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The collapse-limit input velocity level of the critical double impulse simulating the principal

part of near-fault ground motions is derived for an elastic-plastic structure with viscous

damping and P-delta effect. The structural system is modeled by a bilinear hysteretic

SDOF system with negative post-yield stiffness reflecting the P-delta effect which plays

a key role in the collapse behavior. Since the critical timing of the second impulse in

the double impulse has been proven as the zero-restoring force timing after the first

impulse for the elastic-plastic SDOF system with viscous damping, that property is used

again in this paper. It is shown that the collapse-limit input level of the critical double

impulse can be obtained as a function of the post-yield stiffness and the damping ratio by

using the energy balance law and the quadratic-function approximation of the damping

force-deformation relation. The applicability of the collapse-limit level to actual recorded

ground motions is investigated through the time-history response analysis for the stable

models and the collapse models under two actual earthquake ground motions.

Keywords: earthquake response, critical excitation, double impulse, collapse, bilinear hysteresis, viscous damping

INTRODUCTION

Dynamic instability induced by collapse is one of the most important and challenging problems
in the field of earthquake-resistant design of building structures and infrastructures, and such
phenomena have been investigated extensively from the theoretical and numerical viewpoints
(Herrmann, 1965; Jennings and Husid, 1968; Sun et al., 1973; Tanabashi et al., 1973; Bertero et al.,
1978; Takizawa and Jennings, 1980; Bernal, 1987, 1992, 1998; Nakajima et al., 1990; Ger et al.,
1993; Challa and Hall, 1994; Hall, 1998; Hjelmstad and Williamson, 1998; Uetani and Tagawa,
1998; Araki and Hjelmstad, 2000; Sasani and Bertero, 2000; Williamson and Hjelmstad, 2001;
Miranda and Akkar, 2003; Ibarra and Krawinkler, 2005, Sivaselvan et al., 2009; Adam and Jager,
2012; Khoshnoudian et al., 2014; Kojima and Takewaki, 2016a).

Jennings and Husid (1968) defined the statically stable limit for an elastic-plastic
single-degree-of-freedom (SDOF) system with a rotational spring as the zero restoring moment
in the plastic range. Sun et al. (1973) suggested a similar condition for a first-floor-braced structure
and derived the stability limit of the SDOF system with a slip-type restoring force-deformation
characteristic in free vibration with initial displacement and velocity. Ishida and Morisako (1985)
derived numerically the stability boundary of an elastic-plastic structure subjected to the static
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gravity force and the horizontal harmonic force. Miranda
and Akkar (2003) investigated the relation between the
post-yield stiffness and the horizontal strength required to
prevent dynamic instability through the response analysis
of bilinear SDOF systems with the natural period 0.2–3.0
[sec] under 72 recorded ground motions. Khoshnoudian
et al. (2014) examined the dynamic instability of a structure-
soil system under 50 actual recorded pulse-like ground
motions. These stability limits for SDOF systems have
been applied to a multi-degree-of-freedom (MDOF) system
(Takizawa and Jennings, 1980; Nakajima et al., 1990).

The dynamic stability has also been investigated for
MDOF systems (Maier and Perego, 1992; Bernal, 1998;
Uetani and Tagawa, 1998; Araki and Hjelmstad, 2000). Uetani
and Tagawa (1998) proposed a method for predicting the
deformation concentration under static and dynamic cyclic
loading using the buckling mode of a simply supported beam
with rotational springs representing the post-yield stiffness.
Although a negative eigenvalue of a tangent stiffness matrix
is well-known as a condition for static instability, dynamic
instability cannot be determined only by the existence of
the negative eigenvalue (Bernal, 1998). That is because the
inertial force and the damping force can make the minimum
eigenvalue positive. Bernal (1998) investigated the relation
between the eigenvector and the sum of the inertial and
damping forces in terms of dynamic instability and proposed
a prediction method of dynamic instability by using the
equivalent SDOF system. Araki and Hjelmstad (2000) proposed
an additional condition for dynamic collapse based on the
coincidence of the dynamic loading with the direction of motion
considering an unloading process. Dynamic instability and
collapse have been investigated for a frame model considering
the material non-linearity and geometrical non-linearity
(Ger et al., 1993; Challa and Hall, 1994; Hall, 1998; Sivaselvan
et al., 2009).

However, previous studies provide only the stability or
instability condition, e.g., “the zero-restoring-force point in
the post-yield stiffness range” or “the negative eigenvalue by
the tangent stiffness matrix.” On the other hand, Kojima
and Takewaki (2016a) derived the collapse-limit input level
of the double impulse for an undamped elastic-plastic SDOF
system with the P-delta effect in the closed-form. The
double impulse can represent the main part of the fling-step
near-fault ground motion and the response to the double
impulse can be expressed by only free vibration with the
initial velocity. The collapse-limit level of the critical double
impulse can be obtained by using the energy balance law
where the kinetic energy by the initial velocity of mass is
transformed into the sum of the elastic strain energy and the
energy dissipated by the plastic deformation at the maximum
displacement. Kojima and Takewaki (2016a) adopted the zero-
restoring-force point in the post-yield stiffness range as the
collapse point.

The phenomenon caused by the P-delta effect, which
is represented by the negative second slope, may be
related to the phenomenon of the rocking of a rigid block.
Regarding the resonance and overturning phenomenon,

some interesting researches have been conducted
(Chatzis and Smyth, 2012; Makris and Vassiliou, 2013; Casapulla,
2015; Nabeshima et al., 2016; Casapulla and Maione, 2017).

In this paper, the collapse-limit input velocity level of the
critical double impulse is derived approximately for an elastic-
plastic structure with viscous damping and P-delta effect. The
system is modeled by a damped bilinear hysteretic SDOF
system with negative post-yield stiffness. The critical timing
of the second impulse was proven as the zero-restoring force
timing after the first impulse for the elastic-plastic SDOF
system with viscous damping in the previous investigations
(Kojima et al., 2017; Akehashi et al., 2018). By using the
energy balance law and the quadratic-function approximation
of the damping force-deformation relation (Kojima et al., 2017;
Akehashi et al., 2018), it is shown that the collapse-limit
input level of the critical double impulse can be obtained
as a function of the post-yield stiffness and the damping
ratio. It should be noted that, while the energy balance law
for a damped bilinear hysteretic model with viscous damping
was used in Akehashi et al. (2018), its applicability to the
model with negative post-yield stiffness and viscous damping
is still unclear. In addition, although the collapse-limit input
velocity level of the critical double impulse was investigated
for undamped models in the previous investigation (Kojima
and Takewaki, 2016a), the collapse-limit input velocity level for
damped models has never been made clear and the direct use
of the previous method for undamped models is not possible.
The investigation of the collapse-limit input velocity level for
damped models is important in clarifying the significance of
the role of damping, primarily provided by structural control
technologies innovatively developed recently, to prevent the
structural collapse.

