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Real-time monitoring and assessment of construction resources have always been

a challenge due to the unique, dynamic, and complex nature of each construction

site and operation. The ability to automatically classify activities performed by various

equipment in real time can aid in making timely tactical operational decisions that

can lead to increased fleet productivity, reduced time and cost of operations, and

minimized idle times. Such endeavors have traditionally been performed manually

through human observation, making it extremely labor and time-intensive. Meanwhile,

the development of low-cost micro-electro-mechanical systems (MEMS) with rapidly

evolving computing, networking, and storage capabilities, along with the advances

in computational techniques such as machine learning present new opportunities in

the real-time activity identification domain. Even though previous studies have shown

promising results for equipment activity identification at limited levels of detail, they

have a fundamental limitation in their reliance on the equipment vibration. Equipment

vibration is highly dependent on factors that are extrinsic to the performance of an

activity itself such as ground conditions, age and condition of equipment, and operator

skill. This aspect of current methods necessitates the collection of training data from

the specific equipment of interest and requires manual labeling of training data, thereby

limiting its application across different types of equipment and operating conditions. This

paper investigates the use of activity-specific equipment motions instead of vibration for

activity identification. This approach is the first step toward the larger goal of generating

training data automatically from virtual kinematic models of equipment in the future.

This paper also provides an array of sensitivity analyses in order to determine the most

appropriate parameters for implementing machine learning algorithms for equipment

activity identification. A case study was performed using an excavator working on an

earthmoving site that demonstrated a significant improvement in equipment activity

identification results by utilizing inertial measurement unit (IMU) data of different articulated

elements over previous efforts. The results of this paper indicate that more accurate

results for activity identification can be obtained by using articulated equipment motion

over vibration, which paves the way for the automatic generation of labeled training data

in the future.
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INTRODUCTION

The effective use of equipment fleets is one of the key factors
in the success of construction projects, alongside other aspects
such as the use of labor, material, an project management

(Zou and Kim, 2007). Toward this end, the cyclical process

of monitoring, benchmarking, and optimizing the time spent
by each equipment on various construction activities plays a

vital role in improving construction productivity (Golparvar-

Fard et al., 2013). Academic literature is rife with the benefits that
can accrue through the continuous assessment of equipment’s
activity on the worksite, which include minimized idle times and
improved operational efficiency (Su and Liu, 2007; Zhai et al.,
2009; Gong et al., 2011; Goodrum et al., 2011); reduced time
and cost on projects (Zou and Kim, 2007); and reduction of
emissions and fuel use (Lewis et al., 2011). Systematic analysis
of equipment can also improve equipment health and provide
a safer environment for both equipment operators and workers
(Golparvar-Fard et al., 2013). Accordingly, there have been
numerous research efforts that have sought to utilize a variety of
means to identify activities or states of the equipment on jobsite
and their associated durations.

Automated activity identification of construction equipment
enables real-time applications including, but not limited to,
real-time productivity monitoring (Ahn et al., 2015; Louis
and Dunston, 2016b; Kim H. et al., 2018), real-time safety
analysis (Carbonari et al., 2011; Cheng and Teizer, 2013;
Rashid et al., 2017; Rashid and Behzadan, 2018), real-time
routing of resources (Louis and Dunston, 2016a), and real-
time AR/VR visualization (Ku et al., 2011; Dong and Kamat,
2013; Park et al., 2014; You et al., 2018). Offline applications
enabled by automated activity identification include preparing
dynamic simulation input (Akhavian and Behzadan, 2013;
Vahdatikhaki andHammad, 2014), automated cycle time analysis
(Vahdatikhaki and Hammad, 2014; Mathur et al., 2015; Kim
H. et al., 2018), operation analysis (Vahdatikhaki and Hammad,
2014; Akhavian and Behzadan, 2015), and fuel use analysis
(Lewis et al., 2011) etc. Despite all these benefits enabled by
activity identification and analysis, this has historically been a
manual effort that is typified by a designated human worker
using a stopwatch to perform time-studies of equipment activities
by observing the equipment’s actions for the entire duration
of its operation. Such an approach has several shortcomings
including its prohibitive cost, excessive time requirements, and
susceptibility to human errors and subjectivity (Heydarian et al.,
2012). Thus, there is a real need for a low-cost, reliable, and
automated method for equipment activity identification that can
be implemented across all construction projects.

Toward that goal, past efforts have adopted different
activity identification methods based on technologies such
as computer vision, real-time location systems (RTLS), and
inertial measurement units (IMU). The field of activity
identification for construction equipment emerged with
application of various RTLS in identifying operations performed
by construction equipment (Su and Liu, 2007; Song and
Eldin, 2012; Wang et al., 2012; Teizer et al., 2008). This
approach of using RTLS in activity identification poses

challenges in identifying the stationary activities, such as
loading, swinging arm etc. In order to overcome this issue,
several studies focused on using IMU sensors attached
to the equipment cabin (Ahn et al., 2015; Akhavian and
Behzadan, 2015; Mathur et al., 2015; Kim H. et al., 2018) to
collect data regarding about equipment vibration for activity
classification with a very satisfactory level of performance.
Moreover, the use of a single IMU inside the cabin is a
practical implementation for enabling activity identification
because the sensors are not subject to environmental and
site conditions outside the cabin, and can work for even
older models of construction equipment which do not have
pre-installed sensors.

