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It is known that, while the stochastic Green’s function method is suitable for generating

ground motions with short periods, the three-dimensional finite difference method (FDM)

is appropriate for ground motions with rather long periods. In the previous research, the

stochastic Green’s function method was used for finding the critical earthquake ground

motion for variable fault rupture slip (slip distribution and rupture front). However, it cannot

be used for ground with irregularities and for wave component with rather long periods.

In responding to this request, the FDM is used in this paper for finding the critical ground

motion for structures with rather long natural period. Since the FDM is time-consuming,

it seems unfavorable to use it in a simple sensitivity algorithm where an independent

response sensitivity is calculated for many design parameters. To overcome this difficulty,

the bi-cubic spline interpolation of uncertain parameter distributions (seismic moment

distribution in this paper) and the response surface method for predicting the response

surface from some sampling points are used effectively in this paper. The uncertainty

parameter is the fault rupture slip distribution described in terms of seismic moments. It

is found that the critical ground motion for structures with rather long natural period can

be found effectively by the proposed method.

Keywords: critical ground motion, worst input, fault rupture, finite difference method (FDM), response surface

method, spline interpolation, long-period structure, robustness

INTRODUCTION

There was common understanding that earthquake ground motions can be classified into a
few types (Abrahamson et al., 1998). However, many earthquake ground motions of peculiar
characteristics have been observed recently in the world (for example, Mexico, 1985; Northridge,
1994; Kobe, 1995; Chi-chi, 1999; Tohoku, 2011). After such earthquakes occur, we feel that
unpredictable ground motions can occur and powerful theoretical approaches are inevitable to
respond to those groundmotions. One of the approaches may be the critical excitation method (see
Drenick, 1970; Takewaki, 2007) which enables the search of the worst earthquake ground motion
among possible ones. To tackle the worst ground motion under the consideration of fault rupture
models, tools for producing ground motions in terms of fault rupture models may be necessary
(Makita et al., 2018b).
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It is well recognized that, while the empirical Green’s function
method (Irikura, 1986; Yokoi and Irikura, 1991) or the stochastic
Green’s function method (Wennerberg, 1990; Hisada, 2008) is
suitable for generating ground motions with short periods, the
three-dimensional finite difference method (FDM) is appropriate
for ground motions with rather long periods (Bouchon, 1981;
Hisada and Bielak, 2003; Yoshimura et al., 2003; Nickman et al.,
2013). To enhance the usability of the FDM, an open software
(GMS: GroundMotion Simulator) is available (Aoi and Fujiwara,
1999; Aoi et al., 2008; Maeda et al., 2012, 2016; Tanaka et al.,
2014). The combination of these two-type motions with the use
of a matching filter is acknowledged as the most powerful and
reliablemethod for generating earthquake groundmotions under
the consideration of fault ruptures and surface waves. Since the
parameters used in these methods for ground motion generation
contain various uncertainties, i.e., aleatory uncertainty and
epistemic uncertainty (Taniguchi and Takewaki, 2015; Okada
et al., 2016), the treatment of such uncertainties are essential for
the reliable estimation of ground motions (Abrahamson et al.,
1998; Lawrence Livermore National Laboratory, 2002; Morikawa
et al., 2008; Cotton et al., 2013).

In the previous research (Makita et al., 2018a), the effect of
the fault rupture was taken into account simply by introducing
the phase difference method. The robustness of a new building
structural system consisting of base-isolation and building

FIGURE 1 | Outline of proposed method. (A) Scheme of setting variable seismic moment distribution in fault. (B) Flowchart for finding critical earthquake ground

motion.

connection (Murase et al., 2013) was investigated for uncertain
ground models. However, the fault rupture mechanisms cannot
be considered in detail. In another previous research (Makita
et al., 2018b), the stochastic Green’s function method was used
for finding the critical earthquake ground motion for variable
fault rupture slip (slip distribution and rupture front). However,
it cannot be used for ground with irregularities and for wave
component with rather long periods.

Since the FDM is time-consuming, it seems unfavorable to
use it in a simple sensitivity algorithm where an independent
response sensitivity is calculated for each design parameter. To
overcome this difficulty, the bi-cubic spline interpolation of
uncertain parameter distributions (seismic moment distribution
in this paper) through the control points and the response surface
method for predicting the response surface from some sampling
points are used effectively in this paper. The uncertain parameter
is the fault rupture slip distribution described in terms of seismic
moments at the control points. It is found that the critical ground
motion for building structures with rather long natural period
can be found effectively by the proposed method.