The double impulse input and the model used in this
study are explained in section Double Impulse and Damped
Bilinear Hysteretic SDOF System With Negative Post-yield
Stiffness. The collapse-limit input velocity level of the critical
double impulse is derived for 4 collapse patterns in section
Collapse Limit Input Level for Damped Bilinear Hysteretic
SDOF System With Negative Post-yield Stiffness. Accuracy
of the proposed approximate closed-form solution for the
collapse-limit level is investigated through the time-history
response analysis for stable and unstable models in section
Accuracy Check for Approximate Collapse-Limit Input Velocity
Level of Critical Double Impulse. The effect of the damping
ratio on the collapse-limit input level is clarified in section
Transition of Collapse-Limit Input Velocity Level With Respect
to Damping Ratio. Applicability of the proposed solution of the
collapse level to the one-cycle sinusoidal wave is investigated
through the comparison of the proposed level of the double
impulse and that of the one-cycle sinusoidal wave in section
Applicability of the Proposed Collapse-Limit Input Level
to the Corresponding One-Cycle Sinusoidal Wave. Further
applicability of the proposed theory to actual near-fault
ground motions is discussed in section Applicability of the
Proposed Collapse-Limit Input Level to Actual Recorded
Ground Motions. The conclusions are summarized in
section Conclusions.
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FIGURE 1 | Input motion and damped bilinear hysteretic SDOF system, (A) Double impulse and one-cycle sinusoidal input as a principal component of near-fault

ground motion, (B) Damped SDOF system with negative post-yield stiffness, (C) Bilinear hysteretic restoring-force characteristic with negative post-yield stiffness.

DOUBLE IMPULSE AND DAMPED
BILINEAR HYSTERETIC SDOF SYSTEM
WITH NEGATIVE POST-YIELD STIFFNESS

A ground acceleration üg(t) is expressed in the
form of the double impulse as shown in Figure 1A

(Kojima and Takewaki, 2015, 2016a,b).

üg(t) = Vδ(t)− Vδ(t − t0) (1)

whereV denotes the velocity provided by the double impulse (the
input velocity level), t0 denotes the time interval between two
impulses and δ(t) is the Dirac’s delta function.

Consider a damped bilinear hysteretic SDOF system with
negative post-yield stiffness as shown in Figure 1B. This SDOF
system represents the elastic-perfectly plastic SDOF system under
the consideration of stiffness reduction by the P-delta effect. m,
c, and k denote the mass, damping coefficient and initial elastic
stiffness of the SDOF system, respectively. ω1 =

√

k/m, T1 =
2π/ω1 and h = 2c/

√
mk are the undamped natural circular

frequency, the undamped natural period and the damping ratio
of this SDOF system, respectively. In this paper, the damping
ratio is treated as constant regardless of yielding. u denotes the
horizontal displacement of the mass relative to the ground as
shown in Figure 1B, and the restoring force and damping force of
the SDOF system are denoted by fR and fD, respectively. The yield
deformation is given by dy and the yield force is by fy = kdy. The
bilinear hysteretic restoring-force characteristic with the negative
post-yield stiffness is shown in Figure 1C and the ratio of the
post-yield stiffness to the initial elastic stiffness is denoted by
α(< 0). Vy = ω1dy is the input velocity level of the single
impulse at which the maximum deformation of the undamped
SDOF system just attains the yield deformation dy and Vy is used
to normalize the input velocity level V . In the determination
of α, it is recommended to conduct the pushover analysis of
the object frame under the P-delta effect. In the numerical
examples in this paper, the results will be presented for various
values of α.

COLLAPSE LIMIT INPUT LEVEL FOR
DAMPED BILINEAR HYSTERETIC SDOF
SYSTEM WITH NEGATIVE POST-YIELD
STIFFNESS

The collapse-limit input velocity level of the double impulse
is derived for the bilinear hysteretic SDOF system with the
negative post-yield stiffness ratio α and the damping ratio h.
It should be emphasized that, while the damping ratio h has
never been included in the collapse-limit input velocity level in
the previous investigation for the undamped model (Kojima and
Takewaki, 2016a), it is included explicitly in the present paper
for the damped model. Figure 2 shows the schematic diagrams
of the restoring force-deformation relation and the damping
force-deformation relation of the SDOF system under the critical
double impulse. Figure 2A shows the stable case and Figure 2B

indicates the collapse case. umax 1, up1, umax 2, up2 denote the
maximum deformation and the plastic deformation after the first
and second impulses, respectively. Note that umax 1, umax 2 are the
absolute values. The critical timing of the second impulse is the
zero-restoring force timing after the first impulse for the elastic-
plastic SDOF system with viscous damping (Kojima et al., 2017;
Akehashi et al., 2018). The mass velocity at the zero-restoring
force timing (just before the second impulse) is denoted by vc.

The collapse limit is characterized by the zero-restoring force
point in the negative post-yield stiffness range and four collapse
patterns, where the maximum deformation under the critical
double impulse just attains the collapse limit (stability limit), are
assumed as shown later. The collapse-limit input velocity level of
the critical double impulse is derived via the energy balance law
and the quadratic-function approximation of the damping force-
deformation relation and the normalized collapse-limit input
level V/Vy is obtained as a function of the post-yield stiffness
ratio α and the damping ratio h. The energy balance law means
that the kinetic energy just after the first or second impulse is
transformed into the sum of the elastic strain energy, the energy
dissipated by the plastic deformation and the energy dissipated
by the viscous damping.

The four collapse patterns can be categorized as follows.
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FIGURE 2 | Restoring force-deformation relation and damping force-deformation relation of damped bilinear hysteretic SDOF system with negative post-yield stiffness

under critical double impulse, (A) Stable state, (B) Collapse state (•: First impulse, N: Second impulse).

Collapse Pattern 1: Collapse limit after the second impulse
without plastic deformation after the first impulse
Collapse Pattern 2: Collapse limit after the second impulse
with plastic deformation after the first impulse
Collapse Pattern 3: Collapse limit after the second impulse
with closed-loop in the restoring force-deformation relation
Collapse Pattern 4: Collapse limit after the first impulse.

The collapse-limit input levels in Collapse Patterns 1–4 are
derived in the following sections.

