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Purpose: Statistical data imputation methods are important in a wide range of
scientific research; however, in construction management research, they are not used
widely. Specifically, in research for building loss studies due to extreme hazard events,
data are frequently missing, inaccessible, spurious, or expensive to collect. First-floor
elevation (FFE) data are vital in building flood loss analysis, so the lack of high-
quality FFE data before and/or after elevating structures represents a major barrier to
understanding avoided loss (AL) in flood mitigation projects. While a few guidelines
exist to estimate FFE, the guidelines lack information on estimation of FFE for mitigated
and non-mitigated buildings. Existing techniques tend to rely on recommendations by
professional engineers that have not been evaluated for statistical fit in elevated homes
in Louisiana, United States.

Methods: This Louisiana-based case study statistically evaluates the effectiveness of
existing guidelines on building elevation data. Furthermore, it provides a state-of-the-
art methodology to impute missing FFE data statistically for buildings in mitigated and
unmitigated conditions without relying on building foundation-type data, which itself is
commonly needed but often missing in previous building mitigation AL studies.

Findings: Results here suggest that existing guidelines for FFE estimation match
reported FFE only moderately well in flood-mitigated residences in Louisiana. Moreover,
an update and inclusion of foundation-type data in the guidelines would improve FFE
estimates for Louisiana homes. Among the imputation methods by multiple linear
regression, random forest, and generalized additive models (GAM) overlay, the GAM
model performs most effectively based on the accuracy in data imputation for missing
FFE data. These results will assist builders, developers, and communities in their quest
to enhance resilience to the ever-increasing flood hazard.

Keywords: data imputation, flood mitigation, generalized additive models, random forest, cross-validation, first-
floor elevation, avoided loss, data analysis
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INTRODUCTION

Background
Hazard mitigation is any intentional action that decreases loss
from natural disaster events by reducing vulnerability. Avoided
loss (AL) analysis is the main tool for measuring the economic
value of the benefit of hazard mitigation actions (Orooji, 2015).
Because flooding is the most common natural disaster in the
United States (FEMA, 2014), improved accuracy in AL analysis
of flood-mitigated properties is crucial. To calculate the AL, the
loss with and without mitigation strategy must be compared
together (Taghinezhad et al., 2020). Flood loss functions are
used to calculate the flood loss in buildings. These functions,
often referred to as depth–damage curves (e.g., Gulf Engineers
& Consultants [GEC], 2006; FEMA, 2015), are based on a single
independent variable—the depth of floodwater above the first
floor of a building. Thus, for flood loss analysis, two factors
must be known—the floodwater elevation and the building FFE.
Although FFE is an essential component in flood loss calculation,
all too often building FFE information is unavailable due to the
costly nature of elevation certificate preparation (FEMA, 2011b),
for which a licensed surveyor is required, as well as the cost and
effort required to maintain community building databases.

Determining the AL of implemented flood mitigation projects
requires comprehensive project data. However, since this is often
done for building stocks in a large region (e.g., cities, states),
considering the limitations of data sources, including missing
data, is important. One of the most important variables in flood
loss analysis is first-floor elevation (FFE) (Nofal and van de Lindt,
2020); however, unavailability or illegibility of documents often
leads to missing FFE data. While estimation methods based on
the technical or engineering guidelines can be used to populate
the missing FFE data, imputation methods based on statistical
analysis are a faster way to replace the missing data with the
approximate estimate of data. Also, in some cases with the lack
of well-developed engineering guidelines, imputation can be the
only option for populating the missing data. In addition, it is an
effective way to validate the technical or engineering guidelines
because it is adaptable based on “real world” data, specific to
building properties and locations, and it does not have the
limitation or assumptions that exist in guidelines.

Abbreviations: AL, avoided loss; ANOVA, analysis of variance; AR, Arkansas,
United States; BBN, Bayesian belief networks; BCA, benefit cost analysis; BFE,
base flood elevation; CART, classification and regression tree; CV, cross-validation;
1E, delta elevation (change in elevation); DEM, digital elevation model (a 3D
model that shows ground elevation); FEMA, Federal Emergency Management
Agency; FFE, first-floor elevation; FFE0, first-floor elevation before mitigation
(before raising building); FFE1, first-floor elevation after mitigation (after raising
building); FIA, Federal Insurance Administration; FIRM, flood insurance rate
map; GAM, generalized additive model; GIS, geographic information system;
GOHSEP, Louisiana Governor’s Office of Homeland Security & Emergency
Preparedness; GPS, global positioning system; HMGP, Hazard Mitigation Grant
Program; LA, Louisiana, United States; LAHM, Louisiana HMGP; LOOCV, leave-
one-out cross-validation; LSU, Louisiana State University; MSE, mean square
error; NAVD88, North American Vertical Datum of 1988; NGVD29, National
Geodetic Vertical Datum of 1929; NOAA, National Oceanic and Atmospheric
Administration; OK, Oklahoma, United States; OOB error, out-of-bag error;
RMSE, root-mean-square Error; TX, Texas, United States; USACE, United States
Army Corps of Engineers; VDatum, NOAA’s vertical datum transformation
software; VIF, variance inflation factor.

