Nvib,
k ∈ [1...Nsurface]. Nvib is the number of events detected by the

vibration sensor on the kth surface. Nsurface is the number of
monitored surfaces.

To take into account the spatial characteristics of the signal, we
further extract the signal segment of the same time duration ti of
Event_Vibk,i from vibration sensors on another surface l, which
we refer to as Event_Vib_Vibk,l,i, where l = 1...Nsurface, l 6= k.
Our system extracts the frequency components of Event_Vibk,i
and Event_Vib_Vibk,l,i after normalizing the signal by energy, and
concatenates the frequency components as the features for the ith

event on surface k.

3.4.2. Classification With Support Vector Machine
Our system utilizes support vector machine (SVM) (Chang and
Lin, 2011) to conduct the classification for the events detected
by each sensor. SVM is a widely used classifier, and it aims to find
themaximum-margin hyperplanew byminimizing the following
loss function (for binary classification):

min
w,b

1

2
||w||2 + C

l∑

i=1

max(1− yi(w
Tφ(xi)+ b), 0),

where (y1, x1), . . . (yl, xl) is training data, xi ∈ Rn,∀i are
training samples, yi = ±1,∀i are training labels, and C
is the penalty parameter that controls the generalization
of the model. Based on our feature analysis, which will be
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FIGURE 4 | Examples of electrical load sensing events (normalized by the signal energy). (A) Kettle, time domain. (B) Kettle, freq domain. (C) Stove, time domain. (D)

Stove, freq domain. (E) Microwave door, time domain. (F) Microwave door, freq domain. (G) Microwave, time domain. (H) Microwave, freq domain.

FIGURE 5 | Examples of complementary electrical load sensing events (normalized by the signal energy). (A) Stove, electrical features. (B) Stove, vibration features.

(C) Kettle, electrical features. (D) Kettle, vibration features.

introduced in detail later in section 5.2, features of events
detected by vibration sensors are not linearly separable. As
a result, our system trains the non-linear SVM model using
the kernel function φ(·) (RBF kernel) to ensure the high
class separability. Since we have more than two types of
activities to classify, we decompose the multi-class classification

problem to two-class classification problems to solve
(Hsu and Lin, 2002; Chang and Lin, 2011).

3.5. Ensemble Events for ADL Recognition
Once the system obtains the event-based classification
predictions from each sensor, it further conducts prediction
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FIGURE 6 | Ensemble algorithm.

ensemble on the sliding window at a sub-second level, and then
outputs the activity recognition at the event-level as shown in
Figure 6. Since the type and duration of events detected by
different sensors vary, the ensemble occurs at a sub-seconds
sliding window level instead of the event-level. We selected the
sliding window that is smaller than a single impulsive structural
vibration signal segment empirically.

Our system first applies a sliding window through the target
sensing time duration. For each sliding window on the signal
from each sensor, our system assigns it as an event if the majority
of the samples are part of a detected event. Since we use the
SVM to predict the event categories, a confidence score between
0 and 1 can be calculated based on the distance between the data
point and the margin (Chang and Lin, 2011). Therefore, for a
sliding window of a particular event, we also assign the prediction
score to it.

For each window, the system collects the prediction values
and confidence scores from all sensors. The system first conducts
a weighted majority vote if more than two sensors predict
the window as an event. The weights are assigned equally
over vibration sensors on each surface and the electrical load
sensor. For example, if there are multiple sensors on the same
surface, e.g., floor, the information from the multiple sensors
will be combined. In addition, since different sensors may detect
different event durations and types, there may be no more than
two sensors detecting an event within a sliding window. When
that happens, the system outputs the single sensor decision with
the highest prediction score as the final decision of the system
instead of conducting a majority vote.

4. EXPERIMENTS

To evaluate our system, we facilitated engagement in ADL
through real-world experiments with multiple appliances in a
kitchen scenario. In this section, we first define the ADL, at the
event-level, that were conducted in the kitchen in the scenario
in section 4.1. Then, we introduce the experimental setup and
data collection procedure in section 4.2. Next, we demonstrate
the statistics of the collected dataset in section 4.3. Finally, we
explain the ground truth collection and data labeling procedure
in section 4.4.

