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Oliver Sawodny and Michael Böhm
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Adaptive structures are conventional truss structures that are equipped with sensors,

actuators, and a control unit. This offers the opportunity of reacting and adapting to

external loads but raises nontrivial issues. When actuators are placed optimally within a

structure, they can be individually integrated either parallel to or in series with elements of

the original passive structure. Additionally, some of the elements might be tension-only

elements and thus have to be treated as nonlinear, as their stiffness depends on the

stress within the element itself. Input constraints naturally arise for actuators, e. g., due

to the maximum pressure limit of a hydraulic system and displacement limits of the

actuators. We present modeling approaches for an add-on inclusion of these different

types of actuators in an existing finite-element model of a passive structure. We place

special focus on the ability of the model to reproduce the correct behavior in case of

an actuator reaching its displacement constraint within a tension-only element. When

such an adaptive structure is subject to static loads, e. g., wind loads, it is required

to respond using its actuators to keep the structure within given safety and comfort

limits. These limits can be expressed as state constraints. We present a method for

optimally compensating these static loads under the given input and state constraints

along with experimental results on a scale model of an actual high-rise building. An

important aspect regarding adaptive structures is that of their behavior in case of

actuator faults. An obvious result is that a structure’s performance degrades, and the

controller needs to recognize faults and deal with it properly. Assuming a diagnosed

actuator fault, we present results illustrating the performance degradation. The designed

controller can reconfigure and reinitialize itself. The performance with and without applied

reconfiguration to the nominal case is compared.

Keywords: adaptive structures, tension-only elements, static load compensation, fault tolerant control, optimal

control, input/state constraints
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1. INTRODUCTION

Lightweight structures are a reality for many mass-sensitive
applications, such as large civil engineering structures. In the
most cases, the designs of passive structures present a minimum
in terms of required mass under given safety limitations
and user comfort constraints. However, it is possible to stay
within these limits while further reducing the total embodied
mass significantly by introducing active structures, which is
referred to as ultra-lightweight design. Through their various
actuators, these structures can react and adapt to external
loads and disturbances – both static and dynamic. This is
done in order to minimize element stresses and at the same
time maximize lifetime expectancy. Even lighter designs are
possible compared to passive lightweight structures. In light
of the expected construction activities within the next 20–30
years (OECD, 2015), and in line with the ongoing population
growth as estimated by the UN (Department of Economic
and Social Affairs), the world-wide trend of urbanization will
further increase in pace, as projected by the UN (Department
of Economic and Social Affairs). Ultra-lightweight designs can
thus help save millions of tons of concrete and steel and
significantly reduce waste production and CO2-emissions of the
construction industry.

One of the first research results on adaptive engineering
structures was published by Yao (1972). Just a few years later,
Kirsch and Moses (1977) proposed an active control strategy for
a single beam subject to several single loads, but their findings
strongly supported the idea of increased loading capacity or
reduced cross section dimensions through the use of mechanisms
for active compensation. Since then, the field has evolved, but
it has nevertheless remained a rather small community, as it
requires an interdisciplinary approach bringing together civil and
control engineering. Recent overviews about structural control,
including several passive, semi-active, and active approaches,
have been provided by Korkmaz (2011), Housner et al. (1997),
and Spencer and Nagarajaiah (2003). Most of the literature
focuses on dynamic problems, i.e., active vibration control
for damping oscillations. For example, Gawronski (2004) and
Preumont (1997) use model-based approaches for the control
design. Literature on the compensation of static loads by active
structures is problem specific. A broad overview of current
developments in structural control in Europe can be found
in Basu et al. (2014), who give several case studies. Case studies
that focus on energy and cost assessment of adaptive structures
are presented in Senatore et al. (2018a). Insight into an approach
for influence matrices is given in Reksowardojo and Senatore
(2020), where the integrated force method is compared with a
force method based on singular value decomposition.

From a practical point of view, the literature on active

vibration control is manifold. Different aspects have to be taken

into account such as input constraints due to actuator size,
force limitations, as well as state constraints due to the need

for keeping inhabitants comfortable. The authors of Johnson
and Erkus (2002) present a semi-active optimal control approach

for a structural control problem, for which the semi-active
damping device is modeled by input constraints. Active vibration

control with active mass dampers of seismically excited multi-
story building is done by Materazzi and Ubertini (2012). To
incorporate input constraints in the proposed linear quadratic
regulator (LQR), the problem is augmented, introduction of
a virtual unsaturated input and a nonlinear map between
augmented state and virtual input. For this system, the state-
dependent Riccati equation is solved. A backstepping approach
to control seismic motion of structures was proposed by Amini
and Ghaderi (2013). This approach guarantees the limitation
of control forces while at the same time improving closed
loop system performance. The algorithm is illustrated on a
three-story building.

There are tensegrity structures that can be associated, to a
certain extent, with the structure considered in this contribution.
Adam and Smith (2008) designed a multi-objective shape
controller that selects a pareto optimum based on the applied
load and is additionally improved by reinforcement learning.
This approach is validated on an experimental setup of a
tensegrity structure covering 15m2. Fest et al. (2003) specifically
included geometric nonlinearities in their modeling approach
of an active tensegrity structure and applied a stochastic search
algorithm to determine the control inputs. In comparison to pure
tensegrity structures, we consider a structure that is stiffened by
tension-only diagonal bracings that are barely prestressed and
therefore buckle under compression, which has been studied for
tensegrities by Alart et al. (2007). Nevertheless, our structure
also incorporates beam elements that bear tension, compression,
and even bending and torsion, many strategies that work for
tensegrities cannot thus be simply applied here.

Sobek and Teuffel (2001) proposed a method for static control
of structures by minimizing element forces or displacements
in a simple optimization without consideration of input or
state constraints. In this paper, adaptivity is considered during
the design process already, which eventually leads to a more
sustainable structure. More recently, Neuhäuser et al. (2013)
and Neuhäuser (2014) showed static load compensation for a
double-curved shell in order to minimize peak stresses in the
structure. Experimental validation is also given. Senatore et al.
(2019) introduced a methodology for optimal design of adaptive
structures while minimizing the whole-life energy consumption
by regarding embodied energy and operational energy needed
during operation to perform any necessary adaption. Their
approach has been experimentally validated with an adaptive
truss prototype, see Senatore et al. (2018b).