Missing data is a common issue in analyzing big data (Zhang,
2016). Imputation is the systematic process of filling missing data
in a dataset through a variety of scientific estimation methods
(Marwala, 2009). In data analysis, imputation is required when
the deletion of observations with missing data biases the analysis
and when incomplete data decrease analysis efficiency or prevent
analysis (Barnard and Meng, 1999). Imputation methods have
been widely implemented in statistical analyses of clinical and
public health experiments with missing data (e.g., van Buuren
et al., 1999; Hawthorne and Elliott, 2005; van der Heijden et al.,
2006; Burton et al., 2007; Newgard and Haukoos, 2007). In the
field of hazard mitigation, Pita et al. (2011) successfully applied
imputation methods to address missing building roof shape
data required in hurricane wind loss analysis. While statistical
imputation methods are widely applied in scientific fields,
hazard mitigation literature demonstrates a lack of integration of
imputation for missing or unknown building information.

Aim and Objectives
This article aims to improve the quality of building stock data for
natural disaster analysis when the missing data represent a barrier
that leads to decreased accuracy or loss of useful data. To reach
this goal, we introduce the idea of applying statistical imputation
methods for populating the missing FFE data, based on accessible
information for most buildings. Advanced statistical methods
(e.g., machine learning methods) are used to impute missing data,
and the results are compared internally through statistical cross-
validation (CV) methods and externally with existing engineering
guidelines. Therefore, the specific objectives of this research are as
follows:

• To impute the FFE data with advanced statistical methods.
• To evaluate the accuracy of the imputation results by using

advanced statistical methods.
• To evaluate existing engineering guidelines for missing FFE

data with observations from flood-mitigated buildings in
Louisiana, United States, and the results of statistical data
imputation methods.

Methods
The Louisiana Governor’s Office of Homeland Security &
Emergency Preparedness (GOHSEP) data that are available
through the Louisiana Hazard Mitigation (LAHM) online portal
are used for imputation modeling on flood-mitigated buildings.
The FFE before and after mitigation is imputed for flood
mitigation projects, using several statistical models, including
four multiple linear regression, two random forests, and four
GAM models. The leave one out cross-validation root-mean-
square error (LOOCVRMSE) method was implemented to
assess model performance. To validate the Federal Emergency
Management Agency (FEMA) guidelines for estimating missing
FFE data, scenarios are explored that consider FFEs based
on known foundation types and on statistically generated
foundation types. Mean square error (MSE), F-test, t-test, and
analysis of variance (ANOVA) are used to assess the relative
effectiveness of the FFE estimation and imputation methods for
populating the missing information.
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Contribution and Implications of
Research
This research contributes significantly to the field of study by
eliminating the barrier of unknown foundation type as required
information in FEMA guidelines for estimating missing FFE
data and by providing advanced statistical models to impute
missing data. Additionally, this research provides a methodology
to impute the missing FFE data separately for buildings before
and after mitigation, which is important in AL analysis for
elevation and reconstruction mitigation project types. The
statistical models provide an interpretable demonstration for FFE
data based on accessible independent variables of base flood
elevation (BFE) and digital elevation models (DEMs). Finally,
the few current guidelines for FFE estimation and foundation
distribution in Louisiana are evaluated statistically, which can be
helpful for development of future guidelines.

LITERATURE REVIEW

Regression and Decision Tree
Previous research has demonstrated that statistical imputation
methods can handle missing data successfully. Regression
imputation is a traditional method to deal with missing data
as an improvement on mean, median, or mode imputation
models (Zhang, 2016), as it evaluates the relationship between
missing data and other independent variables. However, when
data deviate strongly from linearity or normality and have many
outliers, the violation of the regression assumption presents
a barrier. Alternatively, decision trees, either associated with
or independently of a “random forest” methodology (Breiman,
2001), can be used for imputation, especially when the data
can be clustered effectively. The results of the classification
and regression tree (CART) can vary based on the researcher-
defined criteria for splitting trees on each node (Breiman et al.,
1984; Breiman, 2017). Therefore, a random forest method was
developed to improve the results of CART by generating multiple
decision trees using resampling methods. The CART and random
forest methods offer the advantage of avoiding the need for
making the assumptions of regression analysis and can be
implemented on data with any distribution (Breiman, 2001). For
instance, Shataee et al. (2012) found that random forest yielded
stronger imputation results than k-nearest neighbor and support
vector machine regression, as evidenced by the CV RMSE to
identify the error rate of each model.

Generalized Additive Model
The generalized additive model (GAM) is another effective
imputation method for predicting when the independent
variables have a non-linear association with the dependent
variable (Moore et al., 2011). GAM has been found to provide
valid interpretability on the flexible non-linear behavior of each
independent variable (Larsen, 2015). Because GAM is capable
of using smoothing functions to fit non-linear models, it can
be effective for showing the quality of the fit, along with
the confidence interval, for each independent variable. Some

examples of GAM imputation are those of McKechnie et al.
(2013) to impute the missing data for a spatial fishing study
and Cugliari et al. (2018) to impute missing daily extremes
temperature data.

Imputation in Construction
Imputation has also been used for building studies. For instance,
Posenato et al. (2010) and Chen et al. (2018) used imputation
in structural health monitoring research. Inman et al. (2015)
used imputation for modeling building electrical demand. In the
field of hazard mitigation. Pita et al. (2011) imputed missing
roof shape data using Bayesian belief networks (BBN) and
CART methods. That study assumed that data are missing at
random, and 10-fold CV suggested that CART was effective for
imputation. Also, there is a dearth of research using imputation
in hazard mitigation research. Despite the fact that FFE data
before and/or after mitigation are commonly missing, few have
attempted methods to handle the missing FFE information.
Although FEMA publications based on expert opinion provide
some default values for missing FFE data, such estimations
generally have not been validated in scientific studies and are not
always available.

