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Accurately modeling the travel time of road-based public transport can help directly

improve current passenger service and operating efficiency. Moreover, it paves the

way for control of future high technology automated vehicles, which will share the

same characteristics of sharing the road infrastructure with other vehicles; carrying

multiple passengers; having a non-negligible dwell process; and run not completely

demand-responsive, but in general following a schedule or a target frequency.

Recent advances in sensor and communications technology, leading eventually to

comprehensive vehicle connectivity, have significantly increased the amount and quality

of travel time data available, making it possible to better model distributions of current

buses’ travel time. We assume that the choice of those distributions with regards to

transport performance will hold also in the near future. This paper explains definitions

of travel time components and explains how they contribute to variability. It focuses

on the description of day-to-day variability, and systematically reviews the current

state-of-the-art for statistically modeling bus travel, running, and dwell time distributions.

It considers statistical distributions developed based on empirical data from the research

literature. Statistical distributions are powerful tools, as they can describe the inherent

variability in data with a limited number of parameters. The review finds that both spatial

and temporal data aggregation have an important influence on the statistics as well

as the choice of the most appropriate probability distribution. This influence is still not

well-understood and remains a question for further studies. Furthermore, the review

finds that mixture distributions provide good fitting performance. However, it is important

to improve the description of components in such distributions to get meaningful and

understandable distributions. The methodologies for fitting distributions, for proving if a

distribution is suited, and for identifying best fitting, robust, and reproducible distribution

should be reconsidered. Such a distribution will enable reporting, controlling operations,

and disseminating information to operators and travelers. Finally, this review proposes

directions for further work.
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INTRODUCTION

The observed travel time of road-based public transport vehicles, as well as its components (i.e.,
dwell time and running time), are subject to variability, caused by the stochastic nature of various
factors, including traffic congestion. Travel time variability causes uncertainty, thus increasing costs
for travelers and operators (Li et al., 2010). For passengers, not knowing the precise arrival time
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of a planned public transport service and the expected travel
time complicates their decisions regarding departure time, route
choice, or even mode choice. Research has shown that reducing
travel time variability is even more valuable to passengers than
reducing travel time (Bates et al., 2001). For public transport
operators, this variability reduces on-time performance and
increases operating costs, for example by requiring the addition
of recovery times to schedules. Many strategic and operational
decisions are also affected by variability and impact the cost
of service.

Understanding variation in travel times for public transport
vehicles is also critical for transport modeling and simulation.
Stochastic simulations, which reproduce the inherent variability
of realistic situations, require detailed information about the
distribution of travel times. Moreover, travel time distributions
are used for arrival time predictions and discrete choice
modeling in route selection (Mazloumi et al., 2010). By applying
meaningful statistical distribution models, public transport
operators can improve the performance of probabilistic delay
forecasting and can better inform passengers about their
planned journey.

The ease in collecting and processing large sets of travel time
data, helped by the implementation of automated vehicle location
(AVL) systems and accessibility to data via open data platforms,
have strongly increased the potential for studying travel times
performance. However, recent findings are strongly influenced by
the type and the aggregation level of the tested data, as well as by
the assumptions used.

This work aims to collect, compare, and contrast previous
research on travel time distributions for public transport systems
in terms of the data and methods used, levels of aggregation, and
the proposed distributions. With an eye on road-based future
transport systems such as autonomous cars, we focus on public
buses only, i.e., buses running on roads, which can be shared
or not with other traffic. The underlying assumptions are that
the dynamic of roads will remain as an invariant for a long
time, through the evolution of technology and automation, and
penetration rate of automated transport systems. We assume
the following dynamics will remain: peak phenomena and
recurrent congestion at peak hours, dwell time characteristics of
vehicles carrying a substantial amount of passengers, and internal
interference from closely spaced successive services, related to
bunching phenomena.

The first step of this paper is to report on an extensive review
of the relevant literature on statistical modeling of bus travel time
variability. This search only considered publications that propose
statistical distributions of bus travel time components based
on empirical findings from case studies. In addition, we make
empirically based considerations with the goal of determining
recommendations for future research. Those considerations aim
to be universal, regardless of the precise vehicle technology used.

The remainder of the paper is structured as follows: section
Definition of bus travel time variability describes the variability of
travel time of bus operations. Section components of travel times
and their variability defines travel time components and explains
how they contribute to variability. Section literature Analysis
presents the results of the literature review on distributions

for characterizing the day-to-day variability. Section Discussion
presents a discussion of results. Section Recommendations for
further research presents conclusions and recommendations for
further research.

DEFINITION OF BUS TRAVEL TIME
VARIABILITY

The variability of travel times can be viewed from three different
perspectives: the day-to-day variability, the variability over the
course of a day, and the vehicle-to-vehicle variability (Noland
and Polak, 2002). These perspectives were initially developed for
automobile traffic, but can be adapted for public transport travel
times (Kieu et al., 2014).