To investigate the effect of uncertainty level in the fault
rupture on the robustness of building structures using the
robustness function (Ben-Haim, 2006), several uncertainty levels
are set and the critical fault rupture model is sought. Then the
maximum story ductility is obtained for each uncertainty level.
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OUTLINE OF PROPOSED METHOD

In this paper, the uncertain parameter is the fault rupture slip
distribution described in terms of seismic momentsM0. First of
all, the nominal distribution of fault rupture slip is given. The
rupture front is assumed to develop concentrically as shown
in Figure 1A. To reduce the degree of freedom in the setting
of variable fault rupture slip distribution, some control points
are selected in the fault. Sampling points in the uncertain
parameter range are planned by the experimental design
method at all control points. Then the uncertain parameters
at all points are interpolated from the values at the control
points by introducing bi-cubic spline interpolation of uncertain
parameter distributions (seismic moment distribution in this
paper). In the next, ground motions are generated by using
the FDM. The response of a structure under the generated
ground motion is computed. Then the response surface is
obtained by the least-squares method. The maximum value
of the response surface is determined by using the Sequential
Quadratic Programming (SQP) method. Finally, the critical
fault model is found and the corresponding ground motion
is generated. The earthquake response analysis is conducted
under the critical ground motion. The flowchart for finding the
critical earthquake ground motion is shown in Figure 1B. To
investigate the robustness of a building structure with rather

long natural period with respect to the variability of the fault
rupture distribution, the robustness function due to Ben-Haim
(2006) is introduced. The relation of the maximum response
of the structure with the uncertainty level of variable fault
rupture slip distribution provides the quantitative evaluation
of the robustness of the structure against the uncertain
environment.

As mentioned above, in the generation of ground motions,
FDM is used for producing ground motions with rather
long periods (usually longer than about 1–2s). For ground
motion components with shorter periods, the stochastic Green’s
function method is often used. Then both ground motion
components are combined with the matching filter. Since a
building structure with a rather long fundamental natural
period is treated here, FDM is employed for generating ground
motions.

FINITE DIFFERENCE METHOD (FDM)

The three-dimensional finite difference method (FDM) is often
used as a useful numerical method for generating earthquake
ground motions on the ground with irregularities. It can also
take the fault rupture mechanism into consideration. In the
research group of ground motion generation, an open source

FIGURE 2 | Expression of variability in seismic moment allocated to fault element for response surface method. (A) Schematic diagram of three-dimensional Central

Composite Design (CCD). (B) Example of epaxial point. (C) Example of factorial design.
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FIGURE 3 | Process of constructing critical fault model (variation of seismic moment in each fault element). (A) Setting of nominal model. (B) Variation of seismic

moment at control point. (C) Interpolation of seismic moments at all points from values at control points. (D) Determination of seismic moments at all points by using

bi-cubic spline function. (E) Set the asperity from the obtained seismic moment distribution. (F) Termination of assignment of seismic moment.

(GMS: Ground Motion Simulator: http://www.gms.bosai.go.jp/
GMS/) can be used (Aoi and Fujiwara, 1999; Aoi et al., 2008;
Maeda et al., 2012, 2016; Tanaka et al., 2014). In this paper,
such open source software is used. The reliability and accuracy
of this software will be investigated through the comparison
with actual earthquake events and the benchmark tests (see
Appendix).

OPTIMIZATION IN PROPOSED METHOD

Response Surface Method
The response surface method (RSM) is often used as an efficient
and reliable method for prediction of responses of structures with

many parameters (Khuri and Cornell, 1996). The procedure of

the RSM can be summarized as follows: (i) Select the control
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FIGURE 4 | Modeling of ground and fault. (A) Quarter grid model of FDM. (B)

Source time function.

points, (ii) Plan sampling points by the experimental design

method for the control points, (iii) Interpolate the uncertain
parameters at all points from the values at the control points,
(iv) Generate ground motion using the FDM, (v) Calculate the
response of a structure under the generated ground motion (vi)
Estimate the response surface by the least-squares method, (vii)
Search the maximum value of the response surface using the SQP
method.

