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This paper presents the development of a stochastic tornado simulation model for

the United States (US). The continental of the US is subjected to more than 1,000

tornadoes each year, causing significant financial losses and social disruption. Compared

to hurricanes, the damage region of a tornado is relatively small and the probability of

occurrence at a given location is extremely low. Therefore, it is not feasible to use solely

the observed data or tracks to quantify the tornado risk for a given structure or a city that

has not been affected by historical tornadoes. In this paper, a methodology for performing

stochastic simulation of tornado tracks for the US is presented. The stochastic simulation

framework consists of a genesis model, which utilizes the kernel density estimation to

simulate the spawn locations of tornadoes. Statistical models for tornado parameters

such as track length, path width and intensity, were calibrated using the tornado

database maintained by the US National Oceanic and Atmospheric Administration

(NOAA) Storm Prediction Center (SPC). The developed statistical models were used

to simulate 1,000,000 years of tornado tracks. The simulated tornado parameters

include the tornado occurrence rate, intensity (EF-scale), location, touchdown time, path

length, and path width. All these parameters are geographic dependent, meaning the

parameters vary depending on the tornado spawn locations. The simulated spawn rates

and other key parameters for the continental of the US are compared to the observations.

Good agreements are observed between simulations and observations. To illustrate a

potential use of the simulated tornado track database, a probabilistic tornado hazard

analysis was performed for Moore, Oklahoma. The 50-year tornado hazard curves

for three domain sizes are developed to assess the influence of the domain size on

tornado risk.

Keywords: tornado track, simulation, Monte Carlo, kernel density estimation, hazard curve

INTRODUCTION

On average, the continental United States is subjected to more than 1,000 tornadoes every year,
causing significant financial losses and social disruption. The Storm Prediction Center (SPC), a
division of the National Oceanic and Atmospheric Administration (NOAA), maintains a database
of tornado events recorded since 1950. The annually observed number of tornadoes, or annual
occurrence rate, appears to be increasing (Figure 1). This could be due in part to the improvement
of technology used for tracking tornadoes, such as Doppler radar, and public awareness in reporting
tornado incidents. Compared to a hurricane, the influence area of a tornado is relatively small. Even
with over 60,000 of known historical tornado events in the SPC database, many places in tornado
prone region have not been hit by a tornado. Therefore, it is not feasible to directly determine the
risk due to tornadoes for a location or small region using solely the observed tornado events.
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FIGURE 1 | Annual number of tornadoes recorded from 1950 to 2015 and 10

year moving average.

Quantifications of tornado hazard and its impact on the
built environment are subjects of study by many over the years.
Prior tornado climatology research has relied mainly on the
spatial and temporal variation of tornado spawn days over a
fixed period to quantify tornado risk (e.g., Brooks et al., 2003;
Farney and Dixon, 2014). Standohar-Alfano and van de Lindt
(2015) divided the continental US into various grid sizes and
simulated the annual tornado occurrence probability using the
minimum assumption method proposed by Schaefer et al. (1986)
in which the tornado occurrence probability is estimated using
the sum of the tornado areas divided by the total observation
years and the area of the grid of interest. Sigal et al. (2000)
simulatedmultiple realizations of 100,000 years of tornado events
for the continental of the US using Latin hypercude method.
The simulated results were then used to estimate average annual
loss (AAL) for different regions. They concluded that 100,000
years of simulation are not adequate to obtain convergence
for AAL. This is likely attributed to very small influence area
of tornado.

Boruff et al. (2003) found that while the number of
reported tornado events were almost doubled from 1950 to
2000, there has been a steady reduction in tornado induced
fatalities and injuries in recent years. This is likely attributed
to the advancement made in forecasts and warning times
of tornado outbreaks. While the overall fatality rate has
reduced, the analyses by Ashley (2007) and Ashley et al.
(2008) confirmed the common perception that nocturnal
tornadoes caused higher fatalities than tornadoes spawned
during the daytime.

Thom (1963) analyzed the distributions of tornado path
width and length using tornado data for Iowa and Kansas.
He found that more than 90% of the Iowa tornadoes had
easterly paths. A more recent study by Suckling and Ashley
(2006) examined more than 6,000 tornado tracks from 1980 to
2002. They found that while tornadoes generally travel in paths
from the southwest toward the northeast direction, in central

and northern region of the US, a more westerly tornado paths
preponderates during late spring and summer. These studies
showed that the spatial and temporal characteristics of tornado
paths should be considered. Tan and Hong (2010) developed
tornado hazard maps for Southern Ontario in Canada and
they also showed that the spatial inhomogeneity of tornado
occurrence is an important factor that must be considered
when developing tornado hazard maps. In order to simulate the
temporal and spatial dependent of tornado tracks, a stochastic
simulation program for generating synthetic tornado tracks
based on the statistics of historical data was developed in
this paper.