The day-to-day (or inter-day) variability describes the
variability between similar trips within the same time period on
different days. Figure 1A illustrates day-to-day variation, which
shows the travel time of the same bus trip at different working
days in a density curve. Day-to-day variation can be caused
by travel demand fluctuations, driving behavior, incidents, and
weather conditions.

The second type of variability, variability over the course of the
day (also known as inter-period or period-to-period variability),
describes variability between vehicles making similar trips at
different times on the same day. As shown in Figure 1B, bus
travel times are usually longer for a given trip during peak periods
compared with off-peak periods. The variability over the course
of the day can be caused by short-term changes in congestion,
incidents, or weather conditions.

Finally, the third type of variability, vehicle-to-vehicle (or
inter-vehicle) variability, describes the variability between travel
times experienced by different vehicles traveling at similar times
over the same route. For example, Figure 1C compares the travel
times of two subsequent vehicles. Vehicle-to-vehicle variability is
mainly caused by different delay times at traffic signals, conflicts
with pedestrians, or differences in driving behavior. It can also be
used as an indicator for detecting bus bunching.

Most studies considering variability of travel times focus
exclusively on the day-to-day variability. The reason for this is
that commuters travel with a specific service at a specific time
on multiple days. Also for operators, the day-to-day variability
is of key interest, as it shows the performance on multiple days
and represents the starting point for schedule optimizations and
allocating slack times.

The reliability of public transport service is a very important
factor in passenger satisfaction and is closely linked with
travel time variability. While there is no commonly accepted
definition of reliability (Carrion and Levinson, 2012), it is
generally used in the transport literature to describe the stability,
certainty, and predictability of travel conditions (Mattsson
and Jenelius, 2015). Four specific measures for bus reliability
are travel time variability, headway variability, passenger wait
time variability, and punctuality (Sorratini et al., 2008). From
the passengers’ point of view, the regularity is an important
measure of reliability. Especially in the context of high-frequency
services, passengers typically arrive randomly at stops without
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FIGURE 1 | Typical representation explaining (A) day-to-day variability, (B) variability over the course of a day, and (C) vehicle-to-vehicle variability.

consulting the timetable (Cats, 2014). Continuous statistical
distributions are attractive because their statistical parameters
are simple, and can describe elegantly the shape and extent of
the travel time distribution, and reproduce it for prediction and
control purposes.

Travel time variability regarding bus travel can be
assessed using empirical standard deviations (Abkowitz
and Engelstein, 1983; Mazloumi et al., 2010). This feature cannot
comprehensively represent the stochastic features of travel
times, since some features (e.g., skewness and multimodality),
are missing (see the example for cars in Van Lint et al.,
2008). Therefore, Kieu et al. (2014) proposed two public
transport-oriented definitions of travel time variability, one for
a corridor-level and the second at a service-level. They suggest
the use of lognormal distributions to calculate the proposed
indicators of variability.

COMPONENTS OF TRAVEL TIMES AND
THEIR VARIABILITY

This section defines the spatial and time components of a public
transport route that are used in this review. The spatial definitions
of a bus route are illustrated in Figure 2. As shown, a bus
travels from an origin terminal to a destination terminal passing
through a set of bus stops along the way. The link between two
consecutive stops is called a section. All sections from an origin

to a destination form a route. A segment consists of several
consecutive sections.

The aforementioned definitions of travel time are seen from
an operator’s perspective. From a passenger’s perspective, the trip
travel time also includes the access time, the waiting time, and the
transferring time. Modeling all passenger trip time components
is, however, beyond the scope of this review, which focuses only
on the operational times. While travel time and its components
are durations, points in time are also interesting from a passenger
and an operational point of view, namely the arrival time and the
departure time at bus stops. These times can be directly calculated
by summing up travel time components if one point in time
is given.

The operating times can be expressed on a section, segment,

or route level. The temporal definitions used in this review are
illustrated in Figure 2. We take on this review only the view from

the operator and neglect the view of passengers, which would

also include access, egress, transfer time, route, and departure
time choice. The travel time consists of the dwell time (the time a

bus spends stopped at a planned stop) and the running time (the
time a bus is not stopped at a stop). The travel time in a segment
corresponds to the sum of the running and dwell times of a bus
in the segment under consideration.

As shown in Figure 2, the dwell time can be subdivided
into four subprocess components: time spent on opening the
doors, boarding, alighting, and other passenger activities such
as fare payment, closing the doors, and synchronization time.
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FIGURE 2 | Spatial definitions of a bus line, and components of travel, dwell, and running times.

Synchronization time is the time early-arriving vehicles spend
waiting at control points to return to their schedule. Running
time can be subdivided into two categories: the free-flow running
time (i.e., the minimum time a bus needs to travel from one bus
stop to the next) and the excess running time caused by traffic
conditions or traffic signals along the route.

Dwell times are highly dependent on the number of
passengers served. Additional factors influencing dwell time are
the number of passengers on board, vehicle characteristics such
as number of doors, passenger behavior, driver behavior, fare
collection methods, and bus lift operations (Dueker et al., 2004).