Static shape control is performed for two- and three-
dimensional bodies such as beams, shells, or plates. For example,
Irschik and Ziegler (2001) and Irschik et al. (2000) conducted
static shape control by performing an eigenstrain analysis to
determine the control forces that can compensate the quasi-
static deflection of the body through external forces. Piezoelectric
actuators are used to manipulate the body’s stress distribution.
The analysis and design are based on distributed parameters
theory and thus cannot simply be transferred to our discretized
finite element (FE) model. The authors of this publication have,
however, also studied this aspect and Wagner et al. (2019b)
presented an example for static load compensation on a beam
modeled by a distributed parameters system.
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The application of adaptive structures and static control is
a wide field in aerospace engineering, regarding satellites with
positioning of measurement equipment or wings of airplanes to
adapt for wind flows. Sener et al. (1994) focused on statically
indeterminate structures and investigated static control and
actuator placement. As noted by Pellegrino (1990), it is important
to separate between statically determinate and indeterminate
structures because the number of independent force states
in a structure is—as mentioned by Wagner et al. (2018)—
coupled to the static indeterminacy. Sener et al. (1994) aimed at
enlarging the stress in a structure. Therefore, the authors mainly
work with statically indeterminate and prestressed structures.
Several examples are given for illustration. For large space
structures, Matunaga and Onoda (1995) presented a control law
for optimal shape control with respect to modeling errors for
elements and actuator forces. They further performed actuator
placement by means of an integer optimization problem, where
they specifically included several actuator failure cases in the
optimization to increase the fault tolerance of the entire structure.
This is highly relevant for space applications due to the limited
maintenance options. A different approach of actuation was
taken by Haftka and Adelman (1985), who used nonuniform
heating to control deformation of adaptive structures governed
by continuous or discrete equations. Saggere and Kota (1999)
regarded an airplane wing as a smart structure, where principles
of mechanics and kinematics are coupled with an optimization
program to achieve smooth shape changes using a single actuator.

Previous works of our group have considered the problem
of actuator placement for structures under static loads (e.g.,
Wagner et al., 2018; Böhm et al., 2019) and under dynamic loads
(e.g., Heidingsfeld et al., 2017), as well as dynamic modeling
and nonlinear damping control of structures with tension-
only elements (e.g., Wagner et al., 2019a) and enhanced with
decentralized control (e.g., Wagner et al., 2020). Böhm et al.
(2020) focus on modeling and successful integration of different
types of actuation principles into existing FE-models of passive
structures. A relation is derived between actuators included in
series and in parallel. First results on fault-tolerant control for
active shape control of a double-curved shell were given by
Heidingsfeld et al. (2015), where faults in actuators were treated
as additional constraints in the optimization to derive the input
signals. Recent results on fault detection and diagnosis were
published by Gienger et al. (2020), and convolutional neural
networks were used on the various input and sensor signals to
detect and isolate actuator and sensor faults.

This article contributes to the modeling and control of
adaptive structures with tension-only elements where some of
these are equipped with serially integrated actuators, which
renders the equations more complex and naturally leads to
input constraints. More specifically, the main contribution of this
article is the derivation and validation of a load compensation
method based on numerical minimization of deformations due to
static loads that particularly includes input and state constraints.
Validation of the proposed algorithms is performed on an
experimental setup with 25 actuators evaluating element forces
and position measurements of the structure. Proving the real
world applicability of the strategy, a 1:18 scale model is used.

Finally, the potential to rerun the optimization with a reduced set
of actuators is demonstrated, which enhances the fault-tolerance
of adaptive structures.

The article is organized as follows: Section 2 introduces the
nonlinear modeling including tension-only elements for a given
structure. Additionally, inputs and outputs are modeled. In
section 3, the optimal control strategy is introduced to conduct
static load compensation and the treatment of faults in actuators.
Experimental and numerical results are illustrated and discussed
in section 4. Finally, a conclusion and outlook are given.

2. SYSTEM MODELING

This section derives the nonlinear, stationary model equations
of an adaptive high-rise structure. These serve as the basis
for the following optimal load compensation. For the sake of
completion, first, a linear system model is introduced, on top of
which nonlinear structural elements are incorporated.

2.1. Linear Equations of Motion
Assuming stationary conditions, the physical states of a
stationary civil engineering structure are computed by means of
the finite element method (FEM). The vector q ∈ R

n denotes the
nodal degrees of freedom (DOF) in translational and rotational
directions and is also called state of the system. In particular these
modeling equations are represented by

Kq = f (u) with f (u) = Fu+ Ez, y = Cq, (1)

where K ∈ R
n×n is the stiffness matrix, and f (u) comprises

actuator forces u ∈ R
m and disturbances z ∈ R

k. The input
matrix F ∈ R

n×m describes the actuator topology for m active
elements. The disturbancematrix E ∈ R

n×k represents stationary
external loads, for example, snow loads or static wind loads. Each
column of this matrix, each contains the distribution of external
forces over all degrees of freedom for a single load case. The
overall external load is given as a linear combination of these
individual disturbance vectors with the respective amplitudes
defined in z. The system’s output y ∈ R

l captures measurement
values and can be calculated by means of the output matrix
C ∈ R

l×n and the systems state.

2.2. Nonlinear Equations of Motion
In practice, structures may not be accurately represented by the
linear system model (1). Common nonlinear structural elements
are bracings, which serve the purpose of stiffening an entire
structure. For example, a cable or flat steel both introduce
nonlinearities because these elements can only bear tension
forces and therefore slacken under compression. This effect
leads to a state dependent stiffness matrix K(q). In the case
of a compressed nonlinear bracing element, the corresponding
entry ki of the stiffness matrix does not contribute to the
structure’s stiffness:

ki(q) =

{

ki, 1li(q) ≥ 0

0, 1li(q) < 0
i = 1, ..., nt. (2)
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The total amount tension-only elements is denoted by nt. The
switching condition between tension and compression depends
on the length difference of an element

1li(q) =

√

1q̃
⊺

i 1q̃i −
√

1q
⊺

i,0 1qi,0. (3)

The last term represents the initial length of an element with
1qi,0 = qi,1,0 − qi,2,0, where qi,1,0 and qi,2,0 are the initial
absolute positions given in a global coordinate system of the
nodes to which element i is attached to. The first term yields
the current length of the element i, where the individual
positions of the associated nodes have to be represented in a
global coordinate system.