Despite the successful performance of these previous efforts
and their practicality of implementation, the authors identify a
fundamental limitation in its application, which serves as the
motivation for this paper. Previous efforts that attach sensors
to the equipment cabin rely on analyzing data that is produced
by the general vibration of the equipment in the cabin while
performing activities. While this vibration can be used to
determine the activities being performed as shown by previous
studies, it does not result in identification models that can be
re-used for different machines and even for the same machine
under different site conditions. Doing so to maintain the level
of performance would require collecting and further manually
labeling of a new set of training data under the new conditions.
This is because the vibration of the cabin is influenced by
ground condition (i.e., different ground condition influences the
vibration of the cabin), equipment quality (e.g., engine condition,
suspension quality etc.), and operator skill: all of which are factors
that are extrinsic to the activity being performed itself.

In order to overcome this limitation, this research takes a
new approach to activity identification by focusing on the unique
motion patterns that are generated by the articulated elements
of the equipment, rather than on just the vibration of the cabin
itself. It is posited in this research that different machines of the
same type would still have the same motion patterns for various
activities even when performing under different site conditions,
enabling such an approach to be more generalizable. It is also
anticipated that using the motion patterns of equipment can lead
to the generation of training data for articulated equipment from
kinematic models of the construction equipment (such as those
used in Kamat andMartinez, 2005; Louis et al., n.d.), whichwould
obviate the need for manual data labeling in the future. It is thus
hypothesized in this paper that analyzing the motion of different
articulated parts of the equipment enables the identification of
higher level of details (LoD) activities with high fidelity.

Considering the importance of a low-cost, reliable, and
automated activity identification framework for construction
equipment and the limitations of previous efforts, this paper
focuses on enabling accurate and reliable real-time identification
of a higher number of activities (compared to previous studies)
performed by construction equipment using motion data
(expressed in terms of linear and angular acceleration) captured
from different moving parts of the equipment. Moreover, this
study conducts several sensitivity analysis to find out best
combination of hardware (e.g., sensor placement), and analytical
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parameters (e.g., classifier type, window size etc.) for different
application types (i.e., real-time, near real-time, offline).

The state-of-the-art in construction equipment activity
identification studies are first reviewed to provide the context
for this research, and to identify current challenges and
limitations in this domain. These limitations inform the
formulation of the research goal, objectives, and development
of methodology in this paper. The proposed methodology
is validated using field data collected from an excavator
on an earthmoving site. The results are discussed and
summarized for different types of application of equipment
activity identification. Finally, the anticipated contributions to
knowledge and practice, along with research limitations, and
future directions are presented.

BACKGROUND AND RELATED WORK

Construction site monitoring and operational analysis is an
important contributor to overall project success, but has
traditionally been a labor-intensive manual process. These
manual approaches have been noted to adversely affect the
quality of the analysis (Carbonari et al., 2011), minimize
opportunities for continuous long-term monitoring (Cheng and
Teizer, 2013), and result in subjective reports that together
hinders proactive and informed decision making. Due to the
aforementioned disadvantages, several research efforts have
focused on developing techniques to automatically monitoring
activity on the construction site.

Activity identification has been a major research focus in
several industries such as surveillance and security systems,
healthcare monitoring, home and work automation, human
computer interaction, and context-aware behavior analysis
(Lockhart et al., 2012; Ann and Theng, 2014; Ranasinghe
et al., 2016). As opposed to the aforementioned applications
where most studies target human activity identification (HAR),
researchers in the construction engineering and management
domain (CEM) have applied similar approaches to recognize,
track, and identify activities performed by construction resources
(both human workers and mechanical equipment).

Based on primary type of sensor used, these research
efforts are broadly categorized into vision-based and sensor-
based activity identification. In the latter category, researchers
have explored both RTLS (e.g., GPS, UWB) and/or motion
sensors (e.g., IMUs) for data collection. After the raw data
are obtained, they are processed and analyzed using a variety
of analytical methods (e.g., linear classifiers, support vector
machines, decision trees, random forests, neural networks,
nearest neighbors, etc.) to obtain the desired performance. It can
be observed that previous efforts have explored applications of
equipment activity identification for cycle time measurement,
real-time activity control, and modeling dynamic simulation
input. Also, various analytical methods such as statistical
methods (i.e., Bayesian learning), distance algorithms (i.e., K-
nearest neighbor), decision tree, neural networks (i.e., artificial
neural network), and rule-based algorithms (i.e., Markov
model) have been applied. A more detailed examination of

these activity identification efforts is now provided in the
following sub-sections.

Vision-Based Activity Identification
Many previous efforts have adopted vision based techniques
to identify the activities of construction equipment. Zou and
Kim (2007) used image processing to quantify the idle-times
of hydraulic excavators by identifying only two states of the
excavator: idle and busy. Rezazadeh Azar and McCabe (2012)
proposed an activity identification framework using rational
events to recognize dirt-loading activities of an excavator. Bao
et al. (2016) investigated the use of long-sequence videos to
automatically detect, track, and identify activities of an excavator
and a dump truck. In a similar effort, excavator and dump trucks
were also used to measure the performance of earthmoving
operations utilizing image frame sequences (Kim J. et al., 2018).
The concept of bag-of-video-feature-words model was extended
using unsupervised classifiers into construction domain to learn
and classify labor and equipment activities (Gong et al., 2011).

Vision-based techniques have shown promising results in
tracking construction resources and identifying their operations.
However, these techniques provide very limited information
based on the field of view of the cameras used. It is a challenging
to maintain a direct line of sight to targeted resources due to
high level of noise (e.g., entity overlap, moving backgrounds,
varying light conditions etc.) on dynamic construction sites.
These challenges can be overcome by adopting motion sensors
which are not thus constrained.