LAHM Data
This study employs data from 1356 flood-mitigated single-family
homes that were funded by FEMA in Louisiana between 2005
and 2015. The flood mitigation strategies in this study are
elevation (i.e., elevating an existing structure), reconstruction (i.e.,
demolishing and rebuilding an existing structure with a new FFE
level), and acquisition (i.e., purchasing a floodprone building to
move residents out of an area with high probability of flooding).
The data for flood-mitigated buildings were accessed through
the LAHM online portal, which is accessible only to authorized
users. The data acquisition was accomplished by the efforts of
a group of graduate students in 18 months, and it covers the
mitigation projects obligated by FEMA after Hurricanes Katrina
and Rita (2005), Gustav (2008), and several other significant
flood events in Louisiana. In the LAHM website, each FEMA
project number includes one or more properties. Multiple
scanned documents pertaining to the application process and
other clerical documents associated with the grant are available
for most of the FEMA-funded properties in Louisiana during
the study period.

After an initial search for available data on the LAHM website,
data collection templates were developed to ensure continuity
and uniformity throughout the data collection process. The
collection effort provided maximum achievable information for
application in the flood loss analysis. Some of the data fields
for flood mitigation projects were recognized as critical for
performing flood loss analysis. For instance, missing critical
values of “address,” “building replacement value,” “building
type,” “number of stories,” “initial elevation (m),” and “final
elevation (m)” in the original LAHM online dataset made
more than two-thirds of the “elevation” projects unsuitable
for analysis here.

Pre-analysis data processing was required to provide
consistency in collected data across different mitigation projects
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TABLE 1 | Pre-analysis data processing summary for imputing first-floor elevation
data for flood-mitigated properties (2005–2015) in Louisiana.

Data issue Solution to resolve the issue

Non-unified global
positioning system
(GPS) address format

Convert all coordinates to decimal degrees format.

Incorrect GPS address Use Google Maps R© and Google Street View R© web
applications to find the correct GPS addresses from
mail address.

Missing BFE Use LSU AgCenter FloodMaps portal to find BFE by
building addresses.

Missing DEM Use GIS to extract DEM values at building locations
by mapping buildings using the most available and
accurate DEM raster file.

Errors in FFE entries
due to elevation
certificate issues

Calculate 1E for all properties. Use BFE information
and Google Street View to review properties with
negative or near-zero 1E. Delete incorrect FFE
values.

Non-unified datum for
FFE elevation points

Use NOAA’s vertical datum transformation (VDatum)
software.

and to eliminate or minimize spurious data. Table 1 summarizes
the solution for each step of data processing before imputation
analysis. Each of these processes is described more in detail in
the following paragraphs.

After converting geographical coordinates of buildings in
some FEMA documents from degrees–minutes–seconds to
decimal degree format, it was realized that some of the locations
specified in documents did not match the addresses of projects
as reported in the database, possibly because of improper
completion of the FEMA grant application forms. Therefore,
all collected data were re-checked for correspondence to actual
project addresses. The Google Maps R© and Google Street View R©

web applications were used to match the building addresses
with written addresses on the application forms to clarify the
suspect addresses.

Base flood elevation and digital elevation model were the
two variables used for imputation of missing FFE data. The
BFE data were collected from elevation certificates, which are
commonly used and legitimate sources for confirming the
building’s elevation above sea level, both before and after
mitigation. Unfortunately, however, the BFE of many buildings
is unavailable in FEMA documents due to missing elevation
certificate documents. The missing BFE data for many such
cases were acquired by using the LSU AgCenter FloodMaps
Portal1. Some buildings had multiple elevation certificates for
before and after mitigation. Since the elevation certificate does
not indicate whether the elevation data are for pre- or post-
mitigation, to ensure that FFE data appear valid for representing
pre- and post-mitigation, the mitigated buildings with a lower
FFE than before mitigation were discarded. For buildings in
the elevation and reconstruction mitigation strategy categories,
17 properties of the 248 with available data (6.8%) have a
negative change in elevation (1E), and five other properties
(2.0%) have 1E with a value between 0 and +30 cm (1 ft).

1www.maps.lsuagcenter.com/floodmaps

FIGURE 1 | Boxplot for NGVD29 and NAVD88 datum difference for
flood-mitigated buildings in Louisiana (2005–2015) with mean (× symbol),
median, and interquartile data range.

After reviewing these properties on the Google Street View R©

web application, it was concluded that all 22 of the elevations
were reported incorrectly in LAHM documents because the
property photographs were shown to have 1E exceeding one
foot, so they were discarded. In addition, the presence of multiple
elevation certificates for some buildings complicated the data
collection process. Such cases were noted in the spreadsheet
and values were removed and imputed as missing data by
statistical analysis.