1q̃i = q̃i,1 − q̃i,2 (4)

In the above equation, the absolute reference position of the
nodes q̃i,1 and q̃i,2 are equal to q̃i,1 = qi,1,0 + qi,1 and q̃i,2,
respectively, where the relative displacements of the attachment
nodes are a subset of the DOF vector, i. e., qi,1 ⊂ q and qi,2 ⊂ q. If
changes in the element’s stiffness ki(q) in function (2) apply, the
structure’s stiffness matrix K(q) has to be reassembled, leading to
a state-dependent formulation of (1):

K(q) = f (u), y = h(q, u). (5)

Consequently, the system’s output is stated as a general nonlinear
function depending on the state and the input. Nevertheless, in
most cases the output is given by a linear function of the form
h(q, u) = Cq. Nonlinearities of the kind (2) can be considered in
structural analysis using any common FE-software. The system
formulation (5), however, is required for the purpose of model-
based control design (ref. section 3) within a tool as Matlab or
Python. A system formulation for dynamic analysis of this type
of nonlinearities was derived by Wagner et al. (2019a, 2020).

2.3. Actuation Principles and Input
Modeling
In this study, two actuation principles are introduced, and their
implication on the adaptive structure is analyzed. The first
principle, shown in Figure 1A, considers a force parallel actuator,
which is essentially an additional (active) link that can influence

A B

FIGURE 1 | Two actuation principles for adaptive structures (A) parallel force

and (B) serial force.

the truss structure. Changing the length of this actuator leads
to the same length change in the parallel element due to the
fact that both elements are attached to identical nodes. However,
the forces in the actuator and the parallel (passive) element are
potentially very different. These depend on the cross sectional
areas of the active and passive element and are determined as a
function of the actuator force, while the structure is required to
reach an equilibrium state.

Due to the parallel elements, this actuation principle might
seem to lead to an overdesigned configuration. However, it
enables actuation of highly loaded elements and has benefits
in terms of safety and fault tolerance. Such elements are
mainly included in the load path to compensate a structure’s
dead load. Consequently, since the actuator is not required to
completely bear the static dead load, it can be used for damping
purposes or to generate small scale manipulations and structural
deformations. Moreover, the actual passive element can be
designed for much smaller dynamic loads because dynamic load
components are transferred to the actuator. Together, both can be
designed such that they are not necessarily heavier than a single
passive column.

The second principle is the serial actuation depicted in
Figure 1B. In this configuration, the actuator is included in the
load path of an element so that the force in the element is directly
set by and equal to the actuator’s force. If the structure is not in
an equilibrium, the element will extend or shorten its length until
the element force is equal to the actuator’s force. In duality with
the parallel actuation principle, the displacement of the passive
part of the element and the actuator add up to the total change in
length between the two nodes (Böhm et al., 2020). The element
and actuator force are equal. As it was concluded in Wagner
et al. (2018), a serial actuation principle for bracing elements
is preferred, which stiffen a structure. Regardless of the chosen
principle, all actuator forces will be limited in practice according
to the design. Since typical bracing elements can only be stressed
in tension, as explained in section 2.2, serial actuators are not
capable of exerting compression forces in such elements.

A mechanical limit in the actuators needs to be installed for
safety reasons to prevent undesired large deformations of the
structure. If the actuator hits its upper limit stop and the force
within this active element is higher than the upper force limit
of the actuator, an impact on the structure is not possible1.
Furthermore, actuation is lost, in the case of a fully contracted
actuator, if the active element is compressed. Therefore, all inputs
generated by actuators, which are connected in series, are state
dependent. This is modeled by means of a state-dependent input
matrix Bs(q). The basic equations for including serial actuation
into a given model are given by Böhm et al. (2020), and the input
function can be separated as follows:

f (us, up) = Bs(q)us + Bpup + Ez. (6)

Consider a number of serial actuators, ms, and a number
of parallel actuators, mp. The causality between the actuation
and the DOF is described by the respective input matrix

1However, this would be a strong indicator for a poorly chosen actuator design.
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Bs(q) ∈ R
n×ms and Bp ∈ R

n×mp . The input forces of both types
of active elements are us ∈ R

ms and up ∈ R
mp . The external

loads, which cannot be affected, are captured in the last term Ez.
Given a parallel setup in which each individual actuation is
represented by b

⊺

i up,i, the actuation force of a corresponding
serial configuration (leading to the same equilibrium state of the
structure) is calculated by

us,i = up,i − kib
⊺

i q. (7)

if the element’s stiffness ki is known. The question of where
the actuators are placed within the structure is addressed in
earlier contributions. For active vibration control under dynamic
loads, actuators can be placed according to Heidingsfeld et al.
(2017) by means of the Gramian controllability matrix with
integrated spillover reduction. For static load compensation,
a placement strategy was proposed in Wagner et al. (2018)
in which a cost function is derived based on certain load
assumptions. Appropriate assumptions can be formulated in
order to achieve optimality under a wide range of loading
events. However, an adaptive structure’s set of actuators needs
to provide high performance for a variety of loads. The final
choice of the actuator set for any kind of adaptive structure
must be a combination of these results obtained for the various
loads—static and dynamic—eventually considering symmetry
and economic aspects as well.

2.4. Output Modeling
Different outputs may be considered in adaptive structures. This
section focuses on two relevant types of outputs, which are
used in optimization and for evaluation. These are the nodal
displacements and the element forces.

2.4.1. Displacement

In civil engineering, rather strong restrictions apply to the
displacements of high-rise buildings due to comfort reasons.
A common rule is the horizontal displacement of the tip of a
building is restricted within a range that does not exceed 0.2–
0.5% of the building’s height. In order to test this restriction, we
need to define the nodal displacement output:

ydisp = Cdispq. (8)

Only the translational DOFs are considered via the output
matrix Cdisp, as there are typically no (strong) restrictions on the
rotational DOFs.