RTLS and/or IMU-Based Activity
Identification
As opposed to vision-based methods, sensor-based approaches
for activity identification leverage the location of the equipment
and/or the motions of different parts of the equipment to
identify its activity. Vahdatikhaki and Hammad (2014) proposed
a multi-step data processing framework combining location
and motion data to improve the accuracy of the localization
to enhance the performance of equipment state-identification.
Song and Eldin (2012) developed an adaptive real-time tracking
of equipment operation based on their location to improve
the accuracy of project look-ahead scheduling. Su and Liu
(2007) presented a framework which used dynamic geometric
data of resources and extracted construction operational data
from them. In another effort, Wang et al. (2012) proposed an
automated methodology for tracking earthmoving operations
in near real-time by attaching low-cost RFID tags to hauling
units (trucks) and attaching fixed RFID readers to designated
gates of projects’ dump areas. Remote tracking technology was
also used to develop 3D animation of the equipment, and
extracting equipment operations from the animation (Akhavian
and Behzadan, 2012). Teizer et al. (2008) explored the feasibility
of ultra-wide band (UWB) technology for real-time tracking and
monitoring of resources.

Although location-based operation tracking can identify the
state and operation of construction equipment at a coarse
level (e.g., idle and busy states), it is incapable of classifying
the activities performed by equipment when it is stationary.
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Such limitations of location-based operation tracking inspired
researchers to explore the feasibility of both independent
(Ahn et al., 2015) and smartphone embedded (Akhavian and
Behzadan, 2015; Mathur et al., 2015) IMUs for automated
equipment activity identification. Ahn et al. (2015) used a low-
cost accelerometer mounted inside the cabin of an excavator
to collect operational data of an earthmoving worksite. Several
classifiers were tested to classify three different states (i.e.,
engine-off, idle, and busy) of an excavator. Mathur et al. (2015)
utilized smartphone-embedded accelerometer by mounting it
inside an excavator cabin to measure various activity modes
(e.g., wheel base motion, cabin rotation, and arm movement)
as well as duty cycles. Akhavian and Behzadan (2015) adopted
a similar approach by attaching a smartphone to the cabin of
a front-end loader to collect accelerometer and gyroscope data
during an earthmoving operation, upon which several machine
learning algorithms (i.e., ANN, DT, KNN, LR, SVM) were tested.
Their study also investigated the impact of different technical
parameters such as level of details, and selection of features on
the performance of different classification algorithms. The same
approach and technical parameters were further extended for
construction workers (Akhavian et al., 2015).

Research Gaps and Point of Departure
Sensor-based activity identification frameworks have shown
promising results to overcome some of the limitations of
vision-based approaches. However, some challenges still remains
unsolved, as described below.

RTLS-based operation tracking is incapable in identifying
stationary activities of the equipment (e.g., loading, swinging
for an excavator). In case of IMU-based approaches, the level
of details (LoD) of activities has been limited due to prior
efforts only attaching sensors to the cabin of the equipment
and not leveraging the unique motions of individual moving
articulated parts of the equipment (Ahn et al., 2015; Akhavian
and Behzadan, 2015; Mathur et al., 2015). For example, Ahn et al.
(2015) implemented classification algorithms for two classes (i.e.,
idle and busy) of an excavator. Extending this work, Mathur
et al. (2015) classified excavators operation into 4 different
classes (LoD4) to estimate duty cycle of the excavator. Akhavian
and Behzadan (2015) investigated performances of different
classification algorithms for up to 5 different activities for a front-
end loader based on vibrations of the cabin. In these studies the
vibration of the cabin can be used to determine the activities
being performed, but it does not result in models that can be
re-used efficiently for different piece of equipment and even for
the same equipment under different site conditions. Doing so
would require collecting and further manually labeling of a new
set of training data under the new conditions. This is because
the vibration of the cabin is influenced by ground condition (i.e.,
different ground condition influences the vibration of the cabin),
equipment quality (e.g., engine condition, suspension quality
etc.), and operator skill: all of which are factors that are extrinsic
to the activity being performed itself.

Based on the above gaps in knowledge, the goal of this
research is to develop a real-time, low-cost, and reliable activity
identification framework for construction equipment utilizing

individual motions of their articulated structural parts. This
paper achieves that goal undertaking the following objectives that
address the aforementioned gaps in literature:

(1) Assess the performance of activity identification using
motion data (i.e., linear and angular acceleration) from
articulated structural parts of the equipment.

(2) Determine suitability of using motion data for activity
identification by comparing results to other studies
in literature.

(3) Generalize the selection of parameters for activity
identification models based on target application by
performing sensitivity analyses.

The next section describes the methodology developed to
accomplish these research objectives.

METHODOLOGY

In this study, motion (i.e., linear and angular acceleration)
of different articulated structural parts of the equipment are
leveraged to identify their operational activities. The overall
methodology of this study is illustrated in Figure 1.

As shown in Figure 1, there are three primary phases
in the developed framework including data acquisition, data
processing, and classificationmodel. The data acquisition process
consists of capturing two different types of sensor data; IMU
data for analysis, and video data for labeling and validation.
In the data processing phase, noises, and inconsistencies of
the data were eliminated. The video was used as a reference
for labeling the time-stamped sensor data for validating the
developed methodology. The IMU data were further processed
and used to train and evaluate the classification model. Following
sub-sections discusses each of the methodological steps in details.