The ground elevation, obtained from the United States
Geological Survey (USGS) DEMs at building locations, is vital
information for both flood loss analysis and data imputation.
DEM values at the building locations were obtained by
extracting the building locations from the best available DEM
raster file for Louisiana. Each elevation value in the elevation
certificates is based on a vertical datum for measurement
of heights above sea level. The FFE in some elevation
certificates lacks a uniform vertical datum. Therefore, elevation
data for the 124 observations that referenced the National
Geodetic Vertical Datum of 1929 (NGVD29) were transformed
to North American Vertical Datum of 1988 (NAVD88)
using the National Oceanic and Atmospheric Administration’s
(NOAA’s) vertical datum transformation (VDatum) software.
To show the effect of using a non-uniform vertical datum,
the datum difference (1) was calculated by subtracting the
NAVD88 vertical height from NGVD29 vertical height (cm).
Figure 1 shows that the maximum 1D is 10 cm and the
minimum is−4 cm.
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Randomness of Data
Recognizing the features of the missing data is important to
determine the most appropriate way to impute the data. Data
can be missing completely at random, missing at random,
or missing not at random. If data are missing completely at
random, the missingness of observations would have the same
probability for all cases. Therefore, the missing values can be
deleted and only the observations with complete data may
be selected for analysis. In contrast, data that are missing at
random may have relationships between missing data and other
observations; therefore, the imputation can populate the missing
data based on the other related variables, which are important
toward a valid analysis. When data are missing at random,
their deletion may remove valuable information. Therefore,
imputation methods must preserve that valuable information
(Zhang, 2016). Data that are missing not at random depend
on information that does not exist in the dataset. Therefore,
these data cannot be imputed using observed information
(Little and Rubin, 2014).

The missing information in this study resulted from
documentation deficiencies or illegibility of scanned PDF
documents. Therefore, the data were assumed to be either
missing completely at random or missing at random. To test
the data for missing completely at random, Little’s missing
completely at random test (Little, 1988) was used. The null
hypothesis of Little’s missing completely at random test is that
data are missing completely at random. Therefore, a Chi-square
p-value less than 0.05 suggests that null hypothesis of missing
completely at random is rejected.

FEMA Data
Two publications (FEMA, 2013, 2015) are selected to use for
FFE imputation. According to FEMA (2013), in St. Tammany
Parish, Louisiana, after Hurricane Isaac in 2012, the default height
above grade to top of finished floor (H) is estimated to be 1.22,
0.76, and 0.30 (m) above grade (D) for basement, crawl space or
pier and beam, and slab foundations, respectively. FEMA (2013)
obtained these estimates from FEMA (2011a). Equation 1 is used
to calculate FFE0 based on the estimated values of H in the FEMA
methodology.

FFE0 = H + D (1)

To estimate the FFE0 by defined methodology in FEMA
(2015), the distribution of foundation type (i.e., pile, pier, solid

wall, basement, crawl space, fill, and slab on grade) in each area,
based on the building flood zone as defined in FEMA guidelines
(e.g., FEMA, 2007), must be determined. The building’s location
regarding flood zones is recognized as riverine (areas with the
probability of flood caused by water flow from rainfall) and
coastal (areas prone to coastal flooding). Pre-flood insurance
rate map (FIRM) and post-FIRM also needed to be considered.
The pre-FIRM is used for buildings constructed or substantially
improved before December 31, 1974, or before the effective
date of an initial FIRM. The post-FIRM is used for buildings
constructed or substantially improved after December 31, 1974,
or after the effective date of an initial FIRM (FEMA, 2010). The
distribution of foundation type for residential buildings relevant
to Louisiana based on flood map location is provided in Table 2.

The FFE0 in FEMA (2015) method was calculated by H values
in Table 3 and Eq. 1. The H values in Table 3 were calculated
using information from the foundation type estimates in the
previous table and building conditions in the flood maps.

MATERIALS AND METHODS

The methods described in this section were used to impute
missing first floor elevation before elevating (FFE0) and first
floor elevation after elevating (FFE1) data. The results from the
FFE0 imputation were compared with FFE estimations from
FEMA guidelines in the section “Results.” Resulting values from
imputations from this methodology and estimations from FEMA
methods were compared.

Leave-One-Out Cross-Validation RMSE
The LOOCV RMSE method was selected to find a statistical
model with the lowest error rate for use in imputation. To obtain
the RMSE, the model was built by separating the data into
training and test sets. In LOOCV, the training set was constructed
on N−1 observations, where LO is the LOOCV RMSE, N is the
total number of observations in the dataset, and Ŷi and Yi are the
predicted and actual values of omitted observation i, respectively
(Eq. 2). Thus, the RMSE of the fitted data vs. the training set only
tests the prediction error on one random observation iteratively,
until the error rate for all individual observations was calculated
in the dataset.

LO =

√√√√ 1
N

N∑
i=1

(Ŷi − Yi)2 (2)

TABLE 2 | Distribution of foundation type for sampled residential homes in Louisiana (FEMA, 2015).

Location Pile Pier/post Solid wall Basement/garden level Crawl space Fill Slab on grade

Riverine

AR, LA, OK, TX 0% 0% 0% 5% 38% 0% 57%

Coastal pre-FIRM

Gulf of Mexico 34% 7% 1% 1% 21% 0% 36%

Coastal post-FIRM A-zone

Gulf of Mexico 50% 15% 2% 0% 20% 0% 13%

Coastal post-FIRM V-zone

Gulf of Mexico 85% 10% 2% 0% 1% 0% 2%
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TABLE 3 | Default height (m) above grade to top of finished floor (FEMA, 2015).