2.4.2. Element Forces

As discussed in section 2.2, tension-only elements, common link
elements, and different actuator types are complex to consider in
terms of element forces in output modeling. Therefore, the Ne

element forces are captured in yforce(q) ∈ R
Ne , which comprises

four parts. Firstly, element forces yforce,s(q) ∈ R
Ns of tension-only

elements with serial actuation are considered. Secondly, element
forces yforce,p ∈ R

Np of all (link or beam) elements with parallel

actuation are included. Thirdly, element forces yforce,sp(q) ∈ R
Nsp

of tension-only elements without actuation are captured. Finally,
the remaining element forces, yforce,r ∈ R

Nr :

yforce(q) =
[

y
⊺

force,s
(q), y

⊺

force,p
, y

⊺

force,sp
(q), y

⊺

force,r

]

⊺

. (9)

All element forces are normal forces and are calculated in
dependence of the actuation type and the element type. For
tension-only elements actuated in series, where the actuator is
operating within its stroke limits, the element force is equal to the
actuator force. If the actuator hits the upper stroke limit, the force
exerted on the element by the structure’s displacement can be
higher than the actuator force. This force is calculated in the same
way as for passive elements using an adapted stiffness constant
of the combined element. If the actuator is fully contracted and
the element is slackend, no force is transmitted over the element.
In summary, the force output of each individual element i
is expressed:

yforce,s,i(q) =











Cforce,s,iq, 1li(q) ≥ 0

us,i, 1li,min < 1li(q) < 0

0, 1li(q) < 1li,min

, (10)

where 1li,min is the lower actuator stroke limit and 0 its upper
stroke limit. For the elements actuated in parallel

yforce,p = Cforce,pq+ Dup (11)

holds. The first term represents the force transferred through the
passive part, while the second term represents the actuator force.
With the notation adopted, the actuator force is positive when the
actuator acts against its compression. Since compression forces
are typically defined with a negative sign, the matrix D is defined
as D = −I. Any passive tension-only element only transfers
forces if it is under tension, while the element forces are zero
under compression:

yforce,sp,i(q) =

{

Cforce,sp,iq, 1li(q) ≥ 0

0, 1li(q) < 0.
(12)

The remaining elements are common tension and compression
(link or beam) elements with

yforce,r = Cforce,rq. (13)

Equations (9)–(13) are summarized in the nonlinear output
function h(q) to obtain

yforce(q) = h(q)q. (14)

All output matrices Cforce,(·) ∈ R
(·)×n contain the matched

stiffness and geometric information, i.e., the stiffness of the
individual elements and to which nodes the respective elements
are attached to.
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3. CONTROL

In this section, a model-based control strategy for optimal
static load compensation for nonlinear adaptive structures under
state and input constraints is introduced. While for linear
control, a variety of analytic control schemes are available, static
compensation for the nonlinear model is best tackled by an
optimization-based algorithm, as proposed in section 3.2. The
required optimizationmetric is explained in section 3.1. Finally, a
simple adaption scheme for reconfiguration of the compensation
control is given for the case of actuator faults in section 3.3.

3.1. Optimization Metric
For this contribution, we chose to minimize the nodal
displacements of the structure. Therefore, the cost function
consists of the quadratic sum of all nodal displacements and is
given by

J(q) = y
⊺

disp
ydisp = q⊺C

⊺

disp
Cdispq. (15)

Another possible optimization metrics is the homogenization of
element forces over all elements, which was used as a metric for
actuator placement by Böhm et al. (2019). For this, the stress in
an element is calculated and set in relation to its yield strength.
This utilization quantity is homogenized over all elements by
penalizing deviations from the mean utilization value in the
cost function.

3.2. Static Load Compensation
Static load compensation is realized by minimizing the cost
function introduced above under given constraints regarding the
structure’s displacement as well as state and input constraints.
One common requirement for high-rise buildings is the
limitation of the structure’s displacement to 0.2–0.5% of a
building’s height. In the following, the approach for optimal
static load compensation including all constraints is given
using the nonlinear model together with serial and parallel
actuated elements.

3.2.1. Optimization

The optimization problem to determine the optimal parallel
and serial inputs for a given static load by minimizing the
displacement of the structure under constraints with the cost
function taken from (15) described by

{u∗s , u
∗
p, q

∗} = arg min
us,up ,q

J(q) (16)

s.t. K(q) = Bs(q)us + Bpup + Ez

us,min ≤ us ≤ 0

up,min ≤ up ≤ up,max.
(17)

The optimization variables in (16) are the parallel and serial
inputs up and us. Note, that the state-dependent stiffness
matrix K(q) can become singular as soon as too many

tension-only elements are actually under compression. Thus,
invertibility ofK(q) cannot be guaranteed and therefore, the state
vector q cannot be calculated by inversion of K(q). We have
thus reformulated the optimization with the steady state equation
as an equality constraint rendering the state q an additional
optimization variable. This avoids inversion of K(q) but leads
to a higher number of optimization variable as a consequence.
The input constraints can be explained as follows: the serial input
signals can only transmit tension forces and therefore must have
a negative value. The largest tension force is given by |us,min|.
The parallel actuators can generate tension and compression
forces and stay within the limits of up,min and up,max. Since only
static loads are considered, constraints of time-dependent values,
e. g., acceleration or velocities, can be neglected. In the present
paper, we assume a known static load, while, in practice, static
load estimation is a complex task that is beyond the scope of
this contribution.

The optimization is started with an initial condition,
corresponding to the state of the passive structure under the given
load. The parallel and serial input up and us are concatenated to
u = [up, us]. The input u is calculated analytically for the system
linearized around q = 0:

u = −(CK−1(0)B)+(CK−1(0)Ez), (18)

where B = [Bp,Bs]. Note that the initial conditions might not
satisfy state and input constraints.

3.3. Fault Tolerance and Reconfiguration
In large and complex systems with many actuators and sensors,
robustness with respect to faults is an important property. In
this contribution, we focus on actuator faults and assume the
detection of faults is available (e.g., as proposed by Gienger
et al., 2020). Through the potential of the large number of
actuators, it is possible to reconfigure control to provide high
control performance despite faults. After detecting an actuator
fault, an obvious approach is the recalculation of control signals
with a reduced number of actuators. This is acceptable, if
the calculation time of the optimization stays below the time
constants of the system dynamics. In this article, we consider
only quasi-stationary loads, which is an important load case for
civil engineering structures, and the optimization program is
solved in way shorter time. Furthermore, as initial condition,
the preceding solution without actuator faults is used as the
reconfigured solution is expected to be close. So, the optimization
problem is solved for a changed actuator configuration using (16)
and (17). In an additional step, it would be possible to include
constraints induced through faulty actuators, e.g., an actuator
cannot move further and remains at an arbitrary but fixed length.