Collapse Pattern 1: Collapse Limit After the
Second Impulse Without Plastic
Deformation After the First Impulse
The first collapse pattern represents the pattern where the
SDOF system just attains the zero restoring force in the
second stiffness range after the second impulse without plastic
deformation after the first impulse. Figure 3 shows the restoring
force-deformation relation and the damping force-deformation
relation in Collapse Pattern 1. The input velocity level V/Vy in
Collapse Pattern 1 has to satisfy the following equation since
the plastic deformation is allowed only after the second impulse
(Akehashi et al., 2018).

4
3h+

√

16
9 h

2 + 1

1+ exp
(

−h√
1−h2

π

) ≤
V

Vy
<

4

3
h+

√

16

9
h2 + 1 (2)

The left-hand side of the above inequality indicates the input
velocity level at which the damped bilinear hysteretic SDOF
system just attains the yield deformation after the second impulse
and the right-hand side corresponds to the input velocity level at
which the SDOF system just attains the yield deformation after
the first impulse.

From Figure 3, the energy balance law after the second
impulse can be described as

1

2
m(vc + V)2 =

1

2
fydy + fyup2 +

1

2
αkup2

2 +
2

3
c (vc + V) umax 2 (3)

The left-hand side of Equation (3) indicates the kinetic energy
for the velocity (vc + V) just after the second impulse and
the right-hand side of Equation (3) expresses the sum of the
elastic strain energy corresponding to the yield deformation,
the energy dissipated by the plastic deformation and the energy
dissipated by viscous damping. The energy dissipated by viscous
damping is approximately obtained by using the quadratic-
function approximation for the damping force-deformation
relation (Kojima et al., 2017; Akehashi et al., 2018). Equation (3)
can be transformed into the following equation by using umax 2 =
dy + up2.

1

2
m(vc + V)2 =

1

2
fydy + fyup2 +

1

2
αkup2

2 +
2

3
c (vc + V)

(

dy + up2
)

(4)
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FIGURE 3 | Elastic-plastic response corresponding to Collapse Pattern 1, (A) Restoring force-deformation relation, (B) Approximate damping force-deformation

relation (Collapse limit after the second impulse without plastic deformation after the first impulse).

FIGURE 4 | Elastic-plastic response corresponding to Collapse Pattern 2, (A) Restoring force-deformation relation, (B) Approximate damping force-deformation

relation (Collapse limit after second impulse with plastic deformation after first impulse).

It can also be understood from Figure 3 that, when themaximum
deformation after the second impulse just attains the collapse
limit (the zero restoring force), the plastic deformation up2 after
the second impulse can be obtained from fy + αkup2 = 0. Then
up2 can be derived as

up2 = −
1

α
dy (5)

Let vc denote the velocity of the state when the restoring
force becomes zero in the unloading process. It can
be obtained by solving the equation of motion in the
unloading process (point A to point O in Figure 3)
(Kojima et al., 2017; Akehashi et al., 2018).

vc = V exp

(

−h
√
1− h2

π

)

(6)

By substituting Equations (5) and (6) into Equation (4), the
following equation is obtained.

(

V

Vy

)2
{

1+ exp

(

−h
√

1− h2
π

)}2

= 1−
1

α
+

8

3
h

(

V

Vy

)

×
{

1+ exp

(

−h
√

1− h2
π

)}

(

1−
1

α

)

(7)

From Equation (7), the input velocity level V/Vy of the
critical double impulse in Collapse Pattern 1 can be derived
by characterizing that the SDOF system just attains the zero-
restoring force in the post-yield stiffness range after the
second impulse without the plastic deformation after the
first impulse.

V

Vy
=

4
3h
(

1− 1
α

)

+
√

{

4
3h
(

1− 1
α

)}2 +
(

1− 1
α

)

1+ exp
(

−h√
1−h2

π

) , (8)

where Inequality (2) should be satisfied.
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Collapse Pattern 2: Collapse Limit After the
Second Impulse With Plastic Deformation
After the First Impulse
The second collapse pattern expresses the pattern such that the
SDOF system just attains the collapse limit (the zero-restoring
force in the second stiffness range) after the second impulse with
the plastic deformation after the first impulse. Figure 4 shows
the restoring force-deformation relation and the damping force-
deformation relation in Collapse Pattern 2. The input velocity
level V/Vy in Collapse Pattern 2 has to satisfy the following
equation since the plastic deformation is allowed even after the
first impulse (Akehashi et al., 2018).

4

3
h+

√

16

9
h2 + 1 ≤

V

Vy
(9)

From Figure 4, the energy balance law after the second impulse
can be described as

1

2
m(vc + V)2 =

1

2
k
(

dy − αup1
)2 +

(

fy − αkup1
)

up2

+
1

2
αkup2

2 +
2

3
c (vc + V)

(

up2 + dy − αup1
)

(10)

The left-hand side of Equation (10) represents the kinetic
energy for the velocity (vc + V) just after the second impulse.
The right-hand side of Equation (10) expresses the sum of
the elastic strain energy, the energy dissipated by the plastic
deformation and the work done by the damping force. The work
done by the damping force can be obtained by the quadratic-
function approximation for the damping force-deformation
relation (Akehashi et al., 2018).

It can also be understood from Figure 4 that, since the
maximum deformation after the second impulse just attains
the collapse limit (the zero restoring force) with the plastic
deformation after the first impulse, the plastic deformation up2
after the second impulse is calculated from fy−αkup1+αkup2 =
0. Then, up2 can be expressed by

up2 = up1 −
1

α
dy (11)

By substituting Equation (11) into Equation (10) and dividing
both side of the resulting equation by (kdy

2/2), the following
equation can be obtained.

(

vc + V

Vy

)2

=
(

1− α
up1

dy

)2

+ 2

(

1− α
up1

dy

)(

up1

dy
−

1

α

)

+ α

(

up1

dy
−

1

α

)2

+
8

3
h

(

vc + V

Vy

){(

up1

dy
−

1

α

)

+
(

1− α
up1

dy

)}

(12)

With the notation 1 − αup1/dy = A, Equation (12) can be
transformed into the following equation.

(

vc + V

Vy

)2

−
8

3
hA

(

1−
1

α

)(

vc + V

Vy

)

− A2

(

1−
1

α

)

= 0 (13)

From Equation (13), the normalized velocity (vc + V) /Vy just
after the second impulse can be derived by

vc + V

Vy
= A

(

1−
1

α

)

(

4

3
h+

√

16

9
h2 +

α

α − 1

)

= AB (14)

where B =
(

1− 1
α

)

(

4
3h+

√

16
9 h

2 + α
α−1

)

.