Running times, on the other hand, depend on the
infrastructure configuration (e.g., dedicated bus lanes or signal
priority) and traffic conditions. Additional factors influencing
running time are driver behavior, weather, and schedule quality
(Abkowitz and Engelstein, 1983; Levison, 1983). All the factors
influencing dwell time and running time are stochastic in nature
and challenging to quantify (e.g., separating driver behavior from

road traffic context).
As dwell times and running times are affected by different

factors, it is meaningful to investigate them separately (see Wong
and Khani, 2018). Mazloumi et al. (2010) explain this in a

practical example: Early running buses wait at timing points

until their predefined scheduled departure time. This leads to
a longer left tail in the travel time distributions compared with
the running time distribution. Hence, separating running and

dwell times helps to understand the reasons for the variation
of these random variables. Investigating travel time distributions
has the advantage that the data does not have to be available at
the running and dwell time level. Furthermore, passengers are
specifically interested in segment-based travel times (the time
they spend in the bus; Xue et al., 2011), whereas the split in dwell
and running times is more of interest for operators.

In this study, we review papers that interpret the variability as
a whole. The individual contribution of the influencing factors
toward the distribution of travel times is not in the scope
of this study. A variety of studies aim to identify and model
these factors, as they are vital for describing and predicting
travel times. Parametric statistical approaches (e.g., hazard-based
approaches) are a comprehensive approach tomodel these factors
(Anastasopoulos et al., 2017).

LITERATURE ANALYSIS

Methodology
This systematic literature review aims to report the state of the
field of modeling statistical distributions to bus travel time and
components of bus travel time observations. In this section, we
report the steps of the systematic literature review.

To identify relevant publications, we performed a snowball
search in the following databases: ScienceDirect, Web of
Science, SCOPUS, and Google Scholar. We used multiple
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databases in order to identify a greater diversity of papers.
A combination of keywords to state the model (keywords:
“public transport” and “bus”), the considered observation
(keywords: “travel time,” “running time,” and “dwell time”), and
the model (keywords: “variability,” “reliability,” “distributions,”
and “statistical modeling”) was used. Furthermore, common
alterations of the keywords were considered, e.g., “transport”
and “transportation.” This search for the chosen keywords was
directed in the databases, if possible, for the title, abstract, and
keywords. We considered snowballing by means of the reference
list of the found papers. Since this topic is relevant for public
transport systems throughout the world, consequently, a specific
geographical constraint was not applied.

Any study included in this review needs to fulfill the following
criteria: it needs to be a journal article or conference proceeding
published in English that proposed statistical distributions
based on empirical findings from case studies. The found
papers were reviewed manually to strictly conform to the
inclusion criteria.

To standardize the literature information, this paper adopts
the matrix method to extract key factors, by which the
publications differ or accord. In the following, we first look
at the studies that investigate the travel time as a whole. In
the subsequent sections, we look at the studies that investigate
only the travel time components, i.e., the dwell time and the
running time. Various statistical distributions are proposed.
For the readers’ convenience, we listed the proposed statistical
distributions in Appendix A.

Travel Time
In an early work, Taylor (1982) manually collected travel time
data from 15 successive daily home to work trips commencing at
8:15 a.m. each day. The research has intensified in the last decade
as data has become easier to collect and analyze. Recent studies
incorporate larger data sets to analyze and model bus operations:
for example, Mazloumi et al. (2010) consider 3,351 bus runs and
Dai et al. (2019) consider 2,932 bus runs.

While most data was originally collected by hand (Taylor,
1982), today data can be collected using AVL and GPS systems,
which provide precise time and position information for vehicles
at stops or in-motion. Still, the massive amount of data is often
reduced to the arrival and the departure time. Another method
for collecting bus position information is transit signal priority
data (Kieu et al., 2014), which provide bus position information
at certain locations.

Similar to car traffic, bus travel times vary over the course of
a day. Typically, running and dwell times and the variations in
these times are higher during peak periods. Given this variation,
most of the studies reviewed for this research only consider one
period or treat periods of the day separately (Xue et al., 2011; Cats
et al., 2014; Kieu et al., 2014; Durán-Hormazabal and Tirachini,
2016; Ma et al., 2016; Yan et al., 2016; Chen and Sun, 2017;
Chepuri et al., 2018; Rahman et al., 2018; Wong and Khani,
2018). Some studies further aggregate travel time observations
into departure time windows (DTW). Another approach is to
only consider specific buses (Taylor, 1982; Kieu et al., 2014). Out
of all the considered studies, only Dai et al. (2019) aggregated all

measured data for the entire day rather than focusing on a specific
time period or DTW.

The distributions of travel times are investigated on different
spatial aggregation levels.Whereas, Kieu et al. (2014) investigated
section travel times, others such as Chen and Sun (2017) focus on
segment travel times; other studies, e.g., Mazloumi et al. (2010),
consider route travel times.

The studies tested numerous different distributions
for estimating travel time variability and made different
recommendations for the best distribution. The normal,
lognormal, or log-logistic were frequently proposed to be the
best distribution for conventional distributions.