TABLE 2 | Target kitchen activities and their acronyms.

Tasks Electrical load sensing Surface vibration sensing

Use stove Stove (S) Put on stove (PS)

Use kettle Kettle (K) Use kettle (K)

Use microwave
Door (MD) Open/close door (OM)

Heating (M) Put down food (OM)

Vacuum floor Vacuum (V) Use vacuum (V)

Walking NA Footsteps (Step)

4.1. Kitchen Scenario Definition
The performance of ADL is critical to ensure safety and
independence in the home. Changes in ADL are associated
with disability and institutionalization. The Lawton Instrumental
Activities of Daily Living Scale is a commonly used tool to
assess the elderly’s ability to live independently (Lawton, 2000).
Critical components of the Lawton tool include food preparation
and housekeeping.

We focused on tasks related to meal preparation and
housekeeping and they are in Table 2 below. We assessed
these ADL in adults with no identified physical or cognitive
impairments, as the intent of this study was the detection of
normal ADL. The table depicts how the structural vibration
sensors and electrical load sensors detect different events within
the same ADL.

4.2. Experimental Setup and Data
Collection
We conducted real-world experiments in a kitchen setup in
laboratory to evaluate our system. The experiments follow the
guideline of the IRB protocol. Figure 7A shows the photos of
the experiments, and (B) shows the schematic of the setup. The
experiment setup is on a wooden floor structure with an area of
10×7 ft. We setup a countertop with three appliances—electrical
stove, a kettle, and a microwave on it. There is a vacuum cleaner
on the side of the floor as shown in Figure 7B.

We used two distributed structural vibration sensors to
monitor the target area, and we placed one on the countertop
and one on the floor, as circled out in Figure 7. We used one
single-point electrical load sensor to monitor the load of a power
strip, where we connect the target appliances—stove, kettle,
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FIGURE 7 | Experimental setup. (A) Side view of the experiment setup, photo. (B) Top view of the experiment setup.

microwave, and vacuum. We also provide a pot to boil water on
the stove, and a mug to heat water using the microwave.

In total, five human subjects are invited to conduct the
experiments and we refer to them as P1 to P5. For each trial of
data collection, we require the participant to conduct a sequence
of tasks listed in Table 2. The details of the task procedures are
as follows:

• use stove: the participant takes the pot, puts it on the stove,
turns on the stove, and then turns off the stove after about 20 s.

• use kettle: the participant puts down the kettle, turns on the
kettle, and then turns off the kettle after about 20 s.

• usemicrowave: the participant opens themicrowave door, puts
the cup in it, closes the microwave door and turns it on for
about 30 s.

• vacuum floor: the participant picks up the vacuum cleaner,
turns on the machine, vacuums the area marked in blue square
in Figure 7B, and turns off the machine.

P1 and P2 conducted all the activities in each trials. P3, P4, and
P5 conducted a subset of the activities based on their preference.
For example, in some trials if they select to use the stove for
cooking, they will not use the microwave, and vice verse. For each
participant, we collect five trials of activity data.

4.3. Dataset Statistics
We further analyze the collected and labeled data in terms
of event duration and number. Figure 8 demonstrates the
corresponding stats from the data collected from the two people
who conducted all target types of activities. The blue bars show
the overall event duration and the red bars show the count of
each type of events conducted over the eight target fine-grained
activities. We can observe a clear bias in both event duration
and number. Furthermore, this bias is also not consistent over
the type of events. For example, kettle usage (K) has the highest
overall duration, but the number of events is relatively low.
On the other hand, the number of footsteps is high, while its
duration is low due to the short period of events for each footstep.
Therefore, if we compare all the events’ activity recognition
accuracy in either event duration or number, it will be biased.

4.4. Ground Truth and Labeling
We use a camera to record experiments as the ground truth. The
video records from the angle below the waist so that the identity
of the human subjects is not recorded. Figure 7 shows an example
view of the ground truth recording. The events listed in Table 2

are labeled on a frame by frame basis manually.