Note that vc denotes the velocity of the state when the
restoring force becomes zero in the unloading process. It
can be obtained by solving the equation of motion in
the unloading process (point B to point C in Figure 4)
(Akehashi et al., 2018).

vc

Vy
=
{

1+ α

(

up1

dy

)}

exp

[(

−h
√
1− h2

){

1

2
π + arctan

(

h
√
1− h2

)}]

(15)

With the notation exp

[

(

−h/
√
1− h2

)

{

(1/2) π + arctan

(

h/
√
1− h2

)

}]

= C and by substituting Equation (15) into

Equation (14), the following equation can be obtained.

{

1+ α

(

up1

dy

)}

C +
V

Vy
= AB (16)

The plastic deformation up1/dy after the first impulse can be
obtained from the following energy balance law after the first
impulse (Akehashi et al., 2018).

1

2
mV2 =

1

2
kdy

2 + kdyup1 +
1

2
αkup1

2 +
2

3
cV
(

dy + up1
)

(17)

From Equation (17), up1/dy can be obtained by

up1/dy =
1

α

{

−
(

4

3
h

(

V

Vy

)

+ 1

)

+
√
D

}

, (18)

where D =
{

(4/3) h
(

V/Vy

)

+ 1
}2 − α

{

1+ (8/3) h
(

V/Vy

)

−
(

V/Vy

)2
}

. By substituting Equation (18) and

1− αup1/dy = A into Equation (16), the following equation can
be obtained.

[

−
4

3
h

(

V

Vy

)

+
√
D

]

C +
V

Vy
=
[

4

3
h

(

V

Vy

)

+ 2−
√
D

]

B (19)
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FIGURE 5 | Elastic-plastic response corresponding to Collapse Pattern 3, (A) Restoring force-deformation relation, (B) Approximate damping force-deformation

relation (Collapse limit after second impulse with closed-loop in restoring force-deformation relation and plastic deformation after first impulse).

From the definition of D, Equation (19) provides the following
quadratic equation for (V/Vy).

(

16

9
h2 + α

)(

V

Vy

)2

+
8

3
h (1− α)

(

V

Vy

)

+ (1− α)

= E

(

V

Vy

)2

+ 2F

(

V

Vy

)

+ G, (20)

where E =
{

4
3h (B+ C) − 1

}2
/(B+ C)2, F = 2B

{

4
3h (B+ C)

−1} /(B+ C)2,G =
(

2B
B+C

)2
.

From Equation (20), the input velocity level V/Vy of
the critical double impulse in Collapse Pattern 2 can be
derived by characterizing that the SDOF system just attains
the zero-restoring force in the post-yield stiffness range after
the second impulse with the plastic deformation after the
first impulse.

V

Vy
=

− 4
3h (1− α)+F−

√

{

4
3h (1−α)−F

}2−
(

16
9 h

2+α − E
)

(1− α − G)

16
9 h

2 + α − E

(21)

where Inequality (9) should be satisfied.

Collapse Pattern 3: Collapse Limit After
Second Impulse With Closed-Loop in
Restoring Force-Deformation Relation
The third collapse pattern is the pattern such that the SDOF
system just attains the collapse limit after the second impulse
with a closed loop in the restoring force-deformation relation.
In this collapse pattern, the SDOF system yields even after
the first impulse [the input velocity level V/Vy must satisfy

Inequality (9) as with Collapse Pattern 2] and the direction of
the collapse limit is same as the maximum deformation after the
first impulse. Figure 5 shows the restoring force-deformation
relation and the damping force-deformation relation in
Collapse Pattern 3.

The following equation can be obtained from the energy
balance law between Point E and Point H in Figure 5.

1

2
k
(

dy − αup1 + αup2
)2 =

1

2
k
(

dy + αup1 − αup2
)2

−
1

2α
k
(

dy + αup1 − αup2
)2

+
2

3
cṽ
(

up3 + 2dy
)

(22)

Point E indicates the starting point in the unloading process after
experiencing themaximumdeformation after the second impulse
and Point H is the point at which the maximum deformation
after experiencing the closed loop after the second impulse
attains the collapse limit in the same direction as the maximum
deformation after the first impulse. Let ṽ denote the maximum
velocity in the unloading process after the second impulse. Note
that ṽ is the absolute value. The left-hand side of Equation (22)
expresses the elastic strain energy at Point E and the right-hand
side indicates the sum of the elastic strain energy, the energy
dissipated by the plastic deformation and the work done by the
damping force. The work done by the damping force between
Point E and Point H is obtained by the quadratic-function
approximation for the damping force-deformation relation
(Akehashi et al., 2018).

By substituting ṽ into Equation (22) and arranging the

resulting equation, a quartic equation of V/Vy can be derived.

The detailed analysis of ṽ and the quartic equation is presented
in Appendix. Then, the input velocity level V/Vy in Collapse
Pattern 3 can be computed by solving the quartic equation.
The collapse-limit level has to be a real number and satisfy
Inequality (9).
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FIGURE 6 | Elastic-plastic response corresponding to Collapse Pattern 4,

(A) Restoring force-deformation relation, (B) Approximate damping

force-deformation relation (Collapse limit after first impulse).

Collapse Pattern 4: Collapse Limit After
First Impulse
The fourth collapse pattern expresses the pattern in which the
SDOF system just attains the collapse limit (the zero-restoring
force in the post-yield stiffness range) after the first impulse. In
Collapse Pattern 4, the input velocity level V/Vy must satisfy
Inequality (9) as in Collapse Patterns 2 and 3.

From Figure 6, the following energy balance law between the
point at the first impulse (Point O in Figure 6) and the point
at the maximum deformation after the first impulse (Point B
in Figure 6).

1

2
mV2 =

1

2
fydy + fyup1 +

1

2
αkup1

2 +
2

3
cV
(

dy + up1
)

(23)

The left-hand side of Equation (23) indicates the kinetic energy
calculated for the velocity V just after the first impulse. The
right-hand side means the sum of the elastic strain energy
corresponding to the yield deformation, the energy dissipated by
the plastic deformation and the energy dissipated by the damping
force. The energy dissipated by the damping force is obtained
by the quadratic-function approximation for the damping force-
deformation relation (Akehashi et al., 2018).

It can also be understood from Figure 6 that, when the
maximum deformation after the first impulse just attains
the zero-restoring-force point in the second stiffness range,
the plastic deformation up1 after the first impulse can be
obtained from

fy + αkup1 = 0 (24)

By substituting up1 = −dy/α derived from Equation (24) into
Equation (23) and arranging the equation, the following equation
can be derived.