Data Acquisition
This study uses multiple low-cost IMUs mounted with 3-
axis accelerometer and 3-axis gyroscope to collect linear
and angular acceleration data. The primary reason for using
multiple IMUs is to explore the feasibility of utilizing motion
of articulated equipment to identify its activities. Moreover,
equipment manufacturers and third party companies already
use IMUs in their equipment to locate the cutting edge for
automated machine guidance (AMG) and automated machine
control (AMC) purposes. The use of multiple IMUs in articulated
implements in this paper mimics the placement of those sensors
so that the developed framework can be extended toward activity
identification in practice. Additionally, the operation of the
equipment is captured on video for data labeling and to validate
the results.

The IMUs used in this research are equipped with a microSD
card for logging data and requires 3.7 volt 1000 mAmp battery
as shown in Figure 2A. The IMUs were placed in a robust
plastic box stuffed with Styrofoammaterial to prevent movement
and to withstand vibration and any impact from the debris. A
powerful magnet at the bottom of the each box made sure the
reliable placement of the IMUs on the metallic surface of the
equipment. Figure 2B shows the IMU placed inside the magnetic
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FIGURE 1 | Framework for equipment activity identification.

FIGURE 2 | Setup of the IMU and the protective box, IMU with battery and micro SD card (A), IMU system placed on magnetic box (B), protective box with number

and axes tag (C).

box and Figure 2C shows the complete box ready to be attached
to the excavator. Six sensor readings (accelerometer x, y, z, and
gyroscope x, y, z) were collected from each of the IMU.

Data Processing
After collecting the raw data from sensors, several data processing
techniques were applied to prepare the raw data to be used
in the machine learning algorithms. Four main steps in the
data processing are, data preprocessing (to remove noise
and inconsistency from raw data), data segmentation, feature
extraction, and feature selection. Each of these steps are discussed
in the following sub-sections.

Data Preparation
After collecting the raw data from the sensors, it was
prepared to ensure its usability for further analysis. Unlike
smartphone-embedded IMUs, MEMS sensors generally do not
contain any embedded noise reduction algorithm. Therefore,
the raw data collected from the IMUs needed to be filtered
first to remove any noise and inconsistency using the

following methods. The choice for not using smartphone-
embedded sensors in this research was due to the fact that
the sensors would be mounted externally on the various
implements of the equipment rather than being housed inside
the cabin.

Noise filtering
Data collected from the IMUs can have noises due to various
reasons, such as fabrication misalignment, static bias, and
random noises (Nirmal et al., 2016). A noise reduction filter
named Median filter was applied to reduce the noise of the
IMUs. Figure 3 shows the raw accelerometer X data of IMU#1
with dashed blue lines and smoothed filtered data (obtained after
filtering) with solid orange lines.

For purposes of illustrating the need for data processing, the
last section in this figure represents the data corresponding to
the Engine Off state. For Engine Off state, the accelerometer
data is expected to be a flat line, as there is no vibration on the
equipment while the engine is off. Nevertheless, we see spikes in
the data, which is essentially due to noise in the IMU. Median
filtering is often applied to smooth this type of noise (Gather and
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FIGURE 3 | Raw and filtered IMU data.

Fried, 2002). The solid line in Figure 3 shows filtered data and
the reduced noise for Engine Off data are now as expected.

Interpolating missing data
The next phase of data processing eliminates any inconsistencies
associated with the IMU’s frequency of collecting data. The
IMU used in this study is capable of recording 80 data points
per second which implies a sampling frequency of 80Hz.
However, the IMU can fail to maintain an uniform data
logging frequency throughout the whole time due to unexpected
hardware failures, communication conflicts between micro-
electro-mechanical (MEM) components, and environmental
impact (Xu et al., 2017). Thus, the collected data were processed
into continuous uniform time series by removing redundant data
and linearly interpolating the missing values.

Data Segmentation
Collecting raw data at 80Hz results in a significantly large dataset
that is computationally inefficient to handle. Moreover, while a
single data point represents the position of a moving object at
a single point of time, equipment activities consist of sequential
motions distributed over a period of time (e.g., the load activity
does not happen instantaneously but as over a period of time).
For these reasons, data streams consisting of individual data
points need to be segmented into data windows for processing.
In this context, a window refers to a set of consecutive time series
data points. Several state-of-the-art data techniques have been
implemented in activity identification domain and are briefly
explained here.

In this study, sliding window (SW), and activity defined (AD)
window segmentation techniques were implemented. For SW,
fixed sized windows with 50% overlapping are considered since
overlapping is useful when there are transition between activities
(Su et al., 2014). Several window sizes (1–5 s) were selected to
investigate the effect of window sizes on classifier’s performance.

For ADwindowing techniques, a manual approach is adopted.
Since the data are labeled using the video sequences as reference,
the initial and end times of each activity can be readily obtained
after visual observation. Due to the manual requirement of data
labeling, AD windowing is not suitable for real-time applications.
However, since it still applies toward non real-time applications,

this study investigates the effect of AD windowing in the
performance of different machine learning classifiers.

It should be mentioned here that implementation of AD
windowing was possible in this study as both training and testing
data were previously labeled. In practice, the start and end point
of each activity has to be first identified in order to use AD
windowing technique. Several methods have been proposed to
automatically identify activity-transition points for both labeling
and classification purpose (Sekine et al., 2000; Yoshizawa et al.,
2013). However, no such method was applied in this study due
to the availability of already labeled dataset. Moreover, as AD
windowing only works when the end point of a certain activity is
reached, it is limited to only near real-time or offline applications,
rather than online applications.