5. MODULE PERFORMANCE ANALYSIS

In this section, we evaluate the individual performance of
event detection module in section 5.1 and event-based activity
recognition module in section 5.2. For module performance
analysis, P1 and P2’s data is used since they performed all types
of target events.

5.1. Event Detection Analysis
5.1.1. Baseline and Metrics
We use detection with signals from only one sensor as baselines
and compare it to our ensemble event detection. Since the dataset
is biased in terms of event duration and event number, we
evaluate the event detection by both event level and sample level
detection accuracy. For each labeled event, we extract their
indexes of [E1...EL], where L is the sample number in the event.
For the evaluated signal, we extract the detection event indexes
[DA1...DAM], where M is the sample number of the detected
event. If themajority elements of the segment are part of an event,
i.e., the number of samples in [DA1...DAM] ∩ [E1...EL] is larger
than L/2, we consider this event detected and we report the true
positive rate.Detect.Accevent =

#Detected Event
#Labeled Event

. At the sample-level,
we calculate their precision and recall as metrics to evaluate the

detection module. Detect.Precisionsample =
#TP Sample

#TP Sample+#FP Sample

and Detect.Recallsample =
#TP Sample

#TP Sample+#FN Sample
. Based on the

calculated precision and recall, we further report the sample-level

F-1 score Detect.F1sample = 2
Detect.PrecisionsampleDetect.Recallsample

Detect.Precisionsample+Detect.Recallsample
.

5.1.2. Event-Level Detection Accuracy
To avoid the bias over different event duration and number,
we first compare the detection rate of each type of activities
at the event level. The vibration sensors on different surfaces
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FIGURE 8 | Experiment data stats.

are sensitive to events with different spatial characteristics.
For events that occur on the floor, the floor vibration sensor
demonstrates higher accuracy—Detect.Accevent for vacuum and
walking are respectively 90 and 87%. For the activity occur
on the countertop, the vibration sensor on the countertop
achieves higher accuracy—Detect.Accevent for operating kettle,
microwave, and stove are respectively 90, 93, and 100%.
On the other hand, the electrical load sensor achieves the
highest accuracy for events of appliances usage—Detect.Accevent
for turn on the microwave, open the microwave door, turn
on the stove, and turn on the vacuum are respectively
100, 97, 100, and 100%. The average detection rates
over eight types of events are 62, 44, 65, and 97% in
respectively for the three single sensor baselines and our
approach, which is 1.5× to 2.2× improvement compared to
the baselines.

5.1.3. Sample-Level Detection Accuracy
The electrical load sensor achieves a mean Detect.Precisionsample

of 99%. However, because not all the activities can be measured
by the electrical load sensor, its Detect.Recallsample is 52%. The
vibration sensors on two surfaces showed similar precision
and recall rate—the mean Detect.Precisionsample are 78 and
83% and the mean Detect.Recallsample are 60 and 59%. Because
they are complementary in detecting events that occur on
different surfaces, the ensemble detection achieved a mean
Detect.Recallsample of 86%, which is a 1.4× improvement
compared to that of only using one sensor for detection. Our
approach achieves the highest F-1 score Detect.F1sample = 0.83.

5.2. Event-Based Activity Recognition
Analysis
For event-level ADL recognition, different sensors perform
differently due to their spatio-temporal variation even
using the same classification algorithm. We conduct the
classification with 80% data for training and 20% data for testing
through cross-validation.

5.2.1. Metrics
We evaluate the event-based activity recognition by the
classification accuracy at the event-level over each sensor. Since
the number of detected events for each type of activity is biased,
we report (1) the average classification accuracy as the mean of
multiple types of activities recognition accuracy, Avg.Acc =

1
NType

∑NType

i=1 Acci, where NType = 8 is the number of types of

events listed in Table 2, and (2) the overall recognition accuracy
as the true positive rate of all detected events (with unbalanced
numbers of events for each type), All.Acc = #Correct Event

#Labeled Event
.

Figure 9 demonstrates the average classification accuracy in bars,
where blue, red, and yellow bars are the accuracy for electrical
sensing, vibration sensor on the countertop, and vibration
sensor on the floor, respectively. The dash lines are the overall
recognition accuracy for the corresponding sensing modalities.