(

V

Vy

)2

=
8

3
h

(

1−
1

α

)(

V

Vy

)

+
(

1−
1

α

)

(25)

By solving Equation (25), the input velocity level in Collapse
Pattern 4 can be obtained as follows.

V

Vy
=

4

3
h

(

1−
1

α

)

+

√

{

4

3
h

(

1−
1

α

)}2

+
(

1−
1

α

)

, (26)

where Inequality (9) should be satisfied.

ACCURACY CHECK FOR APPROXIMATE
COLLAPSE-LIMIT INPUT VELOCITY LEVEL
OF CRITICAL DOUBLE IMPULSE

The approximate collapse-limit input velocity levels of the critical
double impulse in Collapse Patterns 1–4 were derived in section
Collapse Limit Input Level for Damped Bilinear Hysteretic SDOF
System With Negative Post-yield Stiffness. The collapse-limit
level with respect to the negative post-yield stiffness ratio for
damping ratio h = 0.10 is shown in Figure 7Awith the schematic
diagrams of the collapse patterns. It should be pointed out that
the collapse-limit input velocity level corresponding to h = 0
was shown in Kojima and Takewaki (2016a). The shaded area in
Figure 7A indicates the collapse region in the relation between
the input level V/Vy and the post-yield stiffness ratio α. Case
1 in Figure 7A indicates the elastic case, Case 2 expresses the
case with the plastic deformation only after the second impulse
and Case 3 is the case with the plastic deformation even after
the first impulse. Stability of the elastic-plastic system under
the critical double impulse can be determined by the proposed
solutions for various V/Vy, α, and h. The approximate input
level for Collapse Pattern 4 becomes smaller than that for
Collapse Pattern 3 in larger post-yield stiffness ratio (in the
vicinity of α = 0). However, it should be kept in mind that
this reversed phenomenon may result from the numerical error
caused by the quadratic-function approximation of the damping
force-deformation relation. This reversed phenomenon was not
observed in the undampedmodel (Kojima and Takewaki, 2016a).

In this section, the accuracy of the proposed collapse-limit
level is investigated through the comparison with the time-
history response analysis result. Figure 7B shows 18 points
for models with damping ratio h = 0.10 to investigate the
proposed collapse-limit level. The points indicate the set of input
velocity levels of the double impulse velocity level V/Vy and
the negative post-yield stiffness ratio α. These 18 points express
the slightly larger or smaller than the approximate collapse-
limit level with α = −0.20,−0.50,−0.65,−0.80. The restoring
force-deformation relations of 18 points are shown in Figure 8.
The blank circles indicate the stable cases and the solid circles
express the collapse case evaluated by time-history response
analysis. From Figure 8, the proposed method can evaluate
stability or collapse in 18 points approximately, although the
slightly dangerous level is provided in Collapse patterns 1 and
3 because of approximation accuracy.

In order to investigate the collapse-limit level in detail, the
input velocity level of the critical double impulse at which the
maximum deformation just attains the collapse limit is evaluated
by the time-history response analysis. The elastic-plastic response
to the critical double impulse can be evaluated by changing
the time interval in a parametric manner in the time-history
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FIGURE 7 | Collapse-limit input velocity level of critical double impulse with respect to post-yield stiffness ratio for specific damping ratio (h = 0.10), (A) Collapse-limit

input level of critical double impulse and schematic diagram of Collapse Patterns 1–4, (B) Input velocity level and post-yield stiffness ratio for investigation (A1—D6).

response analysis. Figure 9 shows the comparison of the collapse-
limit level by the proposed theory and that by the time-history
response analysis for h = 0.05, 0.10. The minimum collapse-
limit level by the time-history response analysis is only plotted
in Figure 9, although there is the stable region between Collapse
Pattern 2 and Collapse Pattern 3 for the critical double impulse.
The minimum collapse-limit level by the time-history response
analysis corresponds to Collapse Pattern 1 in the smaller post-
yield stiffness ratio. On the other hand, the minimum collapse-
limit level exists between Collapse Patterns 3 and 4 in the
larger post-yield stiffness ratio, and the collapse level corresponds
to Collapse Pattern 4 in more larger post-yield stiffness ratio
(nearby α = 0).

TRANSITION OF COLLAPSE-LIMIT INPUT
VELOCITY LEVEL WITH RESPECT TO
DAMPING RATIO

The effect of damping ratio on the collapse-limit level of the
critical double impulse is investigated here. Figure 10 shows the

collapse level with respect to the post-yield stiffness ratio for three
damping ratios h = 0.0, 0.05, 0.10. It should be pointed out again
that the collapse-limit input velocity level corresponding to h = 0
was shown in Kojima and Takewaki (2016a). Figure 11 shows the
transition of the collapse level in Collapse Patterns 1–4 for these
three damping ratios. It can be understood from Figures 10, 11
that the collapse input level of Collapse Patterns 1–4 becomes
larger and the region for Collapse Pattern 3 becomes wider, as
the damping ratio becomes larger. For example, the collapse-limit
input velocity level for α = −0.20 and h = 0.10 becomes larger
than that for α = −0.20 and h = 0 by about 38 percent in
Collapse Pattern 3.

APPLICABILITY OF THE PROPOSED
COLLAPSE-LIMIT INPUT LEVEL TO THE
CORRESPONDING ONE-CYCLE
SINUSOIDAL WAVE

The applicability of the proposed collapse input level of the
critical double impulse is investigated to the one-cycle sinusoidal
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FIGURE 8 | Restoring force-deformation relation of 18 stability or collapse cases (damping ratio h = 0.10).

wave which can represent the main-part of near-fault ground
motions through the comparison with the collapse velocity
level of the one-cycle sinusoidal wave. The following relation

between the input velocity level V of the double impulse
and the maximum velocity Vp of the corresponding one-cycle
sinusoidal wave has been proposed based on the equivalence of
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FIGURE 9 | Comparison of proposed collapse-limit input velocity level and minimum collapse-limit input velocity level by time-history response analysis, (A) h = 0.05,

(B) h = 0.10.

FIGURE 10 | Collapse–limit input velocity level of critical double impulse with respect to post-yield stiffness ratio for specific damping ratio, (A) h = 0.0, (B) h = 0.05,

(C) h = 0.10.

the maximum Fourier amplitude (Kojima and Takewaki, 2016b;
Kojima et al., 2017).