The Monte Carlo Simulation (MCS) technique was
employed in this study to develop the tornado simulation
program. MCS is a computational method that utilizes
repeated sampling of random numbers from a sequence of
probability distributions to obtain the behaviors or responses
of a relatively complex system or phenomena with random
outcomes. The MCS technique has been widely used to assess
the risk of natural hazards with relatively rare occurrences.
Meyer et al. (2002) employed the MCS approach to study
significant tornado occurrence distribution in the continental
of the United States. Strader et al. (2016) developed a MCS
model for simulating tornado events applied to a user-
defined domain to estimate tornado impacts on the built
environment. Daneshvaran and Morden (2007) evaluated the
spatial frequency of occurrence of tornadoes in the United States
and estimated the losses of tornado and hail outbreaks. Banik
et al. (2008) used a stochastic model for assessing the exceedance
probability of maximum tornado wind speed in Southern
Ontario, Canada.

One of the key contributions of the tornado simulation
methodology developed in this study is the use of kernel density
estimation (KDE) and MCS methods to generate geographic
dependent tornado parameters, which include the EF-scale, path
length, maximum path width, path direction, spawnmonth, date,
and hours. Many previous studies did not consider the tornado
spawn month or time (Daneshvaran and Morden, 2007; Banik
et al., 2012; Standohar-Alfano and van de Lindt, 2016), even
though the spawn timing of tornadoes has been shown to play
an important role in risk assessment. According to the study
by Simmons and Sutter (2010), the fatalities were 15% higher
for tornadoes occurred during offseason compared to tornado
season from March to June. In addition, it has been shown
that nocturnal tornadoes have higher fatality rate than diurnal
tornadoes (Ashley, 2007; Ashley et al., 2008). While advancement
in technology and early warning system has greatly reduced the
overall number of casualties due to tornadoes, the fatality rates for
nocturnal tornadoes remained largely unchanged over the years.
Ashley et al. (2008) found that nocturnal tornadoes occurring
during midnight to sunrise of local time are 2.5 times more
likely to kill that those tornadoes occurring during the day time.
Therefore, it is very important to have a model that can explicitly
simulate geographic dependent tornado parameters such as EF-
scale, path length, path width, spawn month, and spawn time
in a day, in particular, when the model is intended for use in
estimating occupant risk or casualty.
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METHOD OF ANALYSIS

Analysis Procedure
The main procedure used to simulate the geographic
dependent tornado tracks is present in Figure 2, and discussed
in this paper according to the following organization:

1) Data pre-processing (section Data Sources): the historical
tornado database was pre-processed to remove incomplete
data set and reconcile inconsistent entries.

2) Stochastic model development (section Genesis model to
Wind field model): the stochastic tornado simulation model
contains three sub-models, (i) genesis model which is used
to determine the spawn frequency and location; (ii) tracking
model which is used to simulate the track parameter such
as path width, length, heading direction and intensity; (iii)
windfield model which is used to compute the wind speeds
within the tornado footprint.

3) Tornado track simulation: using the developed stochastic
tornado simulation program, a tornado database which
contains 1 million years of simulated tornado tracks was
generated using a high performance computing cluster.

4) Model validation and hazard maps development (section
Synthetic tornado tracks database and applications): the
statistics of the simulated tornado tracks are compared to
historical observations to verify that the simulated tornado
hazard matches the observed trend. Using the computed peak
wind speeds, a series of tornado hazard maps are developed
and a potential application of the simulated tornado database
is also presented.

Data Sources
There are two tornado databases that are widely used in tornado
related research: (1) the Grazulis database contains over 10,000

FIGURE 2 | Flowchart of tornado track simulation procedures.

tornadoes for the period of 1921–1995; (2) the NOAA database
with over 60,000 tornadoes for the period of 1950 to present. Both
of these databases contain detailed tornado track information
such as, spawn location (latitude and longitude), starting time,
width, length, and damage classification. However, the Grazulis
database only includes F2 and higher intensity tornadoes prior to
1995. It should be noted that the well-known Fujita scale tornado
intensity classification system was proposed by Dr. Theodore
Fujita in 1971 and it was not incorporated into the tornado rating
until 1973. The enhanced Fujita (EF) scale was later introduced
in 2007. Instead of determining the tornado intensity based on
field measurement using the “degree of damage” scale, recorded
tornado intensities before 1973 were assigned purely according
to the newspaper reports or photographs of the affected regions.
Note that both F scale and EF scale are damage based rating
system and the numerical categories of both scales are intended
to be consistent in terms of the impact or damage to structures.
Based on much work from post-tornado field investigations and
observations from Doppler radar, the wind speeds associated
with the original Fujita scale were deemed too high. This led to
the development of the EF scale and the re-assignment of the
wind speeds. Since the data set from SPC contains both F and
EF scales, a direct mapping of F scale ratings into EF scale is used
in this study (e.g., F0 is treated the same as EF0).

Figure 1 shows the tornado annual spawn frequency for the
continental of the US and the 10-year moving average from 1950
to 2015. The annual spawn frequency in the 1990s increased by
60% com-pared to the 1950s and increased by 30% compared to
1970s. The observed increased spawn rate in recent decades is
likely due to the implementation of Doppler radar network in the
early 1990s. In other words, the annual spawn frequency records
prior to 1990 may be underestimated.

Stochastic Track Simulation Model
The main simulation model includes two sub-models, namely,
the genesis model and track model. The genesis model is
used to simulate the tornado annual occurrence rate and
spawn locations. The track model is utilized to simulate the
tornado track parameters (such as intensity, heading direction,
width etc.) according to its spawn location. The parameters
of each simulated tornado include the intensity (EF scale),
touchdown location in terms of the latitude and longitude,
touchdown date and time, path length, path width and
heading direction.