Block type Coastal Riverine

FIRM Pre-IRM Post-FIRM Pre-FIRM Post-FIRM

Flood zone A V A V

Pile (or column) 2.13 2.44 2.44 2.13 2.44 2.44

Pier (or post and beam) 1.52 1.83 2.44 1.52 1.83 1.83

Slid wall 2.13 2.44 2.44 2.13 2.44 2.44

Basement (or garden level) 1.22 1.22 1.22 1.22 1.22 1.22

Crawl space 0.91 1.22 1.22 0.91 1.22 1.22

Fill 0.70 0.70 0.70 0.70 0.70 0.70

Slab 0.30 0.30 0.30 0.30 0.30 0.30

Regression
Statistical regression techniques were used to impute the missing
information of FFE based on the available data. Because DEM
(D) and BFE (B) are two accessible, independent variables related
to the FFE, these two variables were used in regression models
to impute missing FFE data. The validity of assumptions was
tested for each regression model, including Shapiro–Wilk for
normality, Breusch–Pagan for homoscedasticity or homogeneity
of variance, and variance inflation factor (VIF) for quantification
of multicollinearity in multivariable models. The regression
LOOCV RMSE, along with adjusted R2, R2, and consideration
of regression assumptions, was used to enhance the selection of
a proper imputation model for FFE0 and FFE1. Four models
were examined to identify the best regression fit to predict the
FFE0 and FFE1 (Table 4), where β̂0 is the estimated intercept
coefficient and, β̂1 and β̂2 are the coefficient estimates of the
independent variables.

Random Forest and GAM
Random forest (Breiman, 2001) is a robust data mining model
used for both prediction (i.e., regression) and classification. This
model is constructed based on the equal averaging of many
random trees in the CART method (Breiman, 2001, 2017) to
obtain a model with reduced variance (Trevor et al., 2009b). In
the random forest, every tree is created by a bootstrap sample
from the training data, a subset of variables are selected at each
split of tree, and each tree grows to a maximum depth without
pruning (Breiman, 2001; Cutler et al., 2007). Such trees are very
adept to capture complex non-additive or interactive behavior
among variables. Random forest imputes missing values using
the median of numeric variables and the mode of categorical

TABLE 4 | Regression models evaluated.

Model # Regression model expression Equation

1 F̂FE0 = β̂0 + β̂1D (3)

2 F̂FE0 = β̂0 + β̂1D+ β̂2B (4)

3 F̂FE1 = β̂0 + β̂1B (5)

4 F̂FE1 = β̂0 + β̂1D+ β̂2B (6)

variables (Breiman, 2001). The “randomForest” package in the R
program is used for random forest analysis in this study.

The other model tested for imputation is the GAM, which
is an additive modeling technique to predict a dependent
variable using independent variables and a flexible smoothing
function on some or all of the independent variables (Hastie
and Tibshirani, 1990). This model allows inclusion of a non-
linear independent variable possibly having a non-normal error
distribution (Guisan et al., 2002). In GAM, the shape of the
relationship among variables is determined by observations;
therefore, the relationships can have non-linear shapes (Trevor
et al., 2009a). The general form of the GAM for use in imputation
with two independent variables is shown in Eq. 7, where µ (X) is
the conditional mean of the dependent variable (e.g., Gaussian), g
is the link function (e.g., identity link with normal response) and,
f1 and f2 are the arbitrary trends for independent variables f1 and
f2, respectively, that can be estimated by non-linear smoothers
(e.g., smoothing splines):

g[µ(D,B)] = β0 + f1(D)+ f2(B) (3)

The “gam” package in R was used for GAM imputation, and
the smoothing spline with four degrees of freedom was used as
smoothing function for all independent variables in the model.
Four models based on the random forest and GAM methods were
examined to identify the best prediction models for FFE0 and
FFE1; these models are represented in Table 5.

Comparison With Data in Literature
To compare the imputation results from selected statistical model
and estimation results from FEMA guidance, the imputation and
estimation results were compared with the LAHM data with no
missing information. The MSE was used to measure the error
rate of the imputation and FEMA prediction with the LAHM
data. Thus, the model with minimum MSE has a lower error rate
and better prediction accuracy. The statistical testing for equality
of mean and variance between imputed or estimated data and
LAHM data with no missing information was also implemented.
The following comparisons were made:

• FFE0 (imputed) vs. FFE0 (LAHM).
• FFE0 [estimated by FEMA (2013)] vs. FFE0 (LAHM).
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TABLE 5 | Random forest and GAM models evaluated.

Model # Variables Method Properties

5 FFE0 ∼ f(D,B) Random forest Used 500 trees

6 FFE1 ∼ f(D,B) Random forest Used 500 trees

7 FFE0 ∼ f(D) GAM Used identity link function
and smoothing splines
with 4 degrees of
freedom for independent
variable.

8 FFE1 ∼ f(B) GAM Used identity link function
and smoothing splines
with 4 degrees of
freedom for independent
variable.

9 FFE0 ∼ f (D)+ f(B) GAM Used identity link function
and smoothing splines
with 4 degrees of
freedom for independent
variables.

10 FFE1 ∼ f (D)+ f(B) GAM Used identity link function
and smoothing splines
with 4 degrees of
freedom for independent
variables.