While the earthquake ground motions have to be generated
repeatedly in the design procedure based on the conventional
critical excitation method after the change of design conditions
(the change of uncertainty level in the fault as treated in this paper
or the change of superstructures etc.), those do not need to be
generated in the design procedure based on the proposed critical
excitation method using the RSM. This is because the earthquake
ground motions for given sampling points have been generated
and those can be used repeatedly.

Let xi denote the seismic moment at the control point i. The
response surface in terms of quadratic functions can be expressed
as

y =
∑

i

c′ixi +
∑

i

cixi
2 +

∑

i

∑

j 6=i

cijxixj + c0 + ε (1)

where the first term is a linear term, the second term is a quadratic
term, the third term is a cross term, the fourth term c0 is a
constant, and the fifth term ε is an error term. ci, c

′
i, cij are their

coefficients.

Although the second-order approximation is said to be
inferior to the third-order approximation, it has some merits,
(i) the required number of sampling points for a given accuracy
is small, (ii) the solution is stable, (iii) the computational load
for the increasing number of input factors is within a reasonable
range. The coefficients ci, c

′
i, cij, c0 are determined by using the

well-known least-squares method.
In the next, let us explain the sampling method for the

second-order approximation. The representative methods are
(i) Latin Hypercube Sampling (LHS), (ii) Central Composite
Design (CCD), (iii) Box-Behnken Design (BBD) (see Box and
Behnken, 1960). Among these sampling methods, CCD, and
BBD are designed for the evaluation of the second-order
approximation. Figure 2A shows the CCD sampling method
for three parameters. Each axis indicates the variation of the
corresponding uncertain parameter. In the CCD method, the
necessary number of sampling points for n uncertain parameters
is (n + 2)(n + 1)/2 (Ohbuchi et al., 2011). In this paper, CCD
method is employed.

In CCD, three types of sampling points exist, (i) Central
point, (ii) Epaxial point, (iii) Factorial design. Let M0ij and
M̄0ij denote the seismic moment and its nominal value. The
central point indicates a nominal value. The Epaxial point,
(M0ij/M̄0ij) − 1, is on an axis and it varies the range (−1, 1)
as shown in Figure 2B. Figure 2B shows an example such that
the value only at the point (1, 5) varies. Since the Factorial
design is intended to interact with each other, it makes each
parameter vary ±1/

√
n as shown in Figure 2C. The objective

of the Factorial design is to investigate the interaction between
parameters.

Seismic Moment Distribution Using Spline
Interpolation
If the number of divisions in the fault plane is small,
the FDM cannot simulate the smooth fault rupture and
keep the computational accuracy in a wide frequency range.
When we consider many uncertain parameters in a fault
plane, the robustness evaluation needs formidable amount of
computational load. Therefore, some techniques are needed to
reduce the computational load.

The seismic moment distribution at all points is obtained by
using the bi-cubic spline interpolation for the seismic moments
at the control points. Consider the fault element in the region
[pi, pi+1]× [qj, qj+1]. The seismic moment in this region can be
expressed by

fij(p, q) =
3

∑

k,l=0

aklij (p− pi)
k(q− qj)

l (2)

where aklij is the coefficient. The method of setting of the bi-cubic

spline functions is explained in Figures 3A–F. The respective
procedures (a)-(f) can be summarized as follows.

(a) Set the rectangular fault model (nominal model). All the
fault elements in this nominal model have a constant seismic
moment. Select some control points.
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TABLE 1 | Soil conditions.

Layer Thickness

D (m)

Pressure wave velocity Vp (m/s) Shear wave velocity Vs (m/s) Mass densityρ (kg/m3) Q-value

Qp (−) Qs (−)

1 1,000 4,000 2,000 2,600 40f1.0 40f1.0

2 (half-space) – 6,000 3,400 2,700 70f1.0 70f1.0

FIGURE 5 | Fault models. (A) Control point for critical model. (B) Recipe model 1. (C) Recipe model 2. *Starting point of fault rupture.

(b) Vary the seismic moments at these control points within a
specified range.

(c) Interpolate the seismic moments at all points (element fault
points) from the values at the control points by using the
bi-cubic spline functions.

(d) Detect the value M0ij all points from the bi-cubic spline
functions. IfM0ij < 0 is detected, 0 is given.

(e) Set the asperity from the obtained seismic moment
distribution. Select sequentially as an asperity from the
fault element with the largest seismic moment.

(f) When the total seismicmoment attains 70% of the preassigned
seismic moment of the overall fault or the total area of the
asperities becomes over 22% of the fault area, terminate the
selection of the asperities. Modify the rise time of the selected
asperities.