The parameters of the simulated tornadoes in this study are
geographic dependent. In other words, the tornado parameters
(e.g., EF scale) are sampled from probability distributions that
vary based on geographic location. For example, the likelihood
of a major tornado (EF 4 or EF 5) spawns in Kansas, a tornado
prone area, is expected to be significantly higher than that
in a location along the eastern coast of the United States.
To achieve a geographic dependent simulation, the Kernel
Density Estimation method (KDE) is applied in both the genesis
model and the track model. The KDE method is one of the
most commonly used spatial analytical techniques, which is
often used to quantify the spatial variation of the probability
density of a random variable. A bivariate normal distribution
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is utilized to as the kernel density estimator. The probability
density function (PDF) of the bivariate normal distribution is:
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Where, µx and µy are the longitude and latitude of the observed
spawn location of each tornado. σx and σy are the bandwidths
for longitudinal and latitudinal directions, respectively, and ρ is
the correlation coefficient. The bandwidths represent the likely
deviations or drifts of spawn locations of future tornadoes from
the known observed locations. In this study, it is assumed that
the future spawn locations of tornadoes are equally likely to drift
away from the past observed locations in the longitudinal and
latitudinal directions, and there is no correlation between the
two directions. In other words, σx is equal to σy and ρ is taken as
zero. As a result, there is only one free parameter to be estimated
in Equation 1, which is the bandwidth, σ (i.e., σx = σy = σ ).

The problem at hand is to select an optimal bandwidth for
each tornado parameter. An overly large bandwidth may result
in over-smoothed estimation, suppressing the actual underlying
structure of the probability density distribution. In contrast, if
a small bandwidth is applied, the estimated density function
may contain spurious statistical artifacts and sharp changes in
probability density values between close proximity locations.
The bandwidth selection technique via diffusion proposed by
Botev et al. (2010) is applied to determine the bandwidth in
this study. The selection via diffusion algorithm evaluates the
best-fit bandwidth according to the spatial distribution and size
of the sample space. Compared to the commonly used mean
integrated squared error method, the bandwidth selection via
diffusion approach is computational efficiency and it better suited
for estimating multimodal density function.

Genesis Model
According to the previous research by Standohar-Alfano and van
de Lindt (2015), negative binominal distribution was determined
to be a distribution suitable for describing the tornado annual
frequency. The PDF of the negative binomial distribution is
given by:

Pr (X=NTor)=

(

NTor+r−1

NTor

)

pNTor (1−p)r (2)

where NTor is the number of tornados occurred in a year.
p= 0.0253 and r = 31.605 are the distribution parameters fitted
using the observed annual spawn rates of the SPC database. The
p and r parameters were estimated via the maximum likelihood
method using the SPC data from 1990 to 2015. As previously
discussed, the spawn rates prior to 1990 are excluded because it
is believed that the dataset may be underestimated due to poor
observation coverage.

The quantile-quantile (Q-Q) plot is utilized to judge
the quality of fit of the observed and modeled probability
distributions by plotting their quantiles against each other. If the
observed and modeled probabilities have identical distributions,
the points in Q-Q plot will approximately lie on a straight

diagonal (45-degree) line. In Figure 3, the modeled tornado
annual occurrence rates are plotted on the x-axis, and the

corresponding quantile values from the actual observations are
plotted on the y-axis. The red dots in Figure 3 represent the 10th,
20th, 30th to 90th percentiles of the two probability distributions.
According to the observation, most of the points are close to
the 45-degree line which means the fitted negative binomial
distribution can be used to model the annual spawn rate of
tornadoes in the US. It should be noted that the fitted probability
distribution model deviates slightly from the empirical dataset in
region of high annual occurrence rates (>1,500 tornadoes/year)
or beyond the 90th percentile.

To consider the variation in tornado occurrences due to
climatological differences in the US (Kelly et al., 1978; Farney
and Dixon, 2014), this study modeled the tornado touchdown
location as a geographic dependent parameter. Each simulated
tornado spawn location is randomly generated using a bivariate
normal random number generator with an optimal bandwidth
(Equation 1). The random number generator returns a random
location chosen from the bivariate normal distribution with
input means (µx and µy), and variance (σ), where the means
control the center location of the distribution and σ controls the
dispersion of the distribution (bandwidth). The means (latitude
and longitude) are sampled from the known spawn locations of
historical events and variance (σ) is obtained from the previously
discussed KDE by diffusion method.

The tornado genesis model simulation procedures are
as follows:

1) Randomly sample a tornado annual spawn rate (NTor) from
the negative binominal distribution (p = 0.0253, r = 31.605);

FIGURE 3 | Quantile-to-quantile plot of observed versus modeled annual

tornado spawn frequencies.
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2) Randomly select a tornado year (1950–2015) and use all the
observed tornadoes in that particular year to generate the
KDE of the spawn locations with an optimal bandwidth;

3) Randomly selectNTor spawn locations with replacement using
all the observed tornadoes of the selected year in step 2;

4) Use the KDE method to vary the spawn locations determined
in step 3 (i.e., use a bivariate normal distribution with the
center (µx and µy) equal to the initial spawn locations
determined in step 3 and the variance (σ) equal to the optimal
KDE bandwidth determined in step 2 to randomize the final
spawn locations).