5.2.2. Electrical Load Sensor
The electrical load sensor achieved an All.Acc of 96.25% when
only considering activities that were detected by the electrical
load sensor. The error could be caused by the noise from a load of
ambient appliances. The Avg.Acc for the five detectable activities
(K, M, S, V, MD) is 97%. However, if we take all eight types of
activities into account, this average classification accuracy drops
to 61% since it cannot detect and classify the rest three activities.

5.2.3. Countertop Surface Vibration Sensor
The vibration sensor on the countertop captures all types of
activities and achieved an All.Acc of 88.04%. Human actions,
such as operating appliances and walking (OM, PS, V, Step),
induce impulsive structural vibrations, which achieved over 90%
prediction accuracy. Appliances that induce signature machinery
vibration, such as the microwave (M), achieved 100% prediction
accuracy. Unlike the microwave, stove (S) and kettle (K) do
not cause the machinery vibration via drive motor, however, the
boiling may or may not cause the vibration that can be detected
by the sensor on the countertop.

The misclassification mostly occurs between the operation of
the microwave (OM) and the open status of the microwave door
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FIGURE 9 | Event-based classification accuracy.

(MD). This could be caused by the similar spatial characteristics
of these events, i.e., both on the microwave, and the similar
impulsive signals induced by open/close door and putting down
the mug when the microwave door is open. Since the microwave
door open induces a signature current change, the ensemble
prediction achieves a higher accuracy when taking both sensing
modalities into account. The Avg.Acc of eight types of activities
with the countertop vibration sensor is 81%.

5.2.4. Floor Vibration Sensor
For the vibration sensor on the floor, we observe that most
of the stove activities are misclassified as the footsteps (75%).
This could be caused by the ambient impulsive floor vibration
that is not induced by stove activities being captured by the
sensor, i.e., people’s micromotion or other building activities.
We will further discuss this activity overlapping situation in
the discussion section. The kettle usage, i.e., turning on/off the
kettle, and the footsteps are misclassified with each other at a
rate up to 13%, which could be caused by the similarity between
these two types of impulses. Because when the kettle usage
induced vibrations to travel through the countertop and floor
structures, these structures and their contacting surface will alter
the frequency components of the signal. When this happens, the
spatial information extracted from fusing data from distributed
sensors can increase the prediction accuracy. The Avg.Acc of
eight types of activities with the floor vibration sensor is 72%.

In summary, for single sensor, the event-based activity
recognition module showed over 70% average classification
accuracy and over 80% overall recognition accuracy. We will
further demonstrate the ensemble recognition accuracy by fusing
these prediction results in section 6.

6. END-TO-END SYSTEM PERFORMANCE
ANALYSIS

The end-to-end system outputs the sub-second sliding window
level prediction. As a result, the end-to-end system performance
is evaluated by this window-level ensemble activity recognition

accuracy as Activity.Accwindow = #Correct Windows
#Windows

. We first

compare our ensemble approach to the state-of-the-art baselines
(section 6.1) to demonstrate the importance of combining
different sensing modalities. Then we further explore the
robustness of the system to the variation with different temporal
resolution (section 6.2) and across different human subjects
whose data are not included in the training dataset (section 6.3).

6.1. Complementary Sensing Modalities
Analysis
Since the ensemble activity recognition is conducted on each
sliding window (section 3.5), we evaluate the prediction accuracy
for sliding windows. We consider a window size of 1/8 s for the
sliding window because the types of events we investigate (e.g.,
footstep induced vibration events) has the minimum duration
that is approximate as the selected window size.

6.1.1. Compared to Single Sensor
Figure 10 demonstrates the classification accuracy for each type
of activity with bars from light to dark shades representing results
using (1) countertop vibration sensor, (2) floor vibration sensor,
and (3) electrical sensor. Our ensemble approach is presented by
green bars.

The observation for the three single sensor baselines are
consistent with the confusion matrices discussed in section 5.2—
each sensor achieves high accuracy for different events. For
example, the vacuum is detected mostly by the floor vibration
sensor and the electrical sensor and achieved the highest (93%)
recognition accuracy among all the methods. The placing item on
the stove (PS) and the stove heating (S) are detected, respectively
by the vibration sensor (91%) and the electrical sensor (100%),
which results in an average stove usage recognition accuracy of
45 and 50% for these two sensing modalities, and an average
accuracy of 92% for our ensemble approach.