The constraint at the stage (f) is introduced following the
research by Ishii et al. (2000) and Somerville et al. (1999). Ishii
et al. (2000) defined 70% from the largest of the fault elements as
the principal rupture region and Somerville et al. (1999) reported
that the mean area of the asperities in inland earthquakes is 22%.

The rise time at the above-mentioned stage (f) is set following
the research by Day (1982).

τ = W/(2Vr) (3)

The width of the asperity is substituted into Equation
(3). In this paper, the area Sa of the asperity is
calculated at the stage (f) and a square fault is assumed.
Then the equivalent width Wa is substituted into
Equation (3).

Compared to the previous works, the proposed method
enables the reduction of the number of uncertain parameters and
the smooth setting of the parameters on the fault.

Constraint on Parameter Variation Using
nth-Order Hypercube and Hypersphere
Let x = {x1, · · · , xn}T and x denote a set of uncertain parameters
xi and their nominal set. n is the number of uncertain parameters
(the number of control points in this paper). In the uncertainty
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FIGURE 6 | Critical fault model. (A) Distribution of critical seismic moment ratio. (B) Distribution of asperity.

FIGURE 7 | Time history of ground motion (component of transverse) for each fault model. (A) velocity. (B) acceleration.
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analysis, the simplest constraint on parameter variation is a box
type described by

R1(x, x̄,α) =
{

x|
∣

∣(x/x)− 1
∣

∣ ≤ α
}

(4)

where α is a given value representing the uncertainty level. R1is a
hyper cube of order n. Although R1 is suitable for problems with a
relatively larger uncertainty level, it is often the case that the final
solution goes to its end of the range. Furthermore, the setting of
a larger uncertainty level is apt to cause a heavy computational
load. To remedy this, a hyper sphere constraint is often used
which can be defined by

R2(x, x̄,6, c) = {x|(x− x̄)T6−1(x− x̄) ≤ c} (5)

where 6 is the covariance matrix. Since (x− x̄)T6−1(x − x̄)
follows the χ2 distribution of order n, the probability of x ∈
R2(x̄,6,β) becomes Fn(c). Fn(−) is the probability distribution
function of the χ2 distribution of order n. If we define the
confidence region by β = Fn(c), Equation (5) can be re-expressed
by

R2(x, x̄,6, Fn
−1(β)) = {x|(x− x̄)T6−1(x− x̄) ≤ Fn

−1(β)} (6)

When x follows the normal distribution, Equation (6) indicates
that the probability of (x− µ)T6−1(x − µ) ≤ Fn

−1(β) isβ .
The setting of variable regions in the fault may be possible by
substituting the parameters defining the inhomogeneity of the
fault parameters into the covariance matrix6.

There are some researches on the variability of fault
parameters (Somerville et al., 1999; Ishii et al., 2000). In this
paper, the result by Ishii et al. (2000) on “inland faults” is
used. Ishii et al. (2000) investigated the inversion of 15 inland
earthquakes (seismic moment, rupture velocity etc.) and derived
the mean and the coefficient of variation of the ratio (the
principal rupture region to the overall fault) of the seismic
moment. In this paper, the mean is µ = 2.1 and the coefficient
of variation is CV = 0.36. The obtained variance σ 2 =
(2.1× 0.36)2 = 0.57 is substituted into the covariance 6 in
Equation (6). In this paper, the covariance between different
faults is treated as 0.

NUMERICAL SIMULATION

Consider a numerical example using the FDM for generating
the earthquake ground motions. The critical fault model is
investigated by the proposed method. In addition, to evaluate
the validity and the degree of criticality of the obtained critical
ground motion, two models (Recipe 1 and Recipe 2) are
considered based on the strong ground motion prediction recipe
(Earthquake Research Committee, 2017). The search of the
critical excitation for several levels of uncertainty in the fault is
conducted using the proposed method and the corresponding
structural responses are clarified.