Recent automobile traffic research suggests the use of mixture
distributions for fitting travel time distributions (Guo et al.,
2010; Susilawati et al., 2013). This is because Van Lint and Van
Zuylen (2005) identified for private vehicles four phases (free-
flow conditions, congestion onset, congestion, and congestion
dissolve) that yielded distinctively different shapes of travel time
variability. Ma et al. (2016) adapted this approach to bus travel
times. They used Gaussian mixture models with up to three
components, namely free-flow, recurrent, and non-recurrent
traffic state for describing the probability distributions. Similarly,
Chen and Sun (2017) fitted mixture distributions to travel time of
buses to account for different traffic states. Their results showed
that a four-component model worked best at representing the
data during peak hours and a two-component model worked
best during off-peak hours. However, it remained unclear how
the observed components can be allocated to service states
or phases.

Table 1 summarizes the key characteristics of the reviewed
research. The characteristics shown are data collection method,
study area, time of the day when the study was performed,
DTW (departure time window, i.e., temporal aggregation level),
and spatial aggregation (section, segment, and route). Finally,
the proposed distributions and the number of component
distributions are specified.

Running Time
In contrast to automobile traffic, only a limited number of
studies have been conducted to empirically understand which
distributions are suitable for modeling bus running times. The
first studies of automobile travel times proposed symmetrical
continuous distributions, in particular the normal distribution,
to characterize vehicle travel time on a link level. However,
further research pointed out that travel time distributions are
asymmetric and considerably right-skewed (Richardson and
Taylor, 1978). More recent research recommends using the
lognormal distribution due to its good fit and the fact that it is
characterized by only two parameters (Xue et al., 2011). When
buses share the same road space with automobiles and have
similar characteristics (e.g., maximal speed), there is a strong
similarity between automobile travel time and bus running time.
Under these conditions, it is logical that the statistical modeling
of both means of transport can also be similar. Therefore, most
research recommends the use of lognormal distributions are
proposed to statistically model running times of buses (Uno et al.,
2009; Mazloumi et al., 2010; Xue et al., 2011).
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TABLE 1 | Compilation of studies examining travel times.

Source Data collection

method

Study area Time of the day DTW (temporal

aggregation)

Spatial

aggregation

Proposed

distribution

Taylor (1982) Manually Paris, France Morning peak (8:15) 0min (one specific bus) Section Normal

Mazloumi et al.

(2010)

GPS Melbourne,

Australia

6:30–18:30 whole period Route Normal

Morning/afternoon peak whole period, 5min Route Normal

Interpeak/afternoon

off-peak

whole period Route Lognormal

Interpeak/afternoon

off-peak

5min Route Normal

Xue et al. (2011) GPS Nanning, China Morning peak, afternoon

peak

peaks together and

separately

Route log-logistic

Section Normal

Cats et al. (2014) AVL Stockholm,

Sweden

Afternoon peak whole period Section Lognormal

Kieu et al. (2014) Transit Signal

Priority Sensor

Brisbane, Australia All day 0min (specific buses) Section gamma, lognormal

Durán-

Hormazabal and

Tirachini (2016)

travel time survey /

GPS

Santiago, Chile All day whole period passenger in

vehicle time
∧=

Segment

Log-logistic

Ma et al. (2016) AVL Brisbane, Australia Peak and off- peak period, 60min, 30min,

15min

Section,

Route

Gaussian mixture

model (1-3

components)

Yan et al. (2016) AVL Suzhou, China Evening off-peak whole period Route Normal

Morning off-peak,

morning-peak, inter-peak,

evening peak

whole period Route Lognormal

Evening peak whole period Segment Lognormal

Chen and Sun

(2017)

GPS Shenzhen, China Morning peak hour and

off-peak hours

whole period Segment Gaussian mixture

model (1-4

components)

Chepuri et al.

(2018)

GPS Chennai, India Peak whole period Route Normal

Off-peak whole period Route GEV distribution

Dai et al. (2019) GPS Hangzhou, China All day whole period Section Shifted lognormal

Rahman et al.

(2018)

GPS Calgary, Canada Morning Peak whole period Pseudo

horizon (≈
Segment)

Lognormal, normal

Wong and Khani

(2018)

AVL St. Paul,

Minnesota, USA

Peak/off-peak whole period Segment (5-6

bus stops)

(for delay) gamma,

Weibull

However, an early study by Jordan and Turnquist (1979),
which investigated the running time of buses in the morning
peak in Chicago, USA, recommended using a shifted gamma
distribution, where the shift equals the minimum motion
time. Consequently, the gamma distribution essentially
represents the delay, whereas the travel time consisted of a
deterministic part (minimum motion time) and a stochastic
part (excess running time). Table 2 summarizes the key
characteristics of the reviewed publications considering bus
running times.