Vp/V = 1.222 (27)

The maximum deformation to the critical one-cycle sinusoidal
wave is evaluated by the time-history response analysis by
changing the input wave period for the constant maximum
velocity Vp and the collapse-limit input level V(= Vp/1.222) of
the one-cycle sinusoidal wave is evaluated where the maximum
deformation attains the collapse limit (the zero-restoring force
point in the second stiffness range). The critical one-cycle
sinusoidal wave indicates the one-cycle sinusoidal wave with the
input wave period which maximizes the maximum deformation
for the constant maximum velocity Vp.

Figure 12 shows the comparison of the proposed collapse
level of the critical double impulse and the collapse input level
of the one-cycle sinusoidal wave for the damping ratio h =

0.05, 0.10. The collapse level by the one-cycle sine wave for
h = 0.05 corresponds to the proposed collapse level in Collapse
Pattern 1 in the region α < −0.45 and corresponds to that
in Collapse Pattern 3 in the region −0.45 < α < −0.2.
The collapse level by the one-cycle sine wave corresponds to

the proposed collapse level in Collapse Pattern 4 in the region
α > −0.2. On the other hand, the collapse level of the one-

cycle sinusoidal wave for h = 0.10 corresponds to the collapse

level in Collapse Pattern 1 in the region α < −0.55 and
corresponds to that in Collapse Pattern 3 in the region −0.55 <

α < −0.2. The collapse level by the one-cycle sine wave
corresponds to the proposed collapse level in Collapse Pattern
4 in the region α > −0.2. However, the proposed collapse
input level provides a slightly dangerous one compared with the
collapse level by the one-cycle sine wave in the region where the
collapse level is determined by Collapse Pattern 3. The stable
region between Collapse Pattern 2 and 3 exists only in the critical
double impulse.
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FIGURE 11 | Input velocity level of Collapse Patterns 1–4 for specific damping ratio, (A) Collapse Pattern 1, (B) Collapse Pattern 2, (C) Collapse Pattern 3,

(D) Collapse Pattern 4.

FIGURE 12 | Comparison of proposed collapse-limit input velocity level of critical double impulse and collapse level of one-cycle sinusoidal wave, (A) h = 0.05,

(B) h = 0.10.
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FIGURE 13 | Actual recorded ground motions and equivalent one-cycle sine wave, (A) Rinaldi station FN component during 1994 Northridge earthquake, (B) Kobe

University NS component during 1995 Hyogoken-Nanbu earthquake.

FIGURE 14 | Elastic-plastic response under Rinaldi station FN component of system with h = 0.10, α = −0.80 for stable case (V/Vy = 1.079) and collapse case

(V/Vy = 1.080), (A) Maximum deformation with respect to normalized input level, (B) Restoring force-deformation relation, (C) Normalized deformation time history,

(D) Normalized restoring-force time history.

APPLICABILITY OF THE PROPOSED
COLLAPSE-LIMIT INPUT LEVEL TO
ACTUAL RECORDED GROUND MOTIONS

In order to investigate the validity of the double impulse as a
substitute for near-fault ground motions and the applicability

of the proposed theory to actual recorded ground motions, the
time-history response analysis is conducted to actual recorded

ground motions. Then the collapse level of actual recorded

ground motions is investigated. In this paper, the Rinaldi

station FN component during the 1994 Northridge earthquake
and the Kobe University NS component during the 1995
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FIGURE 15 | Elastic-plastic response under Kobe University NS component of system with h = 0.05, α = −0.60 for stable case (V/Vy = 0.948) and collapse case

(V/Vy = 0.949), (A) Maximum deformation with respect to normalized input level, (B) Restoring force-deformation relation, (C) Normalized deformation time history,

(D) Normalized restoring-force time history.

Hyogoken-Nanbu earthquake are used as the representative near-
fault ground motions. Figure 13 shows the accelerograms of
the Rinaldi station FN component and the Kobe University NS
component with their equivalent one-cycle sinusoidal waves. In
this paper, the one-cycle sinusoidal wave which can represent
the main part of the recorded ground motions is extracted and
the extracted one-cycle sinusoidal wave is transformed into the
double impulse with same manner in section Applicability of
the Proposed Collapse-Limit Input Level to the Corresponding
One-Cycle Sinusoidal Wave (Kojima and Takewaki, 2016b). The
acceleration amplitude Ap(= πVp/Tp) and the period Tp of the
one-cycle sinusoidal wave equivalent to the Rinaldi station FN
component are Ap = 7.85[m/sec2] and Tp = 0.8[sec]. On the
other hand, the acceleration amplitude and the period of the
one-cycle sinusoidal wave equivalent to the Kobe University NS
component are Ap = 2.60[m/sec2] and Tp = 1.0[sec]. The
input velocity level of the double impulse corresponding to the
Rinaldi station FN component is V = 1.64[m/sec] and that
corresponding to the Kobe University NS component is V =
0.677[m/sec].

In above sections, the critical double impulse or the critical
one-cycle sinusoidal wave has been determined for a certain
input velocity level (or a certain maximum velocity). On the
other hand, the critical elastic-plastic response under a given
actual earthquake ground motion (fixed) for a certain structural
parameter Vy(= ω1dy) is evaluated here by changing the
natural circular frequency and the yield deformation (Kojima and
Takewaki, 2016b; Kojima et al., 2017). This evaluation method
has been explained in the literature (Kojima and Takewaki,
2016b; Kojima et al., 2017). Figure 14A shows the comparison
of the maximum deformation of the system with h = 0.10
and α = −0.80 under the Rinaldi station FN component in
the critical case and that under the critical double impulse with
respect toV/Vy. From Figure 14A, the normalized collapse-limit
level of the Rinaldi station FN component is V/Vy = 1.080 for
h = 0.10 and α = −0.80. The collapse-limit level V/Vy = 1.080
of the Rinaldi station FN component is close to the collapse-
limit level V/Vy = 1.058 evaluated by the proposed method in
Collapse Pattern 1. Figures 14B–D present the restoring force-
deformation relation, the normalized deformation time history
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and the normalized restoring-force time history for the stable
case (V/Vy = 1.079) and the collapse case (V/Vy = 1.080).
On the other hand, Figure 15A shows the comparison of the
maximum deformation of the system with h = 0.05 and α =
−0.60 under the Kobe University NS component in the critical
case and that under the critical double impulse with respect to
V/Vy. From Figure 15A, the normalized collapse-limit level of
the Kobe University NS component is V/Vy = 0.949 for h =
0.05 and α = −0.60. The collapse-limit level V/Vy = 0.949
of the Kobe University NS component is close to the collapse-
limit level V/Vy = 0.981 evaluated by the proposed method in
Collapse Pattern 1. Figures 15B–D present the restoring force-
deformation relation, the normalized deformation time history
and the normalized restoring-force time history for the stable
case (V/Vy = 0.948) and the collapse case (V/Vy = 0.949). It
can be observed that the proposed theory provides a reasonably
accurate collapse-limit velocity level.