Modeling of Ground and Fault
Consider a quarter grid model of FDM as shown in Figure 4A.
The fault length and width are 30 km and 18 km. The other
parameters are strike =90◦, dip =90◦, rake =180◦, and the
original base point is located at (0,−15, 2)(km). The seismic size
is assumed to be Mw = 6.8 and M0 = 1.8 × 1019(Nm). It
is assumed that the rupture propagates concentrically from the
rupture initiation point H(Hx,Hy,Hz) = (0,−10.2, 15.8)(km)
with the rupture propagation velocity Vr = 2800(m/s). The time
shift tshift in each fault element is given by

tshift = tstart + ξ/Vr

ξ =
√

(X −Hx)
2 + (Y −Hy)

2 + (Z −Hz)
2 (7)

where tstart is the source rupture initiation time.
In the setting of area source in the three-dimensional FDM, it

is necessary to approximate this by multiple point sources placed
at the difference grid points. In this paper, multiple point sources
are placed at the difference grid points on the source layer and
the seismic moment is released by considering the time delay
due to the rupture propagation. For this purpose, the fault plane
is divided into the small fault size dx = 0.6(km) and small
faults of 50 × 30 = 1500 are placed on the source layer. To
express the sequential rupture of the divided area sources, it is
necessary that dx is sufficiently smaller than the wave length
λ(km) of the rupture front. The wave length of the rupture front
can be computed by λ = Vr/f = 2.8/1 = 2.8(km) with
the effective frequency f = 1(Hz). It can be understood that
dx ≪ λ is satisfied and the sequential rupture can be expressed
in a sufficient manner.

The following triangle function is employed as the source time
function in the fault element.

f (t) =















0 (t ≤ −1/2fc)

4fc
2t + 2fc (−1/2fc ≤ t ≤ 0)

−4fc
2t + 2fc (0 ≤ t ≤ 1/2fc)
0 (1/2fc ≤ t)

(8)

where fc is the inverse of the rise time τ and τ indicates the width
of the bottom of the triangle in f (t). The source time function is
shown in Figure 4B.

The three-dimensional difference grid is set as 120km ×
150km × 60km (−60km ≤ X ≤ 60km−75km ≤ Y ≤
75km0km ≤ Z ≤ 60km) as shown in Figure 4A. Figure 4A
shows 1/4 of the total region. The material properties of the
soil layer and the source layer are shown in Table 1. In the
software “GMS,” the inhomogeneous grid is used as the difference
grid. The grid interval in the source layer is triple of that in
the soil layer. In this paper, the grid interval in the source
layer is set so as to satisfy the condition on the effective
frequency 0–1Hz. The fourth-order accurate scheme is used in
the difference operator. In the fourth-order accurate scheme, 5–
6 grids are required in one wave length (shear wave). In the
soil layer, the one grid length 200 (m) leads to the effective

Frontiers in Built Environment | www.frontiersin.org 8 January 2019 | Volume 5 | Article 2

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Makita et al. FDM-Based Critical Ground Motion

FIGURE 8 | Time history of inter-story drift and story shear for each fault model (component of transverse). (A) Recipe model 1. (B) Recipe model 2. (C) Nominal

model. (D) Critical model.

frequency f ≤ Vs/(5H) = 2000/(5 × 200) =2(Hz). On
the other hand, in the source layer, the grid length 600(m)
leads to the effective frequency f ≤ Vs/(5H)= 3400/(5 ×
600) = 1.13(Hz). These parameters satisfy the condition on the
effective frequency. The absorbing zone of 12 km is placed at
the side and bottom of the object region to damp the reflected
wave as shown in Figure 4A. The time duration is 30 (s) and
the time increment is 0.015 (s). The number of time steps is
2,000.

Modeling of Superstructure
Consider a 20-story steel building frame. The simplest and most
efficient model for vibration analysis of building frames is a
shear building model. Usually the shear building modeling is

completed by doing a static lateral force analysis for obtaining the
story shear-drift relation. However, a shear building model with
a predetermined stiffness and strength distribution is assumed
here for simple presentation of the proposed critical excitation
method. The shear building modeling is conducted and the
elastic-plastic response is assumed here. The floor mass is 3.0
× 106 (kg) and the fundamental natural period is 2.4 (s). The
story stiffness distribution is assumed to be trapezoidal. The
2% stiffness-proportional structural damping is assumed. The
story shear-drift relation is assumed to be bilinear and the
yield drift is assumed to be 0.02 (m). The post-yield stiffness
ratio to the initial stiffness is 0.05. The target story ductility
is 2 and the maximum ductility along height is the objective
function.
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FIGURE 9 | Response for four ground motions. (A) Hysteretic loops in 2, 4, 6, 8th stories for Recipe model 1, 2, Nominal model, and Critical model. (B) Maximum

story ductility factors for Recipe model 1, 2, Nominal model, and Critical model.