4. NUMERICAL AND EXPERIMENTAL
RESULTS

In this section, the numerical and experimental results are
depicted and discussed. At first, the investigated structure is
explained, and, subsequently, the results for optimal static load
compensation and reconfiguration are given.
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4.1. System Description
4.1.1. General Setup

To illustrate the results of optimal static load compensation,
a scale model of an adaptive high-rise structure is used. The
full size adaptive high-rise structure will be constructed on
the site of the University of Stuttgart, rendered in Figure 2A.
The structure will be a twelve story building with 36m height
covering a square base with side length of 4.7m, detailed
information is given by Weidner et al. (2018). The scale
model investigated in this contribution is 18 times smaller,
leading to a height of 2m and a square ground base of 0.26×
0.26m (see Figure 2B). It is subdivided into five modules,
where one module comprises two stories. The module and
story numbering start at the bottom with index 1. The
full-size building comprises four modules with three stories
each.

Four vertical elements, eight diagonal bracings, and one plate
are mounted per module, where the element numbering is
given in Figure 3. Instead of plates, the full-size building will
feature horizontal bracings where modules meet. Additionally,
the plates are assumed to be very rigid and are therefore
excluded in the calculation of element forces. Sensors are
installed in terms of strain gauges in almost each vertical and
diagonal element. Furthermore, an optical measurement system
is installed to measure some of the nodal displacements (ref.
Figure 2). Strain gauges are mounted onto the base material of
the elements and the small measurement signals are amplified.

The optical sensors measure the nodal displacement of one
side of the building (Figure 2C). The green light emitters are
detected with a camera system (Ximea MC023MG-SY) on
two sides of the building to get spatial information on the
structure’s displacement with submillimeter resolution. The full-
scale building will be equipped with the same sensor setup,
adapted to the larger scale. Additionally, sensors for wind, rain,
and solar radiation will be installed to estimate external loads.
A construction to excite the scale model statically is shown in
the scheme. A weight of mload = 4 kg, and, by this, about 40N
are applied to the top of the scale model horizontally in x-
direction. In modeling, the load is divided upon the upper two
nodes on the right side. A shaker table is installed below the
scale model, exciting the structure in x- and y-direction for
investigating the dynamic behavior. As providing this kind of
excitation is too complex for the full-scale building, a subset
of the integrated actuators will be used instead to simulate
excitation. Every module incorporates a microcontroller, which
communicates sensor and actuator signals to the central control
unit. The optical measurement system directly communicates
its measurements via ethernet to the central control unit. All
microcontrollers are connected to the central control hardware
(dSpace MicroLabBox DS1202) via CAN-bus. All algorithms
are implemented using Matlab/Simulink and executed using
the dSpace MicroLabBox along with the software dSpace
ControlDesk. A summary of geometry and material parameters
are given in Table 1.

A B C

FIGURE 2 | (A) Rendering of the full-size adaptive high-rise structure (left) and the access tower (right) (© ILEK), (B) picture of the 1:18 scale model, and (C) sketch of

the scale model with actuator and sensor equipment and load mounting.
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FIGURE 3 | Actuated elements with numbering of the actuators.

4.1.2. Actuators

Parallel actuators are integrated in 11 vertical elements, as
depicted in Figure 2C. The integration of active components
in a column is shown at the top of Figure 4. A brushless DC
motor (Faulhaber 2264W024BP4 3692—operated by a motor
controller Faulhaber MC5010) is mounted at the bottom of each
active column. The motor is coupled to a ball screw to transform
rotation to a linear motion. The nut is clamped between two
springs, which directly determine the stiffness of a column. The
lower end of the lower spring and the upper end of the upper
spring are connected via the housing and are referred to as
grounding. Therefore, the springs aremounted in a parallel setup.
The corresponding actuation principle is sketched in Figure 1.
The structure also incorporates 14 active diagonal bracings, see
Figure 2C for the locations. Diagonal elements are realized by
steel cables, which are wound over a roll that is connected to
a worm gear. A brushless DC motor is mounted on the other
end of the worm gear. The top module is a passive part of
the structure, i.e., no actuators are installed in the top module.
Actuator and element numbers are given in Figure 3. The full-
scale building includes a similar actuator set; however, due to
the absence of the fifth module the following changes occur. The

third module does not include vertical actuators, and the forth
module contains no actuators at all, leading to only 24 active
elements. These actuators will be realized as hydraulic cylinders.
The full-scale model will be the main experimental setup to
validate and evaluate all developed control algorithms, including
static compensation as well as active vibration control, observer
strategies and fault detection.

The values for inequality constraints are calculated based
on Table 1 such that us,min = −111N, up,min = −296N and
up,max = 296N. The actuator forces in the setup for serial and
parallel actuation cannot be measured directly. The motors are
velocity controlled by the motor controllers. To apply the desired
serial actuator force, an underlying PI-controller was designed for
each motor, which uses the strain gauge measurement to control
the current element force. Due to the strain gauge installation, the
serial element force is measured, from which the corresponding
parallel element force can be calculated using (7). The feedback
gains for the parallel and serial actuators are designed separately.
The error is defined as the difference between desired and
measured value. The P- and the I-gains multiplied with the errors
for the parallel actuators are kP = −1 and kI = −10 and for the
serial actuators kP = −20 and kI = −80.
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4.2. Static Load Compensation
The optimization problem (16), (17) was solved by
means of an interior-point algorithm as proposed
by Wächter and Biegler (2006)2. On a development PC (Intel
Core i@2.7GHz), computation time of the optimization for
the given parameters and initial condition is approximately 3 s,
which is sufficient for static adaption. Displacement results are
presented for both the simulated and measured structures and
an illustration of the measured element forces is provided.

4.2.1. Displacements

Figure 5 shows the qualitative results of the static load
compensation of the experimental setup with the reference state
in Figure 5A. The structure stands upright without actuation;
however, serial actuation needs to be turned on and set to an
initial value to apply a minimal prestress as a valid starting point

TABLE 1 | Geometry and material parameters of the scale model.

Description Formula sign Value Unit

Weight structure mtot ≈35 kg

Weight load mload 4.0 kg

Height structure htot 2.0 m

Vertical elements Length lv 0.4 m

Stiffness kv 22124 N/m

Diagonal elements Length ld 0.48 m

Stiffness kd 18192 N/m

Plate elements Side length lp 0.26 m

Actuation Motor torque Mm 0.059 Nm

Ball screw diameter dv 0.006 m

Ball screw slope sv 0.001 m

Gearing ratio i 65

Wheel radius rd 0.01 N/m

2We used here the implementation of the OPTI Toolbox, a free MATLAB

Toolbox for Optimization by Inverse Problems Ltd. from 2014. More information

can be found online at: https://www.inverseproblem.co.nz/OPTI/index.php/Main/

HomePage.

from which to apply compensating input signals. The worm
gear is self-locking, and the force is preserved without motor
interference thereafter. Figure 5B displays the structure under
the load without actuation. In Figure 5C, the displacements
induced by the load are compensated by using the motors and
the optimized input signals.