• FFE0 [estimated by FEMA (2015) with known foundation
type] vs. FFE0 (LAHM).
• FFE0 [estimated by FEMA (2015) with simulated

foundation type] vs. FFE0 (LAHM).
• FFE1 (imputed) vs. FFE1 (LAHM).

To test the equality of variance between each group, which
is required to choose a correct t-test, the F-test is conducted
as F = S2

1/S2
2, where S2

1 represents the variance of one sample
(highest variance) and S2

2 is the variance of the other sample
(lowest variance).

After conducting the F-test, data were compared using a
t-test for equality of mean for each tested group. The t-test (for
equal sample size and equal variance) was implemented as T =
(X̄1 − X2)/Sp

√
2/N, where X̄1 and X̄2 are the mean of group 1

and group 2, respectively, Sp is an estimator of pooled standard
deviation of the two sample groups, and N is the number of
observations in each group.

In addition to the F-test and t-test for each group of
imputations or estimations vs. the LAHM data, a one-
way ANOVA test was used to determine whether significant
differences of mean exist across the groups. The null hypothesis
(H0) in this case is the equality of the means for FFE0 in the
LAHM data, the statistical imputation model, and estimation
models by FEMA. For all inferential statistical analyses, a level of
significance (α) of 0.05 was chosen as the threshold for assessing
statistical significance.

RESULTS

Little’s missing completely at random test for randomness of
missing data showed a p-value of less than 0.001. Therefore, the
data were assumed to be missing at random and imputation

TABLE 6 | Parameter estimates for selected regression models.

Model # Coefficient Parameter Estimate Standard
error

p-Value

1 β̂0 Intercept 0.422 0.042 <0.001*

β̂1 D 1.013 0.013 <0.001*

2 β̂0 Intercept −0.129 0.066 0.055

β̂1 D 0.612 0.042 <0.001*

β̂2 B 0.382 0.039 <0.001*

3 β̂0 Intercept 1.030 0.063 <0.001*

β̂1 B 0.982 0.015 <0.001*

4 β̂0 Intercept 1.232 0.099 <0.001*

β̂1 D 0.164 0.063 0.010*

β̂2 B 0.835 0.059 <0.001*

*p-value is equal or less than the significance level of 0.05.

is recommended to populate the missing information. The
imputation results from regression, random forest, and GAM
models, along the results of a comparison study with data in the
literature, are presented in this section.

Regression
The coefficient parameter estimates of the regression models are
shown in Table 6. The coefficient p-value of the independent
variables in all examined models is significant or near the
significance level of 0.05.

By testing the LOOCV RMSE along with R2 and adjusted
R2, and considering the regression assumptions, the regression
models were compared for FFE0 and FFE1 models (Table 7). The
regression results suggest using Model 2 (adjusted R2 = 0.98,
LOOCV RMSE = 1.15) for imputing FFE0 due to the slightly
better R2 and LOOCV RMSE and Model 3 (adjusted R2 = 0.95,
LOOCV RMSE = 1.89) for imputing FFE1 due to its lower
cross-validation error and minimization of multicollinearity.

The regression assumptions test suggests that the normality
assumption is violated in all equations. However, the large sample
size makes the least squares regression robust to the normality
violation assumption (Lumley et al., 2002). Figure 2 describes the
relationship between the FFE0 and D based on Model 1 and the
relationship between FFE1 and B based on Model 3.

Random Forest and GAM
The random forest model performs best when it is applied with
the optimum number of trees for prediction models. In this
study, the out-of-bag (OOB) error in random forest decreased
dramatically with the first 100 trees, and after 250 trees, the
test error became nearly constant (Figure 3). Therefore, random
forest is applied with 500 trees to obtain the best results.

The LOOCV RMSEs for the regression, random forests, and
GAM models are shown in Table 8. The smallest LOOCV RMSE
values for missing FFE0 values occur for random forest (Model
5) and GAM (Model 9); the smallest LOOCV RMSE values for
missing FFE1 values are the GAM (Model 10) and random forest
(Model 6) models.

Since the random forest and GAM methods are very
competitive in prediction results, this study suggests using either
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TABLE 7 | Model evaluation results for regression models.

Model # Imputed variable Normality Homoscedasticity Multicollinearity R2 Adjusted R2 LOOCV RMSE

1 FFE0 F F NA 0.97 0.97 1.22

2 FFE0 F F F 0.98 0.98 1.15

3 FFE1 F P NA 0.95 0.95 1.89

4 FFE1 F P F 0.95 0.95 1.91

P, pass; F, fail; NA, not applicable.

FIGURE 2 | Relationship between FFE0 and D and relationship between FFE1 and B for elevation-mitigated projects (2005–2015) in Louisiana.

FIGURE 3 | Random forest OOB error, based on the number of trees.

random forest or GAM methods for imputing the missing values
of FFE0 and FFE1. Figure 4 shows that the smoothing function
for both independent variables in GAM models of FFE0 and FFE1
is significant and both variables are effective in the imputation of
missing FFE0 and FFE1 values; however, the changes in FFE1 are
more related to BFE than to DEM.

Comparison With Data in Literature
For this section, 175 observations from the LAHM data were used
as a basis for comparison. These data are from the non-missing
data for foundation type (i.e., slab, crawl space, and pier), building
occupancy (residential), BFE, DEM, FFE0, and FFE1.