CONCLUSIONS

The double impulse has been introduced as a substitute for the
fling-step near-fault ground motion and the approximate closed-
form solution for the collapse-limit input velocity level of the
critical double impulse has been derived for a damped bilinear
hysteretic SDOF system with negative post-yield stiffness. The
conclusions can be summarized as follows.

1. The collapse-limit input velocity level of the critical double
impulse can be derived approximately by introducing the
quadratic-function approximation of the damping force-
deformation relation and the energy balance law. Since the
critical timing of the second impulse had been proved to be
the zero-restoring-force timing in the unloading process in
the previous study (Kojima et al., 2017; Akehashi et al., 2018),
it was used in this paper. In this theory, the collapse-limit
input velocity level of the double impulse can be obtained
as a function of the post-yield stiffness ratio and damping
ratio. It may be important to emphasize again that, while
the damping ratio has never been included in the collapse-
limit input velocity level in the previous investigation for the
undamped model, it is included explicitly in the present paper
for the damped model. The accuracy of the proposed solution
was investigated through the time-history response analysis
for the stable and collapse models.

2. The applicability of the approximate solution for the
collapse-limit input velocity level to near-fault ground
motions was investigated through the comparison with the

collapse-limit input velocity level of the one-cycle sinusoidal
wave. The proposed solution can provide the collapse-
limit input velocity level of near-fault ground motions with
reasonable accuracy.

3. The applicability of the collapse-limit input velocity level to
actual recorded ground motions was investigated through
the time-history response analysis for the stable and collapse
models under the Rinaldi station FN component during the
1994 Northridge earthquake and the Kobe University NS
component during the 1995 Hyogo-ken Nanbu earthquake.
It was confirmed that the proposed theory can evaluate
the collapse level of these two earthquake ground motions
with reasonable accuracy.

The proposed method enables a closed-form expression useful
for the judgement of a stable or collapse state of a structure under
earthquake groundmotions. However, the readers should keep in
mind again that the present theory is based on the following three
assumptions: (a) the principal part of a near-fault ground motion
can be simulated by a critical double impulse, (b) the critical
timing of the second impulse taken equal to zero-restoring
force timing after the first impulse is an assumption following
(Kojima et al., 2017; Akehashi et al., 2018), (c) the damping force-
deformation relation is approximated by a quadratic function.
In addition, the modeling of a multi-storied building structure
into a single-degree-of-freedom model treated in this paper
appears important and critical. This issue will be discussed in the
future research.
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APPENDIX ANALYSIS FOR COLLAPSE
PATTERN 3

Detailed derivation of the quartic equation of V/Vy for Collapse
Pattern 3 is explained here.

From Figure 5, the plastic deformation up3 after experiencing
the maximum deformation after the second impulse can be
obtained from−fy − αkup1 + αkup2 − αkup3 = 0.

This means that themaximum deformation after experiencing
the closed loop just attains the collapse limit in the same direction
as the maximum deformation after the first impulse. Then, up3
can be obtained by

up3 = −
1

α

(

dy + αup1 − αup2
)

, (A1)

where up1 in Equation (A1) can be obtained from Equation (18).
up2 can be derived from the following energy balance law between
the point at the second impulse (Point C in Figure 5) and the
point at the maximum deformation after the second impulse
(Point E in Figure 5) (Akehashi et al., 2018).

1

2
m(vc + V)2 =

1

2
k
(

dy − αup1
)2 +

(

kdy − αkup1
)

up2

+
1

2
αkup2

2 +
2

3
c (vc + V)

(

up2 + dy − αup1
)

(A2)

From Equation (A2), up2/dy can be derived by

up2

dy
=

−
{

1− α
up1
dy

+ 4
3h
(

vc+V
Vy

)}

+

√

{

1− α
up1
dy

+ 4
3h
(

vc+V
Vy

)}2
− α

{

(

1− α
up1
dy

)2
+ 8

3h
(

1− α
up1
dy

) (

vc+V
Vy

)

−
(

vc+V
Vy

)2
}

α
, (A3)

where vc can be obtained by Equation (15).
The velocity ṽ in Equation (22) can be obtained by solving the

equation of motion in the unloading process after experiencing
the maximum deformation −umax 2 (Point E in Figure 5) after
the second impulse. The equation of motion in the unloading
process (between Point E and Point G in Figure 5) can be
expressed by

mü+ cu̇+ ku+ k (1− α)
(

up1 − up2
)

= 0 (A4)

The displacement, velocity, and acceleration responses can be
computed by solving Equation (A4) and substituting u(0) =
−umax2 = dy − up1 + up2, u̇(0) = 0 at the transition
point (Point E).

u(t) =
1

√
1− h2

(

dy − αup1 + αup2
)

e−hωt

× cos

(

ω′t − arctan
h

√
1− h2

)

− (1− α)
(

up1 − up2
)

(A5a)

u̇(t) = −
1

√
1− h2

(

1− α
up1

dy
+ α

up2

dy

)

e−hωtVy sin
(

ω′t
)

(A5b)

ü(t) = −
1

√
1− h2

(

1− α
up1

dy
+ α

up2

dy

)

e−hωtVyω cos

(

ω′t + arctan
h

√
1− h2

)

(A5c)

In Equations (A5a–c), t = 0 was set at Point E. From Equation
(A5a), the timing tvmax when u̇(t) becomes maximum can

be obtained as tvmax =
(

(1/2)π − arctan
(

h/
√
1− h2

))

/ω′

and the velocity ṽ can be obtained by substituting tvmax into
Equation (A5b).

ṽ

Vy
=
∣

∣

∣

∣

u̇(t = tvmax)

Vy

∣

∣

∣

∣

= −
u̇(t = tvmax)

Vy

=
(

1− α
up1

dy
+ α

up2

dy

)

exp

{

−h
√

1− h2

(

1

2
π − arctan

h
√

1− h2

)}

(A6)

With the notation λ =
(

−αup1 + αup2
)

/dy and Equation (A6),
Equation (22) can be transformed into the following equation.

(1+ λ)2 = (1− λ)2 + 1
α
(1− λ)2 + 8

3h
ṽ
Vy

{

2− 1
α

(1− λ)
}

= (1− λ)2 + 1
α
(1− λ)2 + 8

3h (1+ λ)H
{

2− 1
α

(1− λ)
}
, (A7)

whereH = exp
[(

−h/
√
1− h2

) {

π/2− arctan
(

h/
√
1− h2

)}]

.