Feature Extraction
After segmenting the time series data into windows, a set of
time-domain statistical features, also called feature vectors, were
extracted. This step is necessary as these feature vectors represent
the pattern of the signal in the corresponding window. Time-
domain features selected for this study are based on the findings
and recommendations of past research in HAR (Shoaib et al.,
2015). Twelve specific statistical features were extracted from
each window: mean, maximum, minimum, standard deviation,
mean absolute deviation, interquartile range, skewness, kurtosis,
and fourth order autoregressive coefficients. As there are 6
readings (accelerometer x, y, z, and gyroscope x, y, z) per sensor,
total 72 features (6 sensor readings × 12 statistical features per
each reading) were extracted from each sensor.

Feature Selection
The next step of data preparation is to extract useful features
that yield distinctive patterns in the data set. It must be noted
that some features may not be useful as they do not contain
value-adding information and thus can be discarded for further
analysis. The main objective of this step is to select the most
relevant and useful features that can be used to find any
predefined patterns in the signal (Nath et al., 2018). A commonly
used feature selection algorithm named Relief algorithm was
applied to the dataset to identify the most distinguishable
features. Relief is a feature selection algorithm that assigns
weights to the features and ranks them according to how well
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FIGURE 4 | Typical excavator operation for earthmoving (starting from the left, digging, swinging loaded, dumping, and swinging empty).

their values distinguish between neighboring instances of same
and different classes (Yu and Liu, 2003). All the features were
ranked according to their relevance after applying this algorithm.
This study explores the performance of classifiers based on
different number of feature subsets.

To summarize the data processing step, collected data from
the IMUs were first filtered and interpolated to account for
any mechanical noise and inconsistency in the raw data. Then,
data were segmented using two segmentation techniques and
statistical features were extracted to represent the signal pattern
in the corresponding windows. Finally, useful features that
yielded distinctive patterns in the dataset were identified using
Relief algorithm. At this stage, the data are ready to use for
training the classification model. The following section discusses
the model training and evaluation steps of the methodology.

Classification Model Training and
Evaluation
Although activity identification frameworks are developed
using both supervised and unsupervised techniques, supervised
learning algorithms provide better performance for equipment
activity identification (Golparvar-Fard et al., 2013). The choice of
the supervised learning algorithm depends on the characteristics
and the volume of data. As a result, there is no single best
classifier and each algorithm should be separately evaluated.
Therefore, a number of classifier algorithms were trained and
tested in this study to compare their performance in classifying
activities using IMU data. Based on the most commonly
used supervised classifiers in construction resource activity
identification (both human and equipment) in previous studies,
four supervised machine learning methods were selected for
analysis: (1) Decision Tree (DT), (2) K-Nearest Neighbor (KNN),
(3) Artificial Neural Network (ANN), and (4) Support Vector
Machine (SVM). The reason for using multiple classifiers is
to reduce the uncertainty of results related to classification
algorithms, each of which was evaluated using the overall
accuracy of the model. Next, a case study was undertaken
to validate aforementioned methodology explained in the
following section.

CASE STUDY

A Komatsu PC 300 LC excavator with a 2.6 cubic yard bucket
capacity and 38.5 ft. maximum ground reach was selected for
this study. The primary reason behind selecting an excavator
is that it is one of the most dynamic equipment with a high

FIGURE 5 | Location of IMUs on excavator.

degree of freedom (compared to a other equipment like loaders
and dozers) resulting in a higher level of details of possible
distinguishable activities (such as scoop, swing, ground leveling,
etc.). A construction site in the city of Corvallis, Oregon was
selected as the primary data collection site. The excavator was
used to load trucks with cut material from the construction
site that needed to be hauled to an offsite dumping location.
Figure 4 shows the earthmoving operation wherein the excavator
performs a cycle of digging, swinging loaded, dumping, and
swinging empty. Apart from these four activities, the excavator
also moved from one point to the next on the construction site.

As shown in Figure 5, IMU#1 was attached to the bucket,
IMU#2 and IMU#3 were attached to the stick and boom,
respectively. The whole earthmoving operation is recorded with
three IMUs attached to the equipment. After the operation was
finished for that day and the engine was turned off, IMUs
were still attached to the equipment for collecting the data
corresponding Engine Off state of the equipment. All IMUs
logged the accelerometer and gyroscope data in the microSD
cards. The excavator’s working was videotaped for the duration
of data collection using a camera from a static position. More
than 1 h of continuous data were recorded using the IMUs.
Considering an average 80Hz data capture frequency of the IMU,
the total number of data points recorded were 288,000 (3,600 s×
80 data points per second). After collecting the data from IMUs,
the raw data was preprocessed for further analysis.
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FIGURE 6 | LoD in activity breakdown of an excavator.

Dividing the operation of the equipment into a set of the
smallest distinguishable activities (i.e., classes) is an important
aspect activity classification. The resolution of the classes
(number of separate activities), herein referred to as level
of details (LoD) and this factor depends upon the type of
equipment, its operation, and the desired application of the
analysis (Akhavian et al., 2015). In this study, 5 different LoDs
(LoD2, LoD4, LoD5, LoD7, and LoD9) are used to explore
the performance of the classifiers for different resolutions.
Figure 6 depicts the hierarchy of activities that was performed by
the excavator.

In the coarsest breakdown (LoD2), 2 classes are defined:
Engine Off and Engine On. In the next level, Engine On activity is
further divided into 2 more activities: Idle and Busy. This process
is continued and the finest breakdown (LoD9) contains 9 classes:
Engine Off, Idle, Moving Forward, Moving Backward, Scooping,
Dumping, Leveling, Swinging Full, and Swinging Empty. It must
be noted that, Figure 6 is only the example case and the number
of classes may vary based on the type of equipment and its
application. Table 1 shows the number of instances each activity
happened, their average duration, and total duration during the
time period for which data was collected on the site.