Dwell Time
Most of the literature models the dwell time as a function of
the number of boarding and alighting passengers as well as the
crowdedness (Dueker et al., 2004; Tirachini, 2013). Some works

include additional factors such as the bus type. Very few studies
directly address modeling statistical distributions of bus dwell
times. Jiang and Yang (2014) performed video analysis of three
bus stops during peak hours in Shanghai, and proposed using
an Erlang distribution to fit the data. Li et al. (2012) studied
the dwell times in Changzhou, and proposed using a lognormal
distribution. The lognormal distribution was also proposed by
Rajbhandari et al. (2003), who studied dwell times in New
Jersey, USA. Koshy and Arasan (2005) proposed using a normal
distribution for dwell time data from a curbside bus stop in
Chennai City, India.

Khoo (2013) investigated the influence of various parameters
on the dwell time distribution. They found that the Pearson 6
distributions yield the best fit to the data for both peak and
off-peak conditions. They furthermore investigated the effects
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TABLE 2 | Compilation of studies examining running times.

Source Data collection

method

Study area Time of the day

(period)

DTW (temporal

aggregation)

Spatial

aggregation

Proposed

distribution

Uno et al. (2009) GPS Hirakata, Japan Whole day Whole day Route, Segments Lognormal

Mazloumi et al. (2010) GPS Melbourne,

Australia

6:30–18:30 Whole period Route Lognormal

Xue et al. (2011) GPS Nanning, China Morning peak

afternoon peak

Peaks together

and separately

Route Lognormal

Jordan and Turnquist

(1979)

Bus in-motion time

data

Chicago, USA Morning peak Whole period Segments Shifted gamma

TABLE 3 | Compilation of studies examining dwell times.

Source Data collection

method

Study area Time of the day DTW (temporal

aggregation)

Spatial

aggregation

Proposed

distribution

Rajbhandari et al.

(2003)

Automatic passenger

counter system

New Jersey, USA – – Bus stop Lognormal

Koshy and Arasan

(2005)

Video recordings Chennai City, India – 1 h Bus stop Normal

Li et al. (2012) Board transit survey Changzhou, China 6:30–18:00 Period Route,

Segments

Lognormal

Khoo (2013) Video recording +
manually

Klang Valley, Malaysia Peak/off-peak Period Bus stop Pearson 6, Weibull

Rashidi and Ranjitkar

(2013)

AVL Auckland, New Zealand Morning off-peak,

morning peak,

inter peak

Period Bus stop Wakeby

Wong and Khani

(2018)

AVL St. Paul, Minnesota,

USA

Peak/off-peak period Segment (5–6

bus stops)

–

Jiang and Yang

(2014)

Video analysis Shanghai, China Morning peak,

evening peak

period 3 bus stops Erlang

of platform crowding level and suggested Weibull distribution
for less crowded situations and the Pearson 6 distribution for
crowded situations. Rashidi and Ranjitkar (2013) investigated
bus dwell time data collected by an AVL system in Auckland,
New Zealand and concluded that the data is well-represented
by the Wakeby distribution. In addition, they found that
lognormal distribution performed satisfactorily while using a
normal distribution was not suitable for estimating dwell time.
Finally, Wong and Khani (2018) fitted different distributions
to dwell times. However, they could not identify which yields
the best fit using Cullen-Frey graphs. Table 3 summarizes the
key characteristics of the reviewed publications considering bus
dwell times.

DISCUSSION

Descriptive Analytics: Spatiotemporal
Aggregation
Bus operations show remarkable variations over the course of a
day, with typically larger running times and dwell times, as well as
their variations, during peak conditions. Figure 3 shows a typical
graph of the mean and the variation of the route travel time of
buses over the course of a day. Hence, the distribution of travel
time components depends on the temporal aggregation.

FIGURE 3 | Typical changes of the mean (red) and the variation (gray) of route

bus travel times over the course of the day.

Mazloumi et al. (2010) investigated the effects of the temporal
aggregation of bus travel time data by aggregating the data
into departure time windows (DTWs). This allowed them to
examine the travel time distributions for DTWs at different
times of the day. Their study showed that for narrow DTWs,
travel time distributions are best characterized by normal
distributions, while for wide DTWs, peak-hour travel times are
well-represented by normal distributions, and off-peak travel
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times seem to follow lognormal distributions. Ma et al. (2016)
also concluded that increasing the temporal aggregation of travel
times tends to make distributions more asymmetric and to
decrease the normality of distributions. In fact, as the temporal
aggregation attribute is increased, some of the variability within
the course of a day is incorporated into the day-to-day variability.

The spatial aggregation also significantly influences the
distribution of travel time components. For example, Ma et al.
(2016) investigated section level and route level distributions.
They found that section level travel times are often multi-modal,
whereas route travel times seem to be rather unimodal. In other
words, the multi-modality of the distribution on a section level
seems to be eliminated when the data is aggregated on a route
level. This can be explained by the ability of the driver to speed up
in successive sections to catch up with the timetable, especially if
buses have the exclusive right of way, where drivers can precisely
control speed.