Although a 20-story steel building frame is treated
here for a simple presentation of the proposed excitation
method, other types of building structures (reinforced-
concrete building structures, taller building structures,
etc.) can be dealt with in a similar manner so long as
they possess a positive post-yield stiffness. This is because,
if building structures with negative post-yield stiffness
are treated, the earthquake response may be unstable
and the analysis of response sensitivity may cause some
difficulties.

Problem Formulation
In the experimental design planning, CCD, the base point on the
axis (Epaxial point) is set to 1.0. The factorial design is planned
so that the distances of all the sampling points from the base
point are equal. 512 points are prepared in the fractional factorial
design. The points of the same number 512 were also added as the
sampling points from the uniform random numbers in the hyper
sphere.

Consider the following optimization problem by the SQP.

Find x

whichmaximizes h(x)
subject to x ∈ R1(x, x,α)

x ∈ R2(x, x,6, Fn
−1(β))

∑

x = 0

(9)

In this paper, the maximum story ductility along height is
employed as the objective function h(x). Following Ishii et al.
(2000), α = 1.1 and β = 0.95 are assumed. In case
ofR2(x, x,6, Fn

−1(β)), the maximum value of x is 1.1 and
the maximum norm of x is 4.56. The fault model is shown
in Figure 5A. Twenty-four control points are chosen and the
seismic moment ratios M0 ij/M̄0 ij (M0 ij, seismic moment at the

fault element, M̄0 ij, seismic moment of the nominal model at the
fault element) at the control points are selected as x. The seismic
moments at the control points are varied in this paper.

To evaluate the validity of the critical ground motion, two
models (Recipe 1 and Recipe 2) are considered based on the
strong ground motion prediction recipe (Earthquake Research
Committee, 2017). The corresponding fault models are shown
in Figures 5B,C. The areas of Asperity 1, Asperity 2, and back
ground of the recipe model are Sa1 = 90(km2), Sa2 = 34(km2),
Sb =416(km2), respectively. The seismic moments of those are
M0a1 = 6.73 × 1018(Nm), M0a2 = 1.55 × 1018(Nm), M0b =
9.73 × 1018(Nm). The rise times of those are τa1 =1.61(sec),
τa2 = 1.07(sec),τb = 3.21(sec).

Result
Using the proposed critical excitationmethod, the critical seismic
moment ratios of the critical fault model are obtained. The
flowchart of the proposed method is explained in Figure 1 and
the detailed explanation is made in section Optimization in
Proposed Method.

Figure 6A shows the distribution of critical seismic moment
ratios of the critical fault model which produces the maximum
story ductility factor. The area ratio of the asperity to the
total fault is 22% and the rise time in the asperity is assumed
to be τ = 1.95(s). This rise time is slightly longer than
that in the recipe model. On the other hand, Figure 6B

presents the distribution of asperity. It can be observed from
Figure 6B that the asperity with a large area is produced near
the observed site and the seismic moment is concentrated at
the bottom and left side in the fault. This phenomenon of
multiple asperities was seen in the previous work (Makita et al.,
2018b).

Figure 7 presents the time histories of ground velocity and
acceleration (component of transverse) for each fault model.
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FIGURE 10 | Distribution of seismic moment ratio at each uncertainty level α. (A) α = 1.0. (B) α = 1.2. (C) α = 1.3. (D) α = 1.4. (E) α = 1.5.

Figure 7A shows the velocities for four models (Recipe model
1, 2, Nominal model, and Critical model). On the other hand,
Figure 7B presents the accelerations for such four models. A
pulse-type wave can be observed in all fault models. In addition,
the maximum velocity and the maximum acceleration were
observed in the recipe model 1. Furthermore, the amplitude of
the afterward wave is large in the acceleration of Recipe model 2
[(b) in (ii)].

Figure 8 shows the time histories of inter-story drift and
story shear for each fault model (component of transverse). The
quantities in 2, 4, 6, 8th stories are presented here. It can be
observed that, while the response to the nominal model remains
elastic, the responses to Recipe model 1, and the critical model
become large and go into the plastic range mainly in the lower
stories. The fact whether the building model remains elastic or
goes into the plastic range can be found from Figure 9.

Figure 9 presents the response for four ground motions.
Figure 9A shows the hysteretic loops in 2, 4, 6, 8th stories for
Recipe model 1, 2, the Nominal model and the Critical model.