During the genesis process, if the randomized spawn location of
a tornado is outside of the US land boundary (i.e., in ocean), step
4 is repeated until that particular tornado is inside the US land
boundary. To preserve the local climatological patterns, instead
of aggregating all historical spawn locations to generate one KDE
map, a KDE model for spawn location is produced for each
simulation year. Figure 4 shows an example simulation year with
spawn locations of tornadoes derived based on the tornadoes
of year 1992 as the seeds. The probability density contours of
both the modeled and observed tornado spawn locations are
shown in Figures 4A,B, respectively. As can be seen, the modeled
tornadoes follow the spatial pattern of the observed tornado
distribution very well. Both the observed and modeled tornado
spawn KDE contours show high probabilities of occurrence in
the northwest region of Kansas and near Louisiana.

Track Model
For each tornado spawned using the genesis model, six additional
tornado parameters, namely (1) EF-scale (B), (2) path direction
(θ , measured clockwise from the true North), (3) spawn month
(M), (4) spawn time (H), (5) path length (L), and (6) width (W),
are simulated using the track model. To ensure the simulated
tornado parameters follow the geographic patterns of historical
tornado records, the data for each tornado parameter is divided
into subgroups and each subgroup is analyzed separately using

the same KDE approach employed for the spawn location model.
Table 1 shows the grouping of the four tornado parameters.

For a specific tornado parameter, for instance the EF-scale,
the historical tornadoes are categorized into different groups (Bi)
and each group contains tornadoes with the same characteristic
(e.g., EF-scale equal to 2). The tornado spawn records from these
grouped datasets are used to generate the probability density
contour maps using the KDE method. The KDE contours reflect
the spatial distribution and concentration of tornadoes with the
same characteristic. The developed probability density contour
maps are used to determine the point estimate for probability
density of tornadoes at a given location with the specified group
of parameter of interest. Figure 5 shows two examples probability
density models (maps) developed using only the EF-2 tornadoes
(Figure 5A) and only those tornadoes spawned during early
January (Figure 5B).

Once the spawn location of a tornado has been determined
using the genesis model, the conditional probability are used to
simulate the six tornado parameters. For illustration purpose,
consider the determination of EF-scale for a tornado j at
location (Lat, Lon)j. According to the conditional probability, the
probability of a tornado occurs at location (Lat, Lon)j and its

TABLE 1 | Tornado parameter groups.

Group

Bi

Parameter

EF-scale Heading

angle (deg◦)

Spawn

hour

Spawn

Date/Month

B1 EF 0 0–22.5 1 Early Jan.

B2 EF 1 22.5–45 2 Late Jan.

B3 EF 2 45–67.5 3 Early Feb.

: : : : :

Bn−1 EF 4 315–337.5 23 Early Dec.

Bn EF 5 337.5–360 24 Late Dec.

FIGURE 4 | Probability density contours of tornado spawn locations for (A) modeled, and (B) observed tornadoes using the tornadoes spawned in year 1992 as

the seeds.
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FIGURE 5 | Probability density contours for (A) EF-2 tornadoes and (B) tornadoes spawned in early January.

EF-scale is equal to Bi is:

P
(

(Lat,Lon)j∩Bi

)

= P
(

(Lat,Lon)j
∣

∣Bi

)

×P(Bi) (3)

where P(Bi) is the probability of observing a particular EF-
scale in the US, which can be obtained from Figure 6A. P((Lat,
Lon)j|Bi) denotes the point estimate for the probability of a
tornado spawned at location (Lat, Lon)j given that the EF-scale
of the tornado is Bi. To obtain the point estimate probability
based on EF-scale, a set of probability density maps are developed
by grouping the historical tornadoes into groups B1 to B6
for tornadoes with EF-scales equal to 0 to 5, respectively. For
instance, the P((Lat, Lon)j|Bi = EF-2) value for EF-2 tornadoes
can be obtained from Figure 5A.

Using the simulated tornado spawn location, the intensity of a
tornado can then be sampled using a site specific PDF:

PEFi,Locj=
P(EFi∩Locj)

∑5
m=0 P(EFm∩Locj)

=
P
(

(Lat,Lon)j
∣

∣Bi

)

×P(Bi)
∑5

m=0 P
(

(Lat,Lon)j
∣

∣Bm

)

×P(Bm)

(4)
Figure 6B shows an example site specific PDF determined using
Equation 4 for a location in Oklahoma City. Note that while
EF-0 tornadoes have the highest occurrence probability for the
contiguous US (see Figure 6A), Figure 6B shows that EF-1
tornadoes are most likely to spawn in Oklahoma City. For each
simulated tornado, a site specific PDF for EF-scale is produced
and used to simulate the EF-scale of the tornado.

Similar procedures are applied to simulate the tornado spawn
hour, spawn date/month, and heading angle. For determining
the tornado spawn hour, Bi represents the tornado spawn hour
in a day (1 to 24). Figure 6C shows the PDF for tornado spawn
hour for the contiguous US. For the heading direction or angle,
the data are grouped into eight equal bins with a 22.5-degree
increment. For the spawn date and month, the data are divided
into 24 groups with each month split into two segments, first
half and second half of the month (Figure 6D). It should be
noted that the first half of each month always contains 15 days
and the second half of the month contains the remaining days
of that month. After the tornado spawned month segment has
been determined (i.e., early January, late January etc.), the spawn

day number of the year (1–365) is sampled using the cumulative
distribution function shown in Figure 6E, which is developed
based the spawn dates of all tornadoes in the SPC database.