Although higher number of LoD is usually desired, dividing
the activities into higher resolutions poses a challenge. For higher
LoDs, the signal patterns of different classes becomemore similar
to each other as the number of classes increase. Moreover,
in couple of instances the excavator performed some activities
which do not fall into any LoD defined in this study, such as
breaking a big chunk of soil, shaking the bucket to get rid of
residual soil etc. These activities are labeled as undefined, and as
happened only a handful of times, are excluded from the analysis.
Future work will develop methods to handle these instances of
on-off activities.

TABLE 1 | Number of instances of each activity with duration for LoD9.

Activity name Number of

instances

Average

duration (s)

Total

duration (s)

Engine off 1 – 434

Idle 34 29.32 996

Scooping 78 6.32 493

Dumping 81 7.63 618

Swing loaded 80 4.92 394

Swing empty 87 4.08 335

Moving forward 5 7.45 37

Moving backward 7 5.95 42

Leveling ground 17 38.78 659

RESULT AND DISCUSSION

This research conducted several sensitivity analysis in order
to find a set of recommendations for selecting appropriate
machine learning algorithms, related parameters (such as type of
segmentation, window size, classifiers etc.) and hardware related
parameters (such as sensor placement and combination) for
construction equipment activity identification. Figure 7 depicts
the overall process of the sensitivity analyses performed in
this study.

As shown in Figure 7, a comparative analysis was first
conducted to determine the best algorithms for a predefined set of
parameters. Next, several sensitivity analyses were performed by
using different segmentation techniques (i.e., sliding window and
activity defined window) and varying the window sizes. Then, a
feature selection technique was applied to determine the effect of
number of features on the performance of different algorithms.
The placement of IMUs was also investigated to explore the
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FIGURE 7 | Overall process to develop recommendations for state identification.

relative importance of different parts of the equipment in terms
of representing the overall operational activity performed by
the equipment.

Preliminary Evaluation: Comparison
Among DT, SVM, KNN, and ANN
The four most commonly used supervised classification
algorithms for activity identification in the construction domain
were used in this study. They are decision tree (DT), K-nearest
neighbor (KNN), artificial neural network (ANN), and support
vector machine (SVM). Different parameters of each algorithms
were selected to examine the parameters for corresponding
algorithms that result in the best performance. Based on
previous research, sliding window technique was used initially,
with 2 s window size and 50% window overlapping. Table 2
summarizes all four algorithms with 3 different parameters and
their associated accuracy for LoD9.

As shown in Tables 2, 3 different number of splits (100, 20,
and 1), and number of neighbors (100, 10, and 1) were selected
for DT and KNN, respectively. For ANN, scaled conjugate
gradient, Levenberg-Marquardt, and Baysian regularization were
used as training function. Linear, quadratic, and cubic kernel
function were tested for SVM. From Table 2, we can see that
KNN with 1 neighbor performs best and DT with 4 maximum
number of split performs worst for the primary evaluation.
Maximum accuracy for KNN, ANN, and SVM are more than
80% while DT performed at 74.1%. So, KNN with 1 neighbor,
ANN with scaled conjugate gradient training function, and SVM
with cubic kernel function were selected for further sensitivity
analysis. These sensitivity analyses include evaluation of the
classifiers using different segmentation techniques, window sizes,
feature subsets, and sensor placements.

Effect of Window Size
In this section, a sensitivity analysis was performed to observe
the effect of different window sizes using sliding window (SW)
segmentation technique. Five different window sizes (1–5 s) were
tested. Their results are shown in Figure 8. Table 3 summarizes
the maximum accuracies of each classifier for all LoDs and their
associated window sizes.

TABLE 2 | Accuracy of different ML algorithms with different parameters.

Algorithm Parameters Accuracy (%)

DT Maximum number of splits 100 74.1

20 70.2

4 59.1

KNN Number of neighbors 1 83.6

10 73.4

100 69.7

ANN Training function Scaled Conjugate Gradient 80.6

Levenberg-Marquardt 79.8

Baysian Regularization 80.1

SVM Kernel function Linear 77.1

Quadratic 81.3

Cubic 82.1

It can be seen from Figure 8 and Table 3 that the accuracy of
all three classifiers are highest for LoD2 and lowest for LoD9 for
all 5 window sizes. Moreover, Figure 8 shows that for all LoD,
SVM and KNN performs best when window size is 1 s. If window
size is increased, accuracy of SVM and KNN decreases. For
example, for LoD9, KNN results in 85.4% accuracy for 1 s window
size, and 74.2% for 5 s window size. However, ANN performs
differently than SVM and KNN. We can observe that ANN
accuracy generally increases with window size. For example, for
LoD9, ANN accuracy is 75.3% with a 1 s window size, 80.1%
for window size of 5 s. From this phase of data analysis, it
is concluded that KNN and SVM performs best with a 1 s
sliding window size, while the performance of ANN varies with
different window sizes. Another segmentation technique [activity
defined (AD) segmentation] is adopted in the next phase and
a comparative analysis (SW vs. AD segmentation) is performed
between two segmentation techniques.

Sliding Window (SW) vs. Activity Defined
(AD) Window Segmentation
This section discusses the performance of ANN, KNN, and SVM
after introducing activity defined (AD) segmentation techniques.
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FIGURE 8 | Accuracy of classifiers with different window sizes.