Our ensemble approach achieved the highest classification
accuracy for half of the events, and the average accuracy over
eight events is 90%, which is a 1.5× to 2.6× improvement
compared to the baselines (56, 35, and 61%). The average values
for the baselines here are calculated at the sliding window level,
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FIGURE 10 | Sliding window level ADL recognition accuracy—compared to single sensor performance.

which is different from the average values in section 5.2 calculated
at the event level.

6.1.2. Compared to Different Sensor Combinations
We further compare different sensor combinations to
demonstrate the spatiotemporal complementary characteristics
of the system. Figure 11 compares the activity recognition
accuracy between different sensor combinations. The countertop
and floor vibration combined approach achieve an average of
64% accuracy over eight types of activities, which is higher
than that of the single sensor approach. It is because that the
vibration sensors on two surfaces are complementary in special
characteristics, which allows high confidence and accuracy for
the events occurring on each surface. The single vibration and
electrical load combination demonstrated a lower accuracy
when detecting footsteps, interacting with microwaves and
stoves. We believe these activities have significant spatial
characteristics. When their spatial characteristics are fused by
our ensemble approach, it captures more information that the
signal characteristics from every single sensor. In summary, the
complementary spatial characteristics of the vibration sensors
improved the event-level ADL recognition accuracy and the
complementary temporal characteristics of the two sensing
modalities further increased the accuracy furthermore.

6.2. Robust to Temporal Resolution
Variation
The sliding window size determines the system output’s temporal
resolution. We further explored the system robustness to
different temporal resolution activity recognition. We vary the
window size from 2 to 1/128 s over five levels, which are 2,
1/2, 1/8, 1/32, and 1/128, respectively. Figure 12 demonstrates
the system performance with x-axis as sensor combinations—
three single sensors, the fusion of distributed structural vibration
sensor, and our ensemble method—and y-axis as activity
recognition accuracy. The accuracy calculated with different
sliding window sizes are presented by different color bars.
We observe that, for the baseline sensor combinations, the
activity recognition accuracy has fluctuation when different

window sizes are applied. On the other hand, for our ensemble
algorithm, the accuracy values are stable over different window
sizes. Our ensemble algorithm achieves a window-level activity
recognition accuracy of 88%, which is the highest compared to
the baseline combinations.

6.3. Robust to Personal Variation
The subject performs ADL differently in various aspects, e.g.,
speed, strength, interaction. As a result, their ADL may cause
different signal characteristics (data distribution) (Han et al.,
2017). To understand the system’s robustness to the individual
action variation, we further evaluate the model trained on P1 and
P2’s data and test it on that of the other three participants.

We plot the average classification accuracy over eight types of
activities in Figure 13, where bars from light to dark shades of
gray represent the accuracy for the countertop vibration sensor,
the floor vibration sensor, and the electrical sensor. We further
plot the accuracy for different sensor combinations in different
shades of blue. Our ensemble approach is plotted as green bars.

We can see that for different people, the accuracy of different
methods varies. For example, for P5, the electrical sensor achieves
higher accuracy compared to P3 and P4. While for P4, the floor
vibration sensor achieves the highest accuracy among baselines.
Despite the variation, three single sensor baselines for P3, P4, and
P5 showed comparable accuracy (between 30 and 60%) compared
to that of P1 and P2. Our ensemble approach achieves the highest
accuracy compared to the baselines, which are 81, 73, and 87%,
respectively for P3, P4, and P5. Compared to the case where the
training and testing data are from the same person different trials,
the average accuracy of the three participants drops to 80%, but
it is still 20% higher than baselines when the training and testing
samples are from the same person.

7. DISCUSSION

This work highlights the potential for non-intrusive fine-grained
ADL monitoring to enable ADL pattern change detection. We
further discuss the current limitations and future directions
in this section. The key directions we plan to further explore
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FIGURE 11 | Sliding window level ADL recognition accuracy—sensor combination analysis.