Positionmeasurements are compared to the simulation results
in Figure 6. These measurements are obtained from the cameras
of the optical measurement system, and an offset is applied
based on the reference state measurements. Figure 6A shows the
measurement points in xz-plane for the reference, loaded, and
compensated states. The effect of the load is almost completely
compensated for, as seen by the reduction in displacement from
11.5 to 0.3 cm at the top. Deviations form the reference state
are mainly visible in the middle of the structure, and they are
reduced from 4.6 to 1.3 cm at the end of the second module. In
general, perfect compensation cannot be reached for all loads.
The deviation in the middle is due to the locations of the serial
actuation. The actuated diagonal elements go from the bottom
right to the top left in the second module and therefore they
cannot counteract the induced displacement. Thus, only the
actuation in the columns is available, which is not sufficient
for the required compensation. Regarding actuator placement,
various static loads were investigated justifying the present
actuator configuration (Wagner et al., 2018). While, for this
specific load, another actuator configuration would have been
beneficial, the model’s actuator setup is chosen as a compromise
between the optimal placement for several different load cases.
Figure 6B displays measurement and simulation results for
the scale model under load. According to the simulation, the
expected displacement is larger than the measured displacement.
The simulation model assumes a homogenous structure with
constant parameters for passive and active elements. However,
the uppermodules do containmostly passive elements. Especially
the diagonals in these modules are prestressed to avoid slack
even in the initial straight upright position. Therefore, the upper
modules seem more rigid and are not as much displaced in
the experiments compared to the simulation results. Figure 6C
shows the compensation of the displacement of the structure
under load for the real setup and simulation. The optimization
results are applied to the motors and almost completely

FIGURE 4 | Construction of parallel actuation in the columns (Top, rotated by 90◦) and serial actuation for diagonal elements (Bottom).
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FIGURE 5 | Photographs of the experimental setup of the scale model. (A) Upright state as reference, (B) applied load without compensation, and (C) compensation

of the displacement caused by the load.

compensate for the initial displacement. The deviation from the
reference state is not visible for the simulation. This discrepancy
can be partly explained by asymmetric actuator placement in the
model. Furthermore, a model is only a limited approximation
of the real world behavior and leaves out effects, e.g., nonlinear
effects, such as hysteresis and stick-slip in the actuated columns
and diagonal bracings. In general, the results of the position
measurements show sufficient accuracy and performance and a
very good static load compensation.

4.2.2. Actuator Forces

For an illustration of the actuator forces, the parallel and
serial inputs are named according to the actuator number in
Figure 3 and summarized to one sorted input u. Figure 7 shows
the actuator forces determined by the optimization algorithm.
Serial forces are depicted directly, while parallel actuation
forces are calculated with (7) to obtain the element force. As
expected, under the given load, the actuators in columns 1, 4,
8, 11, 16, and 19 need to apply tension forces, while column
actuators 2, 3, 9, 10, and 17 apply compression forces. All
diagonal actuators show, as required, only non-positive forces
(i.e., tension). All input constraints due to the actuator force
limits are met. The asymmetry in the actuator forces is due
to the asymmetric actuator locations. In module three, only
three columns are actuated and in module one and four, three
diagonals are actuated.

For the forces in the columns, the zero-offset value cannot
be determined in the mounted state. Therefore, the reference
value of the upright state is set as the zero-offset value. For
active and passive tension-only elements, the zero-offset value
was determined in advance by slackening the cables.

To evaluate the actuation forces, the desired and the measured
element forces are depicted over the actuator number in Figure 8.
Actuator numbers are given in Figure 3. Serial actuators are
highlighted by a gray background. In Figure 8A the results
for the structure under load are shown, where actuation for
compensation is turned off. However, the serial actuated elements
are controlled such that the element force from the prestress in
the reference state is maintained. Otherwise, if these elements
were fixed, they would be stretched and exhibit high element
forces, induced by the load. That is the reason why desired
element forces for the serial actuated elements are shown in
this plot. Desired forces are matched by actual measured forces
to a sufficient extent. Some of these actuated tension-only
elements are slack, which is shown by values close to/below
zero (see actuator 14, and 15). Values below zero are possible
since the zero-offset value can only be determined within a
few Newtons. Actuators 13, 20, 23, and 24 do not reach their
desired forces due to the limited motor torque. Due to the
loading, the structure stretches these elements. Therefore, higher
forces cannot be reached. Actuator 6 is set to a lower tension
force in the element, but does not achieve it. Due to safety
reasons, a mechanical stroke limit stop was installed for the
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A B C

FIGURE 6 | Comparison of position data for measured (meas) and simulated (sim) models with the reference state (gray). (A) Measured positions for the loaded state

(green) and compensation of the displacement (light blue). (B) Loaded structure measurement (green) and simulation (dark blue). (C) Compensated measurement

(light blue) and simulation (yellow). The data is summarized in Table A1 (top) in the Appendix.

serial actuators to avoid complete release of several tension-only
elements, which would lead to a collapse of the structure. In the
full-scale structure, mechanical stroke limits are installed as well
to meet legal requirements. Figure 8B illustrates the forces of the
actuated elements in the case of active load compensation. In
columns 1, 2, 3, 4, and 8, the desired forces are reached with
high accuracy. For columns 11, 16, and 17, small deviations from
the desired values are visible; however, an acceptable accuracy
is still achieved. The vertical elements 9, 10, and 18 show large
discrepancies from the desired value. Possible reasons for this are
mainly constraints in the motor torques, especially with respect
to the reference state. Such constraints are considered in the
optimization, but due to the unknown zero-offset value, the
reference state may have had larger than anticipated initial loads.

4.2.3. Element Forces

To illustrate the effects of the load and the compensation on the
whole structure, element forces are displayed bymeans of colored
plots. Tension forces are depicted in red and compression forces

FIGURE 7 | Calculated optimal actuator forces for each actuator. Serial

actuators are marked by a gray background.
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A B

FIGURE 8 | Measured element forces of the actuated elements (crosses) and the desired element forces (circles). Serial actuators are marked by a gray background.