TABLE 3 | Maximum accuracy of each classifiers with associated window size.

Maximum accuracy in % (Associated window size in s)

LoD2 LoD3 LoD4 LoD7 LoD9

ANN 100% (all) 97.3% (4 s) 96.1% (5 s) 84.8% (4 s) 80.1% (5 s)

SVM 100% (all) 97.4% (1 s) 96.2% (1 s) 87.9% (1 s) 84.6% (1 s)

KNN 100% (all) 97.5% (1 s) 96.3% (1 s) 85.3% (1 s) 85.4% (1 s)

This study explores the potential of AD segmentation to train
the classifiers. The maximum accuracies found from the previous
phase using SW segmentation are used to compare themwith AD
segmentation and shown in Table 4.

Table 4 shows that ANN performs better with AD than SW
for all LoDs. For example, for LoD9, maximum accuracy of
ANN is 80.1% using SW, and increased to 92.1% using AD
segmentation. On the other hand, the performance of KNN and
SVM decreases when AD segmentation is implemented. KNN
performs at 85.3% accuracy for SW which drops down to 75.2%
while AD is used. Similarly, the accuracy of SVM decreases from
80.87 to 73.49% using AD segmentation. For overall maximum
accuracy of all three classifiers, we see that ANN with AD
segmentation performs best for all LoDs. For example, maximum
accuracy for LoD9 using AD is 92.1% for ANN, while KNN
and SVM performs at maximum 85.34%, and 80.87% accuracy,
respectively, using SW.

Thus, it can be summarized from this section that ANN
performs best with AD segmentation, while KNN and SVM
performs best with SW segmentation with a 1 s window size.
Even though AD segmentation produces maximum accuracy
overall, it has some inherent limitations. Implementation of
AD segmentation in the field requires the identification of
activity-transitions in order to accurately find start and end
point of each activity. An additional algorithm is needed to
automate this process, thereby increasing the computational
requirement. Moreover, AD segmentation cannot be applied
unless an activity has ended and therefore cannot be used for

real-time classification. However, this combination of ANN and
AD segmentation along with an automated activity-transition
identification algorithm can be applied to near real-time or offline
applications (e.g., near real-time simulation updating, cycle time
analysis, emission analysis etc.).

On the other hand, SVM and KNN performs best using
SW segmentation. As this technique uses a fixed window
size (1 s worked best in this study) which can slide over
the continuous data stream, these combinations (SVM/KNN
with SW segmentation) can be implemented for real-time
applications such as real-time monitoring, safety warnings, and
AR/VR applications.

Effect of Feature Selection
In this phase, a sensitivity analysis is performed using different
subsets of the feature vector (e.g., mean, median, etc.). All
features may not be relevant and useful for classification. The best
segmentation technique for corresponding classifiers are selected
(i.e., AD for ANN, SW for KNN and SVM) in this step. Figure 9
summarizes the accuracy of ANN, KNN, and SVM with various
feature subset for LoD9.

The X axis of this figure indicates the top number of features
ranked by the Relief algorithm. Using a higher number of features
did not necessarily result in the best performance for any of the
classifiers. For example, accuracy of ANN is 93.55% with the top
90 features, and 91.92% with 210 features. Similarly, KNN and
SVM performs best with the top 45 features (accuracy 85.7% for
KNN, and 84.5% for SVM), while all the features produces an
accuracy of 85.1% for KNN and 82.1% for SVM. This indicates
that there may be some redundant features that negatively affect
classifier performance.

Effect of Sensor Placement
While previous efforts have found promising results in
equipment activity identification using single smartphone-
embedded sensor mounted inside the equipment’s cabin (Ahn
et al., 2015; Akhavian and Behzadan, 2015; Mathur et al., 2015),
this research utilizes three IMU sensors attached to three different
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TABLE 4 | Comparative analysis between SW and AD segmentation using all three classifiers.

ANN KNN SVM

LoD SW Seg

(Max values) (%)

AD Seg (%) SW Seg

(Max values) (%)

AD Seg (%) SW Seg

(Max values) (%)

AD Seg (%)

2 100 100 99.8 98.4 100 95.3

3 93.7 98.2 97.5 92.4 97.4 94.7

4 96.1 97.4 97.1 85.3 96.2 88.5

7 84.8 94.9 85.3 76.8 82.1 76.2

9 80.1 92.1 85.3 75.2 80.8 73.4

FIGURE 9 | Performance of classifiers using different feature subsets for LoD9.

implements of an excavator to leverage the motion of each
moving part of the equipment. IMU#1, #2, and #3 was attached
on the bucket, stick, and boom, respectively. The impact of
the sensor placement on the equipment in this research is
summarized in Figure 10.

Figure 10 illustrates that fusing data from all three IMUs
results in highest performance for all three classifiers. If data from
a single IMU is used for training the model, accuracy is highest
for IMU#1 (attached to bucket), and lowest for IMU#3 (attached
to boom). Moreover, when only two IMUs are used, accuracy
is comparatively higher when IMU#1 is in use. Accuracy using
combination of IMU #1&#2, IMU #1&#3, and IMU #2&#3 are
79, 84.1, and 66.2%. As IMU#1 is attached to the bucket of the
excavator, it can be concluded that motion data of the bucket
contributes more in understanding the excavator activity than
data from the stick or the boom. This indicates that using data
from articulated parts of the excavator improves the accuracy
over any individual sensor. Moreover, the bucket which is the end
effector of an excavator, is the best location to collect motion data
in order to identify equipment activity.