It has been shown that tornado path length (L) and path width
(W) tend to increase with increasing tornado intensity (Brooks,
2004). Therefore, tornado path length and width are simulated
according to the EF-scale. A more intense tornado tends to have
a longer path length and wider path width than that of the
weaker ones. Following the study by Brooks (2004), the tornado
path lengths and maximum widths are modeled using the two-
parameter Weibull distribution (Figures 7A,B). The cumulative
distribution function of the Weibull distribution is:

F (x)=1−exp[− (x/c)d ] (5)

where c and d are the scale and shape parameters of the
distribution. The fitted distribution parameters using maximum
likelihood method for path length and path width grouped by
EF-scale are shown in Table 2.

To ensure that the tornado with and length follow both the
statistical distribution and geographic features, the historical
tornadoes are firstly grouped according to the EF scale. Then,
EF-0 to EF-4 tornadoes are further divided into four different
length (width) sub-group based on the 25th, 50th, and 75th
percentiles. Since the data for EF-5 tornadoes are limited, the
length and width of EF-5 tornadoes are split into two sub-groups,
divided at the 50th percentile. These grouped dataset are used
for generating the probability density contour maps using the
KDE method. Tables 3, 4 show the grouping of path length and
path width, respectively, based on quantiles and EF-scale. For
instance, the subgroup L2 inTable 3 for EF-2 tornado contains all
tornadoes with path length that is in between 2.2 km and 6.5 km,
which correspond to the 25th and 50th percentiles of the EF-2
tornado length.

The probability density contour maps conditioned on path
length, P((Lat, Lon)j |Li), and path width, P((Lat, Lon)j |Wi), are
generated using the same approach used for other parameters
such as EF-scale and spawn month. The KDE contour maps
shown in Figures 7C,D reveal that small-scale tornadoes with
lower 25th percentile path length [≤0.33 km (0.21 mi)] and
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FIGURE 6 | Probability density functions by (A) EF-scale for the contiguous United States, (B) EF-scale for a specific location in Oklahoma City; (C) spawn hour;

(D) spawn month, and (E) cumulative probability distribution of tornado spawn day of the year.

path width [≤14.4m (15.8 yd)] are often observed in Florida
Peninsula, region along the Gulf coast and Central region of the
US. Large-scale tornadoes with the path length and path width
greater than the third quartile values [PL ≥ 5.5 km (3.4 mi) and
PW≥ 112.9m (123.5 yard)] aremore likely to spawn in Southeast

region of the US (Figures 7E,F). Using the probability contour
maps developed for each length andwidth subgroups, site specific
probability density functions (PDFs) for path length and width
grouped by quantiles are determined using Equations 3 and 4.
Once the site specific PDFs for path length and path width have
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FIGURE 7 | Observed and fitted cumulative distributions for path length (A); Observed and fitted cumulative distributions for path width (B); Small-scale tornado

spawn location density contours for (C) length <0.33 km, and (D) width <14.4m; large-scale tornado spawn location density contours for (E) length >5.5 km, and (F)

width >112.9m.

been determined, the inverse CDF method along with the fitted
Weibull distribution parameters shown in Tables 3, 4 are utilized
to simulate the tornado path length and width.

Wind Field Model

Wind field along the tornado length
Due to the difficulty of obtaining direct measurements of tornado
wind speeds, the near surface wind speed is typically estimated
based on the damage observed. A methodology to estimate the

variation of tornado wind speed along its path using tree-fall
and crop-fall patterns is developed (Rhee and Lombardo, 2018).
The intensity of a tornado along the track usually degrades
as the ground friction dissipates the energy of the tornado.
After examined 150 tornado tracks, Twisdale and Dunn (1981)
determined the intensity variation along the track of tornadoes.
The fractions of the tornado strength for each of the highest EF-
scales attained by a tornado are shown in Figure 8. In this study,
it is assumed that the maximum intensity occurs at the middle of
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TABLE 2 | Modeled Weibull distribution parameters for path length and path

width by EF-scale.

EF0 EF1 EF2 EF3 EF4 EF5

Length (km) c 1.161 4.284 10.28 25.36 44.71 67.67

d 0.6773 0.7288 0.7963 1.037 1.138 1.549

Width (m) c 41.32 93.56 187.3 414.9 701.8 952.4

d 1.055 0.9431 0.9084 0.9944 1.158 1.377

TABLE 3 | Tornado length group, Li.

L1 (km) L2(km) L3(km) L4(km)

EF 0 PL ≤ 0.2 0.2 < PL ≤ 0.7 0.7 < PL ≤ 1.9 PL > 1.9

EF 1 PL ≤ 0.8 0.78 < PL ≤ 2.6 2.6 < PL ≤ 6.7 PL > 6.7

EF 2 PL ≤ 2.2 2.2 < PL ≤ 6.5 6.5 < PL ≤ 15.5 PL > 15.5

EF 3 PL ≤ 7.6 7.6 < PL ≤ 17.8 17.8 < PL ≤ 34.8 PL > 34.8

EF 4 PL ≤ 14.9 14.9 < PL ≤ 32.4 32.34 < PL ≤ 59.6 PL > 59.6

EF 5 PL ≤ 53.4 PL > 53.4 – –

TABLE 4 | Tornado width group, Wi.