FIGURE 12 | ADL recognition accuracy at different temporal resolution (different window sizes area used).

beyond this work include: (1) the recognition and segmentation
of activities when the same person conducts different activities
simultaneously (section 7.1), and (2) based on the detection
and recognition, how can we conduct behavior level monitoring
for long term in-home monitoring (section 7.2). Once these
directions have been explored, it would also be important to
explore the sensitivity of our solution to errors introduced
by NILM algorithms when relying on their estimates for
appliance-level measurements. We plan to collect more data
under long-term in-home scenarios, which would include more
types of activities and more variation over the same type
of activities.

7.1. Overlapping Activities: Multiple
People, Multiple Activities
When one or more persons conduct multiple activities within
the same sensing area, these activities signals—in both sensing
modalities—may overlap. For example, when the person is using
a stove, they may walk around and use other appliances. When
signal overlapping occurs, it alters the signal characteristics (i.e.,
features), used for classification. Prior work on disaggregating
information for electrical load monitoring would allow the
simultaneous appliance usage monitoring.

The direct separation of the structural vibration signal when
multiple excitation sources’ signal mix, however, is a challenge.

Prior work on blind source separation cannot be directly applied
here due to the structural dependency of the signal, which
makes the assumption of signal independence invalid. Recent
work on structural vibration sensing activity recognition utilizes
the domain knowledge to achieve activity recognition without
separating the overlapped signals (Bonde et al., 2020). However,
this work target coarse-grain activities with limited categories
instead of fine-grained activities we focused on.

With these prior work on overlapping activities recognition,
we can further explore the association between these two sensing
modalities under the activity overlapping scenarios. For example,
we can combine the historical data where the non-overlapping
activity with appliances used, as well as the disaggregation of
the electrical sensing, to achieve fine-grained activity recognition
from overlapping structural vibration signals.

7.2. Behavior Level Monitoring: Metrics
and Parameters
Our aging society has a desire to independently live in the
home. Non-intrusive in-home monitoring of ADL has the
potential to support safety and independence for these older
adults. Information patterns in engagement in ADL are critical,
as engagement is known to be associated with disability,
institutionalization, and all-cause mortality. With non-intrusive
in-home monitoring, changes in patterns can be immediately
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FIGURE 13 | ADL recognition accuracy when training on two persons’ data (P1 & P2 ) and testing on different people (P3, P4, and P5).

identified and appropriate supports or care can be deployed
to ensure safety and independence in the home for the older
adult. This study is a step in showing that non-intrusive in-home
monitoring detects ADL in adults with no known physical or
cognitive limitations. These findings may be able to extend to
older adults who begin to experience changes in their capacity for
the performance of ADL. For example, when an older adult takes
longer to engage in a cooking task or forgets to turn the stove
off, non-intrusive in-home monitoring could detect a change in
behavior that notifies family or health-care providers that can
visit the older adult to ensure health and safety in the home.

On the other hand, changes in patterns of ADL may
cause the interaction between humans and the structural
changes, which may lead to data distribution change causing
learning or classification error. To combat this potential
limitation, continuous learning approaches may be needed to
adapt to such data distribution changes. Another challenge
is the metric to measure the behavior changes, especially for
multilevel activity monitoring. The abnormal behavior detected
at different granularity may indicate different aspects of the
disease progression. A third challenge is the differences between
subjects, i.e., the definition and measurement of the anomaly
may vary.

8. CONCLUSION

We presented a non-intrusive fine-grained ADL monitoring
system through ambient structural vibration and electrical
sensing in this paper. We highlighted the complementary
information acquisition for these two sensing modalities
and how to acquire high time- and type-resolution
monitoring in this work. Both pieces of information may
be used for the development of smart home applications
seeking to monitor engagement in ADL. Our system
first conducts event-level detection and recognition and
then applies an ensemble algorithm on the recognition
results from each sensor over the target time period to
achieve accurate event-level ADL monitoring. In the
real-world experiments (common kitchen activities), our
system achieved an average of 90% accuracy for ADL
recognition, which is an up to 2.6× improvement compared to
the baselines.
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