From Equation (A7), λ is obtained as

λ = 2α − 1−
8

3
hHα

+2

√

(

α2 − α
)

{

1−
8

3
hH +

16

9
h2H2

(

1−
1

α

)}

/

(

8

3
hH − 1

)

(A8)

By substituting up1 by Equation (18) and up2 by Equation (A3)
into λ =

(

−αup1 + αup2
)

/dy, the following equation can
be derived.

[

λ +
(

1+
4

3
hJ

)]2

=
(

1+
4

3
hJ

)2

− α

(

I2 +
8

3
hIJ − J2

)

, (A9)

where 1− αup1/dy = I , (vc + V) /Vy = J.
From Equation (15) and the notation V̄ = V/Vy, J =

(2− I)C + V̄ is obtained and the following equation can be
derived by substituting J = (2− I)C + V̄ into Equation (A9).

[

λ + 1+
4

3
h
{

(2− I)C + V̄
}

]2

=
[

I +
4

3
h
{

(2− I)C + V̄
}

]2

−α

[

I2 +
8

3
hI
{

(2− I)C + V̄
}

−
{

(2− I)C + V̄
}2
]

(A10)
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Equation (A10) can be transformed into

I2
{

(1− α) −
8

3
h (1− α)C + αC2

}

+ I

{

8

3
h (1− α)

(

2C + V̄
)

−4αC2 − 2αCV̄ +
8

3
hC (λ + 1)

}

+ α
(

4C2 + 4CV̄ + V̄2
)

−(λ + 1)2 −
8

3
h (λ + 1)

(

2C + V̄
)

= 0 (A11)

By substituting Equation (18) and I = 1−αup1/dy into Equation
(A11), the following equation can be obtained.





(

4

3
hV̄ + 2

)

−

√

(

4

3
hV̄ + 1

)2

− α

{

1+
8

3
hV̄ − V̄2

}





2

{

(1− α) −
8

3
h (1− α)C + αC2

}

+





(

4

3
hV̄ + 2

)

−

√

(

4

3
hV̄ + 1

)2

− α

{

1+
8

3
hV̄ − V̄2

}





{

8

3
h (1− α)

(

2C + V̄
)

− 4αC2 − 2αCV̄ +
8

3
hC (λ + 1)

}

+α
(

4C2+4CV̄+V̄2
)

−(λ+1)2−
8

3
h (λ+1)

(

2C+V̄
)

= 0 (A12)

Define K, L,M, N, O as follows.

K =
4

3
hV̄ + 2, L =

(

4

3
hV̄ + 1

)2

− α

{

1+
8

3
hV̄ − V̄2

}

,

M = (1− α)−
8

3
h(1− α)C + αC2,

N =
8

3
h(1− α)(2c+ V̄)− 4αC2 − 2αCV̄ +

8

3
hC(λ + 1),

O = α
(

4C2 + 4CV̄ + V̄2
)

− (λ + 1)2 −
8

3
h(λ + 1)(2C + V̄)

(A13a-d)

By substituting Equations (A13a–d) into Equation (A12) and
arranging the equation, the following equation can be obtained.

{(

K2 + L
)

M + KN + O
}2 − L(2KM + N)2 = 0 (A14)

Here, N and O can be transformed as follows.

N =
8

3
h (1− α)

(

2C + V̄
)

− 4αC2 − 2αCV̄ +
8

3
hC (λ + 1)

=
{

8

3
h (1− α) − 2αC

}

V̄ +
16

3
h (1− α)C − 4αC2

+
8

3
hC (λ + 1) = PV̄ + Q (A15a)

O = α
(

4C2 + 4CV̄ + V̄2
)

− (λ + 1)2 −
8

3
h(λ + 1)(2C + V̄)

= αV̄2 +
{

4Cα −
8

3
h(λ + 1)

}

V̄ + 4C2α − (λ + 1)2

−
16

3
h(λ + 1)C = αV̄2 + RV̄ + S, (A15b)

where P = (8/3) h (1− α)−2αC,Q = (16/3)h(1−α)C−4αC2+
(8/3)hC(λ + 1), R = 4Cα − (8/3) h (λ + 1), S = 4C2α − (λ +
1)2 − (16/3)h(λ + 1)C.

By substituting Equations (A13a,b), (A15a,b) into Equation
(A14), the following quartic equation can be derived.

(

V

Vy

)4
[

{(

32

9
h2 + α

)

M +
4

3
hP + α

}2

−
(

16

9
h2 + α
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8

3
hM + P

)2
]

+
(

V

Vy

)3 [

2

{(

32

9
h2 + α

)

M +
4

3
hP + α

}

{

8h

(
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1

3
α
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4

3
hQ+ R

}

− 2

(

16

9
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)

(4M + Q)

(

8

3
hM + P

)

−
8

3
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(

8

3
hM + P

)2
]

+
(

V

Vy

)2
[

{

8h

(

1−
1

3
α

)

M + 2P +
4

3
hQ+ R

}2

+2

{(

32

9
h2 + α

)

M +
4

3
hP + α

}

{(5− α)M + 2Q+ S}

−
(

16

9
h2 + α

)

(4M + Q)2 −
16

3
h (1− α) (4M + Q)

(

8

3
hM + P

)

− (1− α)

(

8

3
hM + P

)2
]

+
(

V

Vy

)[

2

{

8h

(

1−
1

3
α

)

M + 2P +
4

3
hQ+ R

}

{(5− α)M + 2Q+ S} −
8

3
h (1− α) (4M + Q)2

−2 (1− α) (4M + Q)

(

8

3
hM + P

)]

+{(5− α)M + 2Q+ S}2 − (1− α) (4M + Q)2 = 0, (A16)

where

M = (1− α) − 8
3h (1− α)C + αC2 , P = 8

3h (1− α) − 2αC ,

Q = 16
3 h (1− α)C − 4αC2 + 8

3hC (λ + 1) ,

R = 4Cα − 8
3h (λ + 1) , S = 4C2α − (λ + 1)2 − 16

3 h (λ + 1)C,

λ =
2α−1− 8

3 hHα+2
√

(α2−α)
{

1− 8
3 hH+ 16

9 h2H2
(

1− 1
α

)}

8
3 hH−1

C = exp
{

−h√
1−h2

(

1
2π + arctan h√

1−h2

)}

H = exp
{

−h√
1−h2

(

1
2π − arctan h√

1−h2

)}

The input velocity level V/Vy in Collapse Pattern 3 can
be computed by solving the Equation (A16). Then, the
collapse-limit level has to be a real number and satisfy
Inequality (9).
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