Comparison of the known FFE0 data from LAHM (f0)
with the imputation results from GAM Model 9 (if0; the

TABLE 8 | LOOCV RMSE results for statistical models.

Model # Variables Method LOOCV RMSE

1 FFE0 ∼ f(D) Regression 1.22

7 FFE0 ∼ f(D) GAM 0.378

2 FFE0 ∼ f(D, B) Regression 0.351

9 FFE0 ∼ f (D)+ f(B) GAM 0.342

5 FFE0 ∼ f(D,B) Random forest 0.316

4 FFE1 ∼ f(D, B) Regression 1.91

3 FFE1 ∼ f(B) Regression 0.576

8 FFE1 ∼ f(B) GAM 0.535

6 FFE1 ∼ f(D,B) Random forest 0.532

10 FFE1 ∼ f (D)+ f(B) GAM 0.526

study imputation model for missing FFE0 data for which
foundation type is not required to be known), the FEMA
2013 method (ef013; an estimation method for missing FFE0
data for which foundation type is required to be known),
FEMA 2015 method (ef015; an estimation method for imputing
missing FFE0 data for which foundation type is required
to be known), and FEMA 2015 method with estimated
foundation type (ef015f ; an estimation method for imputing
FFE0 data for which foundation type is not required) yields
MSEs of 0.134, 0.192, 0.213, and 0.365, respectively. Thus,
all three methods have a nearly similar error rate. However,
the imputation model from this study (i.e., GAM Model 5)
has slightly better results than the ef013, ef015, and ef015f
methods. The t-test p-values between f0 and if0, ef013, ef015, and
ef015f were 0.95 [two-sample t-test with equal variance (F-test
p-value = 0.81)], 0.79 [two-sample t-test with equal variance
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FIGURE 4 | GAM smoothing fits with one standard error confidence interval and three-dimensional plot for imputation of FFE0 (left) and FFE1 (right).

(F-test p-value = 0.70)], 0.90 [two-sample t-test with equal
variance (F-test p-value = 0.85)], and 0.50 [two-sample t-test
with equal variance (F-test p-value = 0.61)], respectively. The
t-test results indicate that none of the three models differed
significantly from the observations. However, if0 has the most
similarly distributed mean and variance to f0 observations in
LAHM data. In addition to the t-test, the one-way ANOVA with
the p-value of 0.91 also shows no difference between f0, if0, ef013,
ef015, and ef015f .

By comparing the known FFE1 data (f1; known FFE1
data from LAHM) with the imputation results from GAM
Model 10 (if1; the study imputation model for missing FFE1
data which is not required to known the foundation type),
the MSE was obtained as 0.392. Also, the t-test p-value
between f1 and if1 was 0.93 [two-sample t-test with equal
variance (F-test p-value = 0.77)]. The MSE, F-test, and t-test
results indicate that the imputation results do not differ
significantly from LAHM data.

Figure 5 shows the distribution of imputed and estimated
FFE0 compared to known FFE0 data from LAHM and the
distribution of imputed FFE1 compared to known FFE1 data
from LAHM. The distributions of the imputation and estimation
methods for FFE0 are near the distributions of FFE0 in LAHM,
and the distribution of the imputation method for FFE1 is
near the distributions of FFE1 data from LAHM. Results from
MSEs for understanding the model error, F-tests for testing
the variance, and t-tests for testing the mean are summarized
in Table 9. It should be noted that F-tests are used to
test the variance in each pair of data and the F-values are
equivalent to T2 .

Table 10 compares H (i.e., H = FFE0 − D) and the
distribution of four foundation types in FEMA studies for
Louisiana and LAHM data. A considerable difference for H exists
in the pier foundation type among the three studies. Also, in

FIGURE 5 | Boxplots of imputed and estimated FFE0 and FFE1 compared to
FFE0 and FFE1 data from LAHM.

FEMA 2015, the distribution of pier foundation for the riverine
area in Louisiana is 0%, but LAHM data show the existence of
buildings by pier foundation (6%) in riverine area.

DISCUSSION

The motivation for this research arises from the absence of a
significant portion of data on building attributes required for
advanced construction engineering research such as research in
the area of built environment information modeling and natural
disaster loss analysis. In this research, the existence of some
entries with no missing information provided an opportunity
to use statistical imputation methods to predict the missing
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TABLE 9 | MSE, F-test, and t-test results for FFE imputations and estimations vs. LAHM data on 175 observations.

Comparison method f0 vs. if0 f0 vs. ef013 f0 vs. ef015 f0 vs. ef015f f1 vs. if1

MSE 0.134 0.192 0.213 0.365 0.392

F-test p-value 0.81 0.70 0.85 0.61 0.77

t-test p-value 0.95 0.79 0.90 0.50 0.93

TABLE 10 | H (m) for the FEMA, 2013 and FEMA, 2015 foundation types in Louisiana vs. LAHM foundation types.