W1 (m) W2 (m) W3 (m) W4 (m)

EF 0 PW ≤ 12.7 12.7 < PW ≤ 29.2 29.2 < PW ≤ 56.3 PW > 56.3

EF 1 PW ≤ 24.9 24.9 < PW ≤ 63.4 63.4 < PW ≤ 132.3 PW > 132.3

EF 2 PW ≤ 47.5 47.5 < PW ≤ 125.1 125.1 < PW ≤ 268.3 PW > 238.3

EF 3 PW ≤ 118.5 118.5 < PW ≤ 286.9 286.9 < PW ≤ 576.2 PW > 576.2

EF 4 PW ≤ 239.4 239.4 < PW ≤ 511.4 511.4 < PW ≤ 930.4 PW > 930.4

EF 5 PW ≤ 729.8 PW > 729.8 – –

the tornado path and the lower bound EF-0 wind speed (65 mph)
occurs at the fringe of the tornado track.

Wind field across the tornado width
The wind speed variation along the tornado width is modeled
using the modified Rankine vortex model in which the tangential
velocity can be computed as:

Vtan (r)=
rŴ∞

π
(

r2+r2c
) (6)

where r is the radial coordinate with r = 0 at the center of the
tornado vortex and rc is the core radius where the maximum
tangential velocity (Vtan,max) occurs, and Vtan,max is assumed to
be uniformly distributed between the lower and upper bound
wind speeds of the corresponding EF-scale. Ŵ∞ = 2πrcVtan,max

is the maximum vortex strength. Substitute Ŵ∞ = 2πrcVtan,max

into Equation (6) yields:

Vtan (r)=
rŴ∞

π
(

r2+r2c
)=

2r
(

rcVtan,max

)

r2+r2c
(7)

Where the only unknown in Equation (7) is rc. Collect the rc
terms in Equation (7) gives the following expression:

r2c−

(

2rVtan,max

Vtan (r)

)

rc+r2 =0 (8)

Note that rc is not equal to the maximum path width (W).
According to the SPC database, the maximum path width is a
damage based value and this study assumes that the building
damage occurs when the tangential wind speed exceeds 65 mph
(lower bound wind speed of an EF-0 tornado). Assume that the
lower bound EF-0 occurs at the edge of the tornado path width,
the core radius rc can be determined by setting the tangential
wind speed Vtan (r) = 105 km/h (65 mph.) at r = W

2 :

r2c−

(

W

105kph
Vtan,max

)

rc+

(

W

2

)2

=0 (9)

The core radius is computed by substituting the simulated path
width (W) and maximum tangential wind speed into Equation 9.

SYNTHETIC TORNADO TRACKS
DATABASE AND APPLICATIONS

The developed computer program using the Matlab
programming language is utilized to generate 1,000,000
years of synthetic tornadoes. The simulated database contains
more than 1 billion simulated tornado tracks. To verify the
applicability of the simulated tracks, comparisons are made
between the simulated and observed tornadoes for EF-scale,
spawn month, and spawn hour for various locations. In addition,
using the catalog of simulated tornado tracks, a probabilistic
tornado hazard analysis is performed for Moore, Oklahoma.
To study the influence of domain size on tornado risk, tornado
hazard curves for three different domain sizes are generated for
a location in Moore, Oklahoma.

Tornado Tracks
As an illustrative example, comparison between the simulated
and observed tornado tracks within a radius of 40 mi (64.4 km)
from the Oklahoma City for an observation period of 43 years
(1973 to 2015) is shown in Figure 9A. The full paths of the
simulated tornadoes are shown in Figures 9B–D along with
the EF-scale identified by color. The simulated tracks visually
agree with the pattern of the historical tornado tracks. For
instance, both the observe and simulated tracks show that
EF-0 and EF-1 tornadoes tend to have shorter lengths when
compared to the more intense EF-4 and EF-5 tornadoes. The
corresponding tornado counts for each EF-scale are shown in
Table 5, which match the historical counts reasonably well. Note
that Table 5 shows the results for one realization over a 43-
year time frame. The results may vary for different realization of
43-year time span.

A previous study by Sigal et al. (2000) has shown that 100,000
simulation years may not be adequate to achieve stability of the
simulated tornado hazard. A convergence study was carried out
to determine the stability of the simulated occurrence rate for
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FIGURE 8 | Tornado intensity variation along the track.

multiple realizations of 1 million simulated years for a 2-mile
circular study domain located in Oklahoma City, Oklahoma.
Figure 9E shows the convergence plot of the coefficient of
variation (CoV) of the spawn rate vs. simulation year. It can
be seen that about 200,000 simulation years are needed to keep
the CoV of spawn rate of all tornadoes (i.e., EF0 and higher) to
<0.01. For intense tornadoes (EF4 and higher) that aremore rare,
slightly <1 million simulation years are needed to maintain the
CoV of spawn rate to <0.01.