Rahman et al. (2018) used a slightly different approach
to show the influence of spatial aggregation. They worked
with GPS-data and defined the term pseudo horizon as the
distance from a GPS point to an upstream GPS point on the
same route. Then, they analyzed the changes in bus travel
time characteristics as the pseudo horizon varies. They found
that at a range of 8 km (a boundary probably depending
on the topology of the network and operations), there is
a significant change in bus travel time characteristics. The
travel time distributions of buses converge from a rightly
skewed distribution to a more symmetrical distribution from
shorter to longer pseudo horizons. They recommend lognormal
distributions for pseudo-horizons of under 8 km and normal
distributions for longer pseudo-horizons. Xue et al. (2011)
contradict this finding by stating that the kurtosis and skewness
of the distribution become larger for longer segments, but do
not provide an explanation for this behavior. However, generally,
with the exception of Xue et al. (2011), studies agree that
smaller spatial aggregation leads to higher skewness values and
more variability.

The combination of section travel times into route travel time
needs to incorporate correlation effects into successive sections.
Spatial regression models have been used for this purpose for
automobile traffic, e.g., Hackney et al. (2007). Additionally, it is
also interesting to study how the knowledge of a distribution
is affected given some additional information over time (the
approach in Corman and Kecman, 2018).

Figure 4 illustrates the spatial and temporal aggregation
levels of the studies reviewed in this research, which target
different spatial and time aggregations, and are therefore hard
to compare directly. Studies that systematically investigate either
the influence of the temporal or the spatial aggregation are
shown with dotted borders. Since none of the studies investigated
spatial and temporal aggregation at the same time, it is unknown
which type of aggregation has greater effects on the travel
time variability and choice of distribution model. Figure 4

furthermore points to a research gap in studying subsequent
buses, i.e., descriptive analytics for studying bus bunching.

When considering route travel times at peak period,
Mazloumi et al. (2010) and Chepuri et al. (2018) propose normal

distributions, while Ma et al. (2016) and Chen and Sun (2017)
propose Gaussian mixture models, and Yan et al. (2016) propose
lognormal distributions (see Figure 4A). For short segments,
skewed distributions such as log-logistic (Durán-Hormazabal
and Tirachini, 2016) or lognormal (Kieu et al., 2014; Rahman
et al., 2018) perform better than normal distributions.

Figure 4B presents studies of running times. Only Uno
et al. (2009) conducted analysis on different levels of spatial
aggregation, demonstrating that the lognormal distribution
always provides the best fit. Figure 4C presents studies of dwell
times. In this case, however, no systematic study on the influence
of temporal or spatial aggregation has been conducted.

The main reasons for investigating the different aggregation
level come from the differing interests of passengers and
operators. Passengers are interested in the time they will
spend on a bus, hence, they are interested in segment travel
times (Xue et al., 2011). Operators, on the other side, are
interested in all spatial aggregation levels. Also, concerning the
temporal aggregation of travel times, the interest of operators
and passengers differs. Passengers are mostly interested in short
departure time windows to understand the travel times at a
specific hour of the day (e.g., Yan et al., 2016) or even of a specific
bus (e.g., Taylor, 1982). Operators might be interested, depending
on their analyses, in period-level or single bus aggregation (e.g.,
Ma et al., 2016). Temporal aggregation on the level of whole
days can be used as a benchmark for networkwide analyses (e.g.,
Durán-Hormazabal and Tirachini, 2016) and for reporting to
funding agencies.

Descriptive Analytics: Type and Modality of
Distributions
Unfortunately, it is not common for the authors to give clear
reasons why they test and choose a certain statistical distribution.
However, they often clearly state that the distributions
can never perfectly model observed distributions, but only
approximate them.

A first consideration in identifying an appropriate distribution
is to decide whether the process being modeled has bounds.
Intuitively, the running time, hence the travel time, has a
minimal bound given by the maximum possible speed of
a bus traveling from one stop to the next. Jordan and
Turnquist (1979) applied this process by shifting their proposed
(gamma) distribution by the free-flow travel time buses take
to traverse the section. Dai et al. (2019) also applied shifted
(lognormal) distributions. Similarly, there is the minimum
bound for the dwell time, given as the process time, i.e., the
time spent on opening and closing the doors. However, none
of the publications investigating distributions of dwell times
incorporated a lower bound greater than zero. This should
suggest using right-skewed distributions rather than symmetrical
(e.g., Gaussian) ones.

One of the most discussed considerations in finding
a distribution is determining whether the distribution
should be modeled as a single component distribution or a
mixture distribution made up by multiple components. Recent
publications suggest using mixture models, which are capable of

Frontiers in Built Environment | www.frontiersin.org 8 June 2020 | Volume 6 | Article 70

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Büchel and Corman Travel Time Variability Modeling Review

FIGURE 4 | Representations of spatial and temporal aggregation of (A) travel time, (B) running time, and (C) dwell time.

linking the shape of the travel time distribution to the underlying
travel time states. For example, Ma et al. (2016) modeled travel
times with Gaussian mixture models, where the maximum
number of components is set to be three. Unfortunately, it is not
clear in this study how many components were actually used.
In any case, such a model will always have an equal or even
a better fit than a normal distribution. Chen and Sun (2017)
further elaborated on the number of components used, related
to the observed service states. However, their results showed
that using threeå to four components for peak conditions and
one to two components for off-peak conditions yield the best
fit to the data. Finally, choosing mixture distributions does

not answer the question on which particular distributions
should be used.