Element forces of the structure under load (A) without compensation and (B) with compensation. The data is summarized in Table A2 in the Appendix.

in blue. The darker the color, the higher the element’s force. The
plates are indicated by horizontal lines and are not equipped with
sensors. Diagonal tension-only elements in black are slack. Two
diagonal elements in the fifth module and one in the second
module had faulty strain gauge sensors (see Figure 2C) and are
also marked in black. Diagonal elements show absolute forces,
while columns are shown in reference to the initial upright
state because absolute force could not be determined in the
mounted state. Active elements are marked by a circle, keeping
in mind that the element force of diagonal elements is controlled
solely by the motors. Active columns are only controlled in the
compensated state.

When the load is applied, as shown in Figure 9, columns
on the left side experience high tension forces, while columns
on the right are mostly subject to compression forces. Small
tension forces appear in element 15; however, in comparison
to the reference state, compressive loading has reduced these
forces. Element 26 is the only passive column in the third module
and shows slightly different behavior than the active columns.
Furthermore, this element is shorter by a few millimeters due to
construction. The upper twomodules seem to be stiffer, as already
visible in Figure 6A, and bending of these modules is lower than
expected from the simulation. This is caused by the construction
of the passive columns. In Figure 10, the element forces of the
structure under active load compensation are depicted. In the
columns on the left, tension forces are reduced due to a more
upright position compared to the uncompensated state. On the
right side, compression forces are reduced for the same reason;
however, in element 14, the force is reduced only marginally.
Owing to the limitations of the motor torque, this compression
force remains at a high level. Moreover, the column above,
number 26, is the only passive column in module three. The fifth
module is almost unchanged due to the absence of actuators.
Regarding the columns, the fourth module also shows a similar
force distribution with and without compensation.

When considering the diagonal elements, the prestress of
each individual element has a large impact on the structure’s
behavior. Diagonal 5, which is also actuated, exhibits a higher

force when the compensation is enabled as is calculated through
the optimization. Visually speaking, this diagonal pulls back the
structure to an upright state, which appears intuitively right.
Element 10 should show a similar behavior; however, this element
is at its stroke limit in the uncompensated case, which can
be seen in Figure 8A, since the desired force is not reached
in that case. In general, actuators in diagonal bracings on the
right can only marginally counteract the load-induced nodal
displacements. Nevertheless, in the nonlinear model, a slight
influence is present and actuation forces are obtained from the
optimization (see Figure 8). In the second module, the active
diagonals cannot counteract the displacement through the load
due to their tension-only capability. Further tensioning of these
active elements would enlarge the displacement, therefore, the
optimized actuator forces are zero for elements 18 and 21,
which corresponds to actuator number 12 and 14 (see Figure 7).
Element 22, which contains actuator number 15, exhibits zero
force in the uncompensated load case due to the low prestress in
the reference state. During compensation, the optimal actuator
force is reached, and the element is under tension. The third
module shows similar behavior as the first module because
the actuator configuration is similar. Element 30 is slack in
the uncompensated load case but is under tension in the
compensated state.

In general, evaluation of this multiple input multiple output
(MIMO) system is quite challenging because small changes
in a single actuator influence many elements. Furthermore,
the sheer amount of output data complicates evaluation
and bookkeeping of the system and its measurements.
However, the experiment provides a proof of concept
and showed that using the proposed method of optimal
static load compensation for structures with tension-only
elements and feasible input and state constraints, a significant
reduction of nodal displacements could be achieved in the
experimental testing. Force distribution in active and passive
elements is reasonable and the structural behavior that
is to be expected for the actual high-rise demonstrator is
also well-illustrated.
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FIGURE 9 | Measured element forces for the structure under load and without compensation, as in Figure 5B. Tension is indicated in red and compression in blue.

Actuated elements are marked with a circle. The title indicates the viewing direction.

FIGURE 10 | Measured element forces for the structure under load and with active compensation, as in Figure 5C. Elements without a color are unmeasured or

slack. Tension is indicated in red and compression in blue. Actuated elements are marked with a circle. The title indicates the viewing direction.

4.3. Fault Tolerance and Reconfiguration
It is assumed that faults are detected in the column actuators 3
and 4 and are therefore no longer functional. The optimization

problem as defined by (16), (17) is adapted and rerun with
updated parameters compensating for the missing actuators. The
displacement results are shown in Figure 11. The displacements

Frontiers in Built Environment | www.frontiersin.org 13 September 2020 | Volume 6 | Article 93

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Wagner et al. Optimal Static Load Compensation

FIGURE 11 | Position data for a reduced actuator set due to actuator faults:

the optimal input including all actuators (gray), the reconfigured optimal input

for the reduced actuator set (orange), passive structure under load (green),

and compensated state where all actuators are functional (light blue). The

reduced actuator set does not include column actuator 3 and 4 due to

actuator faults. The data is summarized in Table A1 (bottom) in the Appendix.

of the structure using the optimal actuation signals under
the assumption of faulty actuators are shown against the
compensation assuming fully functioning actuators. On a
development PC (Intel Core i@2.7GHz), computation time of the
optimization is approximately 2 s. The lower value is mainly due
to using the preceding solution as the initial condition, obtained
for the faultless case. After reconfiguration and calculation of
actuator signals for the current actuator set, the performance of
load compensation is comparable to the performance with all
actuators. For a small number of faulty actuators, it is possible
to still achieve a very good load compensation due to the large
overall amount of actuators. With an increasing number of

FIGURE 12 | Optimal actuator forces over the actuator number for all

actuators available (blue) and for the reduced actuator set (orange). Serial

actuators have a gray background.

faulty actuators, it will become difficult to maintain functionality.
However, when faults occur, prompt actuator maintenance will
be implemented such that safety of inhabitants and surrounding
structures and persons is guaranteed. Figure 12 depicts actuator
signals of the adapted configuration in comparison to the optimal
result with all actuators. Actuation signals for actuator 3 and 4
are missing. Actuation force of other actuators rise, especially in
the first module where the faulty actuators are located. Diagonal
tension-only actuator efforts that contribute to pulling the
structure back into an upright position, e.g., actuators 5, 8, 12–15,
19, and 20, are increased to compensate for the missing actuators.
Other actuation forces are reduced such that the structure is not
deformed in an undesired way. Forces from diagonal actuators
6 and 7 are reduced and are directly interacting with the faulty
actuators. Tension from these actuators, adds forces in the
negative x- and z-directions of the element with faulty actuator 3.
This would align the structure more upright; however, it would
also pull down the z-coordinate. To balance this, the optimization
returns no input signal for actuator 7. Reconfiguration under
a small number of faulty actuators is an important capability
because performance losses can be avoided and functionality and
safety can be maintained until maintenance.