Tornado Intensity
The comparison between the simulated and observed tornado
PDFs for the contiguous US by EF-scale are shown in
Figure 10A. The breakdown of the simulated tornadoes by EF-
scale matches the past observations very well, which confirms
that the simulation program produces the correct ratios for
different EF-scale tornadoes.

To confirm that the spatial distribution of tornado by EF-
scale is properly capture in the simulated database, probability
density maps are generated for simulated and observed tornadoes
(Figures 10B–G). The patterns of the probability density
contours of the simulated tornadoes for each EF-scale group
match that of the contours from the observed tornadoes. Weak
tornadoes (EF 0 and EF 1) have a wide spread area of occurrences
and they cover the midsection and Southeast portions of the US.
In addition, except for those occurred in the Tornado Alley, weak
tornadoes are also likely to spawn in Florida peninsula and region
around the Gulf coast. The high occurrences of weak tornadoes
in the coastal regions are likely due to additional tornadoes that
spawned during the landfall of tropical cyclones or hurricanes.
Strong tornadoes (EF 2 and EF 3) have high probabilities of
occurrence in the Southeast region of the US, which includes
portion of the Tornado Alley and most of the Dixie Alley. The
peaks of the probability density contours for major tornadoes

(EF 4 and EF 5) are observed in Tornado Alley, Dixie Alley
and Midwest.

Tornado Spawn Month
The seasonal variation of spawn probability of tornadoes is
explicitly considered in this study. The comparison between the
simulated and observed tornado monthly spawn rates is shown
in Figure 11A. As can be seen, good agreements are achieved
between the simulated and observed spawn probabilities for all
12 months.

Due to strong wind shears and atmospheric instability that
often occurs in spring and summer, the months with high
tornado spawn probabilities are April to July. The geographic
and seasonal dependent behaviors of simulated tornadoes are
shown in Figures 11B–I. The geographic regions with high
spawn probabilities change drastically with the change of season.
During the winter season (Figures 11B,C), tornadoes generally
spawn in the Southeast region whereas during the summer
(Figures 11F,G), tornadoes may spawn in the Mid-west and
Northeastern part of the US.

Tornado Spawn Hour
It has been shown that tornado occurrence is highly correlated
to the time or hour in a day. The occurrence density has been
shown to closely follows the diurnal temperature curve (Kelly
et al., 1978), with the peak occurrence probability during late
afternoon, while minimum occurrence probability just prior to
the sunrise (Figure 12A).

The tornado spawn probability contours grouped by hour
exhibit similar patterns as those grouped by month or season
(Figure 11), which follow the diurnal temperature variation.
When the diurnal temperature is low, between 6 am and 12 noon
(CST), tornadoes are most likely spawn in Florida and along the
Gulf Coast (Figures 12D,E). The peak spawn locations move to
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FIGURE 9 | Tornado tracks for Oklahoma City, Oklahoma (A) actual observed tornado tracks from 1973 to 2015, and sample (B,C,D) tornado tracks for 43

simulation years; (E) convergence of spawn rate for Oklahoma City vs. simulation years.

TABLE 5 | Number of simulated and observed tornado tracks near Oklahoma City.

EF 0 EF 1 EF 2 EF 3 EF 4 EF 5

Observed (1973–2015) 120 124 41 20 10 3

Simulated (A) (43 years) 129 115 39 19 3 2

Midwest and further extend into theNorth andNortheast regions

of the US between 12 noon and 11 pm (CST) (Figures 12F–I).

Finally, the regions with peak occurrence probability return back

to Florida, the Gulf Coast and Midwest areas between 12 mid
night and 5 am (CST) (Figures 12B,C).
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FIGURE 10 | Comparison between observed and simulated tornadoes (A) spawn probabilities by EF-scale; probability density contours for (B,C) EF-0 and EF-1;

(D,E) EF-2 and EF-3; (F,G) EF-4 and EF-5.

Comparisons for Select Cities
Comparisons are made between the simulated and observed
statistics for tornado EF-scale, spawn month, and spawn
hour for select cities. Four cities are chosen based on
the degrees of tornado activity in the regions (Figure 13).
These cities are: (1) Des Moines, Iowa (41.577, −93.617)
located in High Plains region; (2) Oklahoma City, Oklahoma
(35.457, −97.514) located in tornado alley; (3) Indianapolis,
Indiana (39.777, −86.148) located in Midwest region; (4)
Birmingham, Alabama (33.536, −86.798) located in Dixie
alley. A search radius of 40 km (25 mi) from the city
center is used to identify the tornadoes that affect the city

of interest. Those tornadoes within the search radius are
used to compare the statistics of the simulated and actual
observed tornadoes.

Tornado Spawn Month and Time
The probability mass functions of tornado spawn hour and
month for the select locations are shown in Figure 13. The
red x marks are the means of the observed probability density
values and the blue bars are the simulated probability densities.
The 95% confidence intervals are plotted as red lines. It can
be seen from Figure 13 that the probability densities of the
simulated tornado spawn time and month match the observed
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FIGURE 11 | Comparison between observed and simulated tornadoes (A) spawn probabilities by month; probability density contours for (B,C) January to March,

(D,E) April to June, (F,G) July to September, and (H,I) October to December.

data. All four cities considered experience elevated tornado
activities from March to June. Past study have shown that,
nocturnal tornado is the main reason that causes high fatality
rate in the South-eastern region of the US (Ashley, 2007; Ashley

et al., 2008). Unlike other cities which tornado often observed
during the afternoon, Figures 13A,C show that Indianapolis
and Birmingham have relatively high probabilities of observing
tornadoes during the night.
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FIGURE 12 | Comparison between observed and simulated tornadoes, (A) spawn probabilities by hour (CST); probability density contours for hours (B,C) 0–5; (D,E)

6–11; (F,G) 12–17; (H,I) 18–23.