Predictive Analytics: Distribution Fitting
and Choice of Reproducible Distribution
A variety of different methodologies for identifying the most
suitable statistical distribution to model the travel time and
its components were used in the studies reviewed for this
research. First, the parameters of candidate distributions
have to be estimated. This is mostly done by the maximum
likelihood estimation (MLE). Other parametric methods
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as method of moments or regression methods were
not applied. After estimating these parameters, typical
hypothesis tests such as Anderson-Darling (Ma et al.,
2016), Kolmogorov-Smirnov (Mazloumi et al., 2010),
or chi-squared (Khoo, 2013) are used. These tests have
different limitations.

A major limitation of Kolmogorov-Smirnov and Anderson-
Darling tests is that they are not valid if parameters are
directly estimated from the tested data. This limitation can be
resolved by using a bootstrap procedure as (presented in Stute
et al., 1993, and used in Kieu et al., 2014). Another approach
is to divide the measured data into a training set, used to
estimate the parameters, and a testing set, which is used to test
the fit.

A second major limitation is the interpretation of p-values.
Here, the frequently used threshold of α = 5% is not well-
founded since a conclusion is not automatically “true” on one
side of the threshold nor “false” on the other side (Wasserstein
and Lazar, 2016). Furthermore, since the p-value depends on
the sample size, it is often possible to find a tiny difference
between two results that is statistically significant, but where
there is no meaning in this difference within the empirical
context. This is especially problematic for bus travel time
studies where huge amounts of AVL or GPS data are available.
Therefore, it is important to communicate the effect size (Fritz
et al., 2012). In other words, it is not most important if a
candidate distribution is the “true” distribution, but rather how
good the distribution is in giving information about the travel
time components.

To evaluate which distribution yields the best fit to a given
data, different fitted distributions can be cross-compared. This
can be done by choosing the distribution that shows the highest
likelihood. The problem with this approach is that distributions
with more parameters generally yield a better fit in comparison to
distributions with fewer parameters. To overcome this problem,
various studies use the Bayesian Information Criterion (BIC) or
the Akaike Information Criterion (AIC). Both criteria measure
the relative quality of a fit and including the number of
parameters used.

Prescriptive Analytics: Controlled Bus
Operation
An important application of travel time distributions is in
developing predictive applications for improving performance.
This pertains to buses running to a fixed schedule, buses running
on frequency, and to a certain extent also dial-a-ride services; as
far as the vehicles will be relatively large, having multiple stops
along their trajectory, and subject to pending traffic conditions,
we expect the same dynamics will apply (e.g., Alonso-Mora et al.,
2017). For example, variations in bus travel time can lead to
variation in bus headway (e.g., Newell and Potts, 1964). This
instability in headways can cause bus bunching since a lagging
bus must collect more passengers, and therefore tends to fall
further behind. Bus bunching can be analyzed by considering
headway variability (Moreira-Matias et al., 2012), bus-to-bus
travel or dwell time variability (see Figure 1C). Furthermore,

correlations would provide meaningful insight in helping to
identify potential bunching patterns. To detect and reduce bus
bunching, information about subsequent buses are needed. Day-
to-day travel time variability gives no direct information about
bus bunching, as the reported variability might come from
very high-frequency dynamics (with a period of two buses,
i.e., bunching phenomena, which impacts regularity) or lower
frequency dynamics (e.g., periods with high travel times followed
by periods with low travel times, such as peaks).

RECOMMENDATIONS FOR FURTHER
RESEARCH

Understanding Aggregation Issues
The spatial and temporal aggregation of travel time, running
time, and dwell time data have an important influence on
the statistics and the choice of most suitable probability
distribution. However, only a few studies have systematically
investigated the influence of spatial or temporal aggregation,
nor the underlying correlations structures. Conducting such a
study in multiple cities with the same methodology would add
significant value to the current state-of-the-art and quantify
the soft or hard boundaries between states or characteristics as
dependent on city structure, supply, and operations. Moreover,
peak and off-peak are commonly accepted boundaries, which
in reality represent a continuous transition of states. Similarly,
the time and space features by which the spatial correlation
of travel times reduces and Gaussian assumption start to hold
are mostly a continuous phenomenon. Most of those are
probably related to spatial characteristics of city structures and
operations. A rigorous determination of such space and time
transitions would allow for a more meaningful description of
traffic dynamics.

Putting Focus on the Tail of the Distribution
The evaluated studies model the distributions at normal
conditions. There is no special focus put on the tail of
the distributions, representing extraordinary behavior. But as
even extraordinary behavior might reoccur, that could be
modeled. It is imaginable that distributions and dependencies
for extraordinary events could, and possibly should, be modeled
differently as for normal operations.