5. CONCLUSION AND OUTLOOK

In this work, we have presented amodeling approach for adaptive
structures comprising of tension-only elements with serial and
parallel actuation. Based on this model, an optimization-based
approach for optimal static load compensation was introduced
and demonstrated by means of an experimental setup. A drastic
reduction of the structure’s displacements was achieved such
that safe operation of an adaptive building can be guaranteed,
establishing a comfortable environment for inhabitants. Input
constraints due to actuator saturation and state constraints due
to comfort limits of a structure were both considered in the
optimization formulization and were not violated by the results.
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The measured compensation results were all well within a limit
of htot/100. Results from the simulation and experiment aligned,
however, there were errors as it seems the overall stiffness is
higher than in simulation since the simulated displacements
due to the applied load are clearly higher than the measured
displacements. This holds especially for the upper two modules.
Despite containing only three actuators, the results obtained
from the optimization using the simulation model still provided
a very good compensation. The performance of the algorithm
degrades when faulty actuators are present. However, when these
faults can be detected and the control signals are reconfigured
accordingly, it is possible to restore the original performance,
provided there is a sufficient number of remaining actuators. This
kind of fault tolerance is a necessary property in control of civil
engineering structures.

In this context, eigenstrain analysis can be an applicable tool.
However, one has to investigate the feasibility with respect to
the present nonlinearities. A proper starting point could be
the method presented in Reksowardojo et al. (2020), which
considered eigenstrain analysis geometric nonlinearities due to
large shape changes. Furthermore, measurements regarding the
energy consumption of the static control strategy on the scale
model are planned. For the next step, we will integrate the
load estimation to achieve applicability in a full size adaptive
structure. We plan to apply this strategy to the full size adaptive
structure and provide the respective experimental validation.

Static load compensation and active vibration control need to be
incorporated in a single control scheme, such that the effect of
various loads can be compensated.
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APPENDIX

TABLE A1 | Values according to Figure 6 (top) and Figure 11 (bottom).

Point Ref. Displacements under load Displacements with compensation

Sim. Meas. Diff. to sim. Sim. Meas. Diff. to sim. Diff. to ref.

(mm) (mm) (mm) (%) (mm) (mm) (%) (%)

1 0 0 0 0.0 0 0 0.0 0.0

2 260 260 260 0.0 260 260 0.0 0.0

3 0 14 29 0.7 0 5 0.2 0.2

4 260 274 289 0.7 260 265 0.3 0.3

5 0 42 46 0.2 0 13 0.7 0.7

6 260 302 307 0.2 260 273 0.6 0.7

7 0 80 78 −0.1 −1 6 0.3 0.4

8 260 340 337 −0.1 259 266 0.3 0.4

9 0 125 98 −1.4 0 4 0.2 0.2

10 260 385 356 −1.4 260 264 0.2 0.2

11 0 173 115 −2.9 2 3 0.2 0.1

12 260 433 373 −3.0 262 263 0.2 0.1

Point Ref. Compensation Faulty compensation Reconfigured compensation

Meas. Diff. Faulty Diff. Reconfigured Diff.

(mm) (mm) (%) (mm) (%) (mm) (%)

1 0 0 0.0 0 0.0 0 0.0

2 260 260 0.0 260 0.0 260 0.0

3 0 5 0.2 11 0.6 −1 0.0

4 260 265 0.3 271 0.6 259 0.0

5 0 13 0.7 16 0.8 1 0.1

6 260 273 0.6 276 0.8 261 0.1

7 0 6 0.3 27 1.3 −1 −0.1

8 260 266 0.3 287 1.3 259 −0.1

9 0 4 0.2 34 1.7 −1 −0.1

10 260 264 0.2 294 1.7 259 −0.1

11 0 3 0.2 44 2.2 3 0.1

12 260 263 0.2 304 2.2 263 0.1

Simulated and measured displacements are given in (mm). The differences are given as percentage (%) with respect to the height of the scale model (2m).
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TABLE A2 | Table displaying the data of Figure 8.

Actuator Act. type Actuator forces under load Actuator forces under compensation

Desired Actual Diff. Desired Actual Diff.

(N) (N) (%) (N) (N) (%)

1 Parallel 78.0 79.1 1.3

2 Parallel −114.5 −113.8 −0.6

3 Parallel −190.8 −183.3 −3.9

4 Parallel 139.4 138.7 −0.5

5 Serial 64.4 64.0 −0.7 100.8 117.5 16.6

6 Serial 85.7 137.3 60.2 127.4 123.5 −3.1

7 Serial 31.7 32.6 2.9 48.7 37.4 −23.2

8 Parallel −18.6 −18.1 −2.6

9 Parallel −62.5 −135.0 116.2

10 Parallel −238.1 −157.5 −33.8

11 Parallel 189.3 213.6 12.8

12 Serial 19.6 20.0 1.7 19.9 20.5 3.0

13 Serial 74.1 45.8 −38.2 91.4 44.1 −51.8

14 Serial −8.4 −8.5 0.6 −8.4 −13.3 57.8

15 Serial −8.1 −3.9 −52.3 29.2 30.3 3.9

16 Parallel 9.2 −25.4 −375.2

17 Parallel −172.4 −153.1 −11.2

18 Parallel 84.2 168.9 100.6

19 Serial 16.4 16.6 1.4 16.6 12.7 −23.9

20 Serial 93.0 51.3 −44.8 91.4 72.8 −20.3

21 Serial 35.0 34.1 −2.6 102.7 62.3 −39.3

22 Serial 15.8 15.6 −1.3 52.2 55.6 6.4

23 Serial 53.9 25.6 −52.4 53.9 34.2 −36.6

24 Serial 72.7 63.0 −13.4 99.0 51.3 −48.2

25 Serial 12.5 37.2 196.6 23.2 31.1 34.2

All actuator forces are given in (N). The differences are given as percentage (%) with respect to the desired values.
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