Pile Pier Basement Crawl space Slab on grade

H (FEMA, 2015) 2.13 or 2.44 1.52 or 1.83 or 2.44 1.22 0.91 or 1.22 0.30

H (FEMA, 2013) NE 0.76 1.22 0.76 0.30

H (µLAHM ) 2.29 1.31 NE 0.91 0.43

H (SLAHM ) 1.25 0.64 NE 0.43 0.43

Dist. (%; FEMA, 2015)* 0, 34, 50, 85 0, 7, 15, 10 5, 1, 0, 0 38, 21, 20, 1 57, 36, 13, 2

Dist. (%; LAHM) 1 6 0 3 89

Obs. (LAHM) 4 26 0 14 364

NE, not exist; µ, mean; S, standard deviation; Obs., number of observations; Dist. (%; FEMA, 2015), foundation-type distribution in FEMA (2015) for riverine, coastal
Pre-FIRM, coastal Post-FIRM A-Zone, and coastal Post-FIRM V-zone areas, respectively; Dis. (%; LAHM), foundation-type distribution in LAHM data for all flood zones.

data based on the available data. Also, since the existence of
missing information on building attributes is common in flood
loss analysis, the results of this research are valuable for all
decision-makers and stakeholders that are interested in assessing
the benefit of mitigation.

The MSEs indicate that, if the foundation type is known,
the study imputation method projects missing FFE0 data
slightly better than FEMA estimation methods. Moreover, when
the foundation type is unknown, the GAM in this study
imputes the missing FFE0 data much better than the FEMA
2015 method. The GAM is an effective compromise between
regression and random forest techniques. It adds non-linear
flexibility, unlike regression, but in a more interpretable way
than the random forest approach. Also, because the data are
limited, more advanced methods such as neural networks
are not examined in this study. The F- and t-test results
confirm the accuracy of FFE0 imputation in this study and
estimates by previous FEMA studies. However, FEMA 2013 is
not applicable when the foundation type is unknown, and it
was only specified to one geographic area in the United States.
Furthermore, FEMA 2013 is limited to four specific foundation
types, and the piling foundation, which is common in low-
lying areas, was not included in that study. Also, FEMA
2015 is not applicable when the pre- or post-FIRM building
information is unavailable. Additionally, in the absence of
foundation type, the MSE results show an increase in error
rate. Therefore, in the absence of information required for
estimation methods in FEMA publications (i.e., foundation
type, detailed FIRM information), the proposed imputation
methods based on the locally collected data can be more effective
than FEMA estimation methods, which require information
about foundation type, building construction date, and flood
zone in FIRM maps.

To ensure that the statistical imputation models can predict
the missing FFE values well, the range of DEM and BFE for
missing data should be within or close to the range of DEM
and BFE data that are used in the imputation model. In the

current study, the range of independent variables for imputation
models is between−2.52 (m) and 15.27 (m) for the D variable and
between −1.07 (m) and 17.07 (m) for the B variable. Therefore,
caution should be exercised in the interpretation of results of
imputation for cases in which the DEM and/or BFE for missing
FFE data is not in the range of DEM and BFE in the study. Also,
the range of data in this study indicates that many properties
in southern Louisiana have DEM less than −2.52 m (NAVD88),
which confirms that most mitigated buildings in this study are
located in low-elevation areas.

The distributions of foundation types in LAHM data show
that pier foundation in the riverine area consists of 6% of the
mitigated buildings in Louisiana, while in the FEMA 2015 study,
the distribution for this foundation type in riverine area is 0%.
Therefore, it seems that the FEMA sources and studies for
building elevation data should be updated.

CONCLUSION

This research contributes to the development of knowledge in
the field of flood loss analysis by providing statistical imputation
methods to find missing FFE0 and FFE1 data. These imputation
methods can be used in any geographic area to populate the
missing data for these two critical variables in AL analysis.
Comparison between imputation in this study and existing
estimation methods shows that imputation results are more
accurate and flexible to populate the missing information based
on the building conditions and geographic locations. Also, the
statistical t-test shows that the results of estimation methods in
the FEMA guidelines do not differ significantly from LAHM
observations in this study.

The detailed steps for processing data to use in flood loss
analysis and handling missing information were described in the
major sections above. Imputation methods by knowing DEM
and BFE information were applied for FFE0 and FFE1 missing
data. The FFE0 and FFE1 imputation results were compared with
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LAHM data by using MSE and F-test and t-test methods. Also,
the FEMA estimation methods for missing FFE0 data in the
literature were evaluated and compared with LAHM data. The
results indicate that imputed FFE0 and FFE1 information do not
differ significantly from the LAHM data and the MSEs are small
in imputations for both variables.

In addition, while the FEMA studies provide estimation
methods for FFE, they do not separate their estimations for
unmitigated and post-event mitigated buildings. However, in
elevation-mitigation projects, because raised buildings typically
provide above-code protection for mitigated homes, the FFE1
cannot be estimated by FEMA techniques for FFE estimation.
For this reason, this study provides a separate imputation
model for missing data of FFE1. The MSE, F-test, and t-test
confirm the high accuracy of imputed data for this important
variable in AL analysis.

Finally, to provide more robust loss analysis in the future,
this study recommends that FEMA agencies store the critical
information for loss analysis properly in a consistent format
(e.g., use a same datum for all elevation data) through an online
database system for future AL and benefit cost analysis. Some
of the critical data fields for flood mitigation projects were
recognized as “unique ID,” “construction date,” “address,” “GPS
address,” “building replacement value” (the building value minus
the land value), “building type,” “number of stories,” “foundation
type,” “flood zone,” “BFE,” “project cost,” “initial elevation,” and
“final elevation.”
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