Meaningful Choice of Distributions
Mixture distributions appear to better fit bus travel time data
compared to conventional unimodal distributions, especially
during peak hours. However, it is important to ensure that the
components (i.e., service states) can be fully explained, which
is currently not the case. From that perspective, distributions
with simply more parameters would always achieve a better fit,
but not necessarily result in physically meaningful parameters.
Additionally, since the literature suggests that peak travel
time components are skewed, skewed distributions such as a
lognormal distribution should be considered in the modeling of
mixture distributions.
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FIGURE 5 | Graphical summary of results from the literature and recommended research Partlabels: (A) Descriptive Analytics, (B) Prescriptive/Predictive Analytics.

Reproducible and Robust Distributions
In transport analysis, there is a growing interest in using available
data for predictive purposes like supply planning, demand
modeling, and timetable planning. Therefore, the proposed
distributions should be reproducible with additional data. A good
approach to determine the best statistical distribution should be
based on a training-testing approach to avoid overfitting the data.

Incorporating Control Strategies
Bus operators use various control strategies to maintain service
reliability (see Ibarra-Rojas et al., 2015). Most operators set
control points along a bus route where bus departure times are
subject to regulation, or have specific buffer time. Buses that
arrive ahead of schedule wait at these control points to return
to the schedule. This reduces the variation of the departure time
at the control points. This strategy has a major effect on the day-
to-day variation of travel time components, as the travel process
at those points includes also a possible waiting time for the
scheduled departure time. Further analysis should investigate the
variation of bus travel times depending on the control strategy,
buffers, and holding points.

CONCLUSIONS

This article reports on the modeling of bus running, dwell, and
travel time. The importance of this topic is crucial not only
for the short term improvement of existing public transport
services, but even more for a future of increased automation
and connectivity in vehicles. We assume in fact that future road-
based transport systems, regardless of them having a driver or
not, will have similar operating conditions to current buses.
This means that they make use of large vehicles capable of
bundling the demand efficiently. They will be partially subject to
prevailing traffic dynamics and congestion related to peak hours
and they will be stop-based, including multiple stops along a
generalized circulation to allow people boarding and alighting.
They will have a range of operations from pure schedule-based,

to frequency-based, to partially demand-responsive, and they
might have a varying degree of reserved infrastructure. To this
end, we review the current practice for statistically modeling
distributions of bus travel time components, pointing to new
approaches and models needed for descriptive, predictive, and
prescriptive analytics purposes in the context of bus operations.

Spatial and temporal aggregation of data have an important
influence on the statistics as well as on the choice of the most
appropriate probability distribution. A graphical summary of
the findings from the previous section is reported in Figure 5,
addressing descriptive analytics (left; how to model what) and
predictive and prescriptive analytics (right: how to ensure
predictive power of future operations; and how to support
decision making). This calls for flexible models, which can be
used and adapted for different locations and times, are able to
give the information on non-stationary probability distributions,
and remain with good performance through expected and
unexpected technological changes.

The parameters of the model should be relevant and should
explain the conditions of the transport network; in addition,
overfitting should be prevented. In general, simple models are
better, as the required parameters are then easier to understand.
Using mixture distributions for modeling distributions of the
travel time and its components is a promising path. However,
it is important that the components remain meaningful. The
determination regarding the best-fitting distribution could be
made using training and testing approaches. These approaches
need to be further developed but are especially promising because
themost important quality for a distribution is its reproducibility.
It is important to seize the opportunity that the era of big data
provides us in terms of transport analysis, since data is the best
resource we get to approximate the truth.
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APPENDIX A

Distribution Parameters to be estimated Probability density function (PDF)

Normal µ, σ 1√
2πσ2

exp(− (x−µ)2

2σ2 )

Lognormal µ, σ 1

xσ
√
2π

exp
(

− (ln x−µ)2

2σ2

)

Shifted Lognormal µ, σ , δ 1

(x−δ)σ
√
2π

exp
(

− (ln(x−δ)−µ)2

2σ2

)

Log-Logistic α,β (β/α)(x/α)β−1

(1+(x/α)β )
2

Gamma α, β
βα

Ŵ(α)
xα−1e−βx

Where Ŵ is the gamma function

Weibull α, β { α
β

(

x
β

)α−1
exp(−( x

β
)α )

Gaussian Mixture µi , σi
∑K

i=1 wiN (µi , σ
2
i )

Where N (µi , σ
2
i ) is the normal pdf

GEV Distribution µ, σ (1+ ξs)(−1/ξ )−1 exp(−(1+ ξs)−1/ξ )

With s = (x − µ)/σ

Shifted Gamma α, β, δ βα

Ŵ(α)
(x − δ)α−1e−β(x−δ)

Where Ŵ(.) is the gamma function

Person 6 α1, α2,β, δ

(

x−δ
β

)α1−1

βB(α1 , α2 )(1+(x−δ)/β)α1 +α2

Where B(.) is the beta distribution

Wakeby α,β, γ , δ, ξ X = ξ + α
β
(1− (1− U)β )− γ

δ
(1− (1− U)−δ )

Where is X is the quantile function of the Wakeby distribution, U is a uniform

random variable [0, 1).

Erlang k, λ λkxk−1e−λx

(k−1)!
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