Summary of Results
While the findings of this paper are specific to excavators, the
methodology can be generically applied to other construction
equipment. Figure 11 compares the results of four most recent
and similar efforts in equipment activity identification in
construction using sensors and compares the results with this

study. While it is acknowledged that the tests are from different
equipment engaged in different operations, this comparison is
provided to place the results of this study in context with
similar studies.

As shown in Figure 11, Mathur et al. (2015) reported a
maximum accuracy of 86% for LoD4 while working with
excavator and a single accelerometer. Ahn et al. (2015) obtained
95.1% accuracy for an excavator using low-cost accelerometer.
Akhavian and Behzadan (2015) reported maximum accuracies of
98.6, 81.3, and 86.1% for LoD3, LoD4, and LoD5, respectively,
for a front-end loader using smartphone-embedded sensors. Kim
H. et al. (2018) used LoD7 depending on wheel base motion,
cabin rotation, and bucket/arm movement of an excavator and
achieved compiled classification accuracy of 70.68%. This study
improved the accuracy of previous efforts by utilizing motions
of various articulated parts of an excavator. Results shows a
maximum accuracy of 100, 98, 97, 95, and 92.1% for LoD2, LoD3,
LoD4, LoD7, and LoD9.

Based on the sensitivity analysis performed in this study, the
results are summarized for practical application of this activity
identification framework. As for the placement of sensor, it
was found form the results that the bucket is the best place to
collect motion data from in order to identify the activities of
the excavator. From comparative analysis among classifiers and
different segmentation techniques, we see that ANN performs
best with activity defined (AD) segmentation and KNN produces
best results using sliding window (SW) segmentation with
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FIGURE 10 | Impact of placement and combination of IMUs on classifiers (LoD9).

FIGURE 11 | Comparison of the results of this study with most recent studies in equipment activity identification.

1 s window size. As AD segmentation technique requires the
completion of an activity in order to identify that, combination
of ANN and AD can be used for near real-time or offline
applications, such as near real-time simulation update, emission
analysis, cycle time analysis, etc. In case of real-time applications,
such as real-time productivity monitoring, AR/VR visualization,
KNN along with SW segmentation of 1 s window size can be
implemented. As per using the subset of the total features, top
45 features produces best result for KNN, where using top 90
features, ANN achieved maximum accuracy.

CONCLUSION AND FUTURE WORK

Automated, reliable, and accurate activity identification
provides a foundational platform for implementing numerous

applications such as productivity improvement, safety
management, and fuel use and emission monitoring and
minimization. Toward that goal, this study investigates the
feasibility of using motion of different articulated structural
equipment to identify different activities performed during
operation. A case study of a hydraulic excavator was used to
describe the methodology and evaluate the performance of the
developed framework. The result of the case study shows that
the motions of different articulated parts of the equipment can
be used for activity identification for higher LoDs, as well as
with high fidelity compared to the previous vibration-based
efforts. KNN demonstrated higher potential to be used for
real-time applications, and ANN for near real-time and offline
applications. Moreover, it was found that motion of the bucket is
most useful when identifying the activity of the equipment.
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The primary contributions of this study is the successful
implementation of activity identification framework using IMU
data from different articulated parts of the equipment. This
approach of leveraging the motion of multiple articulated
parts of the equipment outperformed the previous studies that
used just a single sensor on equipment’s cabin in terms of
accuracy as well as the number of LoD of activities. Moreover,
using motions of different parts of the equipment, than the
vibration of the cabin, have the potential of utilizing analytical
and kinematic models in future. This is because the motion
of equipment while performing different activities can be
reproduced faithfully without prior knowledge about ground and
equipment conditions.

As more manufacturers and contractors are mounting
motion sensors to different parts of the equipment for
AMG and AMC purposes, this study demonstrates the
opportunity for using the same data for real-time activity
identification of the equipment. This can facilitate monitoring
the operation of the equipment in real-time and to take
proactive decisions regarding the fleet operation. Moreover,
the results of the sensitivity analyses performed in this
study are available resource for the future researchers and
practitioners regarding the parameters of the model, as well as
the placement of the sensors while working in equipment activity
identification domain.

One of the primary limitations of this study is the reliance
of training data and data imbalance for implementing deep
learning approaches. However, similar studies have used data
augmentation techniques to generate synthetic training data
and thus eliminating the data imbalance issue (Rashid and
Louis, 2019). Another limitation is that the activity defined
segmentation technique used in this study requires additional
algorithms to automatically detect start and end point of activities
in order for real-time application. Several methods have been
proposed to automatically identify activity-transition points for

both labeling and classification purpose (Sekine et al., 2000;
Yoshizawa et al., 2013). Moreover, only one type of equipment
was used in the case study to validate the proposed methodology.
However, it is posited that the developed methodology can be
applied for other types of equipment with minimal modification.
Construction equipment sometimes performs two activities
simultaneously, such as moving forward while swinging. These
situations were not included in the case study. However,
one future direction of this study includes developing a
generic framework for more diverse operations with multiple
construction equipment, and investigating methods to include
simultaneous activities into the activity identification model.

The next step in this research is to utilize virtual kinematic
models of articulated construction equipment to generate
simulated training data, alleviating the manual data collection
and labeling effort. Other future work include the investigation
of data augmentation techniques to handle under-sampling and
over-sampling issues in machine learning. Statistical and model
based augmentation techniques can be explored to examine their
feasibility along with other classifiers such as ensemble methods,
and meta-learners. Ultimately, the process-level actions will be
fused with productivity analysis, safety analysis, and fuel use to
support better decision-making and control methods.
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