Tornado Intensity
The annual tornado spawn frequencies within a radius of
40 km (25 mi) of the select cities for different EF-scales are
plotted in Figure 14. The histograms show the simulated tornado

frequencies and the x markers are the means annual frequencies
of historical events. Also shown in Figure 14 are the 95%
confidence intervals of the annual spawn rates estimated based
on limited historical tornado events. The mean annual spawn
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FIGURE 13 | Probability density functions of tornado spawn hour and spawn month for (A,B) Indianapolis, Indiana; (C,D) Birmingham, Alabama; (E,F) Oklahoma City,

Oklahoma; (G,H) Des Moines, Iowa.

frequencies by EF-scale of the simulated tracks fall within the
95% confidence intervals for all four cities. The numbers above
the histogram are the mean number of simulated tornado
tracks (top) and observed tornado tracks (bottom) for an
observation period of 43 years. Note that there were no EF
5 tornado reported in Indianapolis and Des Moines over the

record period (1950–2015); however, this does not mean the
occurrence probability of EF 5 tornadoes in these cities are
zero. Based on the simulation program, the model predicted
annual spawn frequencies for EF-5 tornadoes in Indianapolis
and Des Moines are 3.6 × 10−3 and 5.2 × 10−3 events per
year, respectively. In other words, the mean return periods of
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FIGURE 14 | Annual spawn frequencies by EF-scale for (A) Indianapolis,

Indiana (B) Birmingham, Alabama, (C) Oklahoma City, Oklahoma, and (D),

Des Moines, Iowa.

EF-5 tornado for Indianapolis and Des Moines are 278 and 198
years, respectively.

Hazard Curves
To demonstrate one of the many potential applications
of the simulated tornado database, tornado hazard curves
in terms of 50-year exceedance probability vs. maximum
wind speed are developed for Moore, Oklahoma for three
different domain sizes (Figure 15). The maximum wind speeds
occurred inside the domain are computed using the wind
field model presented in section Wind Field Model. The
radii of the three circular domains considered are 0.16 km
(about 0.1 mi, small domain), 1.6 km (about 1 mi, medium

domain), and 3.2 km (about 2 mi, large domain). All three
domains are centered in Moore, Oklahoma and the study
is aimed to assess the effect of domain size on tornado
hazard curve.

The occurrence of tornado can be reasonably modeled using
a Poisson process. The probability that the peak wind speed vi is
larger than a certain wind speed V induced by tornado during
time period T can be described as:

PT (vi>V)=1− exp
(

−
n

Y
T
)

(10)

where n is the total number of tornadoes producing wind speed
greater than the threshold value V inside the study domain. Y is
the total number of simulation years (i.e., 1 million years in this
study). T is taken as 50 years for 50-year hazard curve:

P50 (vi>V)=1− exp
(

−
n

Y
×50

)

(11)

The 50-year hazard curves in Figure 15B show the domain
size effect. The results indicate that the 50-year exceedance
probability increases with increasing domain size and decreases
with increasing peak wind speed. Based on the hazard curves
shown in Figure 15, there is a 95% probability that the large
domain with a 3.2 km (2mi) radius area inMoore, Oklahomawill
experience at least one EF-0 or stronger tornado with wind speed
exceeding 105 km/h (65 mph) in a 50-year time span, whereas
the small domain has about 9.8% chance of experiencing EF-0 or
stronger tornadoes for the same 50-year time span. The hazard
curves for various domain sizes may be used by engineers to
design buildings and other structures to resist tornado loading
with a prescribed safety level (exceedance probability).

SUMMARY AND CONCLUSION

In this study, the NOAA SPC tornado database is utilized
to develop a stochastic simulation program. The spawn or
touchdown locations are simulated using geographic dependent
KDE, which specifically accounts for the spatial distribution
of tornadoes properties at different geographic regions (e.g.,
tendency to spawn strong in Dixie alley and etc.). The simulated
track parameters include the tornado occurrence rate, intensity
(EF-scale), touchdown location, touchdown time, and path
direction. All these parameters are geographic dependent,
meaning the properties vary depend on the geographic locations.
The simulated spawn rates and other parameters for the
contiguous US and for four select cities are compared to
observations and the modeled results compared well with the
observed tornado records. As an illustrative example, the 50-year
tornado hazard curves for Moore, Oklahoma with three domain
sizes are generated using the simulated tornado database. The
results show that domain size has a significant influence on the
tornado hazard curve. Therefore, size effect (e.g., single-family
vs. big box store) may need to be considered in building code
for tornado design. The developed tornado database may be used
by engineers for performance-based design or risk analysts for
catastrophe modeling and loss estimation for tornado hazards.
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FIGURE 15 | Domain sizes for (A) Moore, Oklahoma, and (B) 50 year tornado wind hazard curves.
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