It can be observed that the size of the hysteretic loop is large in
the order of the Critical model, Recipe model 2, Recipe model
1. Figure 9B illustrates the maximum story ductility factors for
Recipe model 1, 2, the Nominal model, and the Critical model.
It can be observed that, while the story ductility factors to Recipe
model 1, Recipe model 2, and the Nominal model are within the
design limit 2, the story ductility factors to the Critical model are
beyond the design limit in 2–5th stories. The story ductility factor
to the Critical model is 3.2 times larger than that to the Nominal
model and 1.1 times larger than that to Recipe model 2.

Robustness Evaluation by Changing
Uncertainty Level
In this section, the uncertain parameter α in R1 is changed to
investigate the influence of the uncertainty level in the fault on
the robustness in the response of the superstructure. The concept
of the robustness function due to Ben-Haim (2006) is used here.

Figure 10 shows the distribution of seismic moment ratio at
each uncertainty level α (1.0–1.5). In the prediction of the fault
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FIGURE 11 | Comparison of responses under several ground motions produced for various uncertainty levels. (A) Maximum value and norm of control point

parameter for various uncertainty levelsα . (B) Distribution of story ductility factor. (C) Robustness function α̂ with respect to story ductility factor.

model, the response surface obtained in the previous analysis is
used. The critical fault model for each uncertainty level α (1.0–
1.5) is searched via the SQP. This enabled efficient analysis of
the robustness function. Focusing on the maximum asperity, the
maximum value ofM0ij/M̄0ij is approximately proportional to α

up to α =1.2. On the other hand, when α is larger than 1.3, the
maximum value does not change much. This indicates that the
proposed method avoids the production of the excessive asperity.
In addition, it can be observed that some asperities are located at
the edge of the fault except the location near to the observation
site.

Figure 11A shows the maximum value and norm of the
control point parameter for various uncertainty levels α . The
maximum value is influenced primarily by R1 and the maximum
norm is influenced primarily byR2. It can be observed that
the maximum value attains the corresponding value α and the
maximum norm attain the upper limit of R2 except α = 1.0, 1.4.

Figure 11B shows the comparison of ductilities under several
ground motions produced for various uncertainty levels. It can
be observed that the uncertainty level influences much the

responses in the lower stories in this case. Figure 11C presents
the robustness function α̂ with respect to the ductility (Ben-
Haim, 2006). It can be seen that the ductility is over the design
criterion (story ductility factor = 2) in the models with the
uncertainty level larger than or equal toα = 1.1. This means that
the setting of α influences greatly the robustness of the building
structure.

VERIFICATION OF PROPOSED METHOD
USING ACTUAL EARTHQUAKE

In this section, the validity and applicability limit of the proposed
method are investigated by comparing with the actual earthquake
case. The object earthquake is the Osaka North earthquake in
2018 (MW = 5.67) (Earthquake Research Committee, 2018).

Figure 12A shows the source, observation stations and region
of the finite-difference model (GMT). The grid interval is 140
(m). The effective frequency is 0–0.5Hz. The difference grids
lower than 30 grids are treated as inhomogeneous ones and the
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FIGURE 12 | Verification of FDM using 2018 Osaka North earthquake. (A) Source, stations, and region of finite-difference model (GMT). (B) Fault model of 2018

Osaka North earthquake [(i) Control point for critical model, (ii) Recipe model]. (C) Comparison between observation wave and art wave by recipe model.

FIGURE 13 | Box-and-whisker plot of ratio of displacement response to art wave to that to observation wave. (A) Recipe model. (B) Critical model.

grid interval is made triple. The energy absorbing zone was set at
the bottom and the side (60 grids). Figure 12B presents the fault
model of this earthquake [(i) Control point for critical model,
(ii) Recipe model]. The fault length is 4 km and the fault width
is 6 km. The other parameters are strike = 351◦, dip = 50◦, rake
= 52◦. The seismic size is M0 = 4.06 × 1017(Nm). It is assumed

that the fault rupture propagates concentrically from the source
with the propagating speedVr = 2900(m/s). The limit of the
uncertainty level is given by α = 1.1 andβ = 0.95. The area
of asperity, the seismic moment, the rise time are given by Sa =
5(km2),M0a = 1.79× 1017(Nm), τa = 0.43(sec),τb = 1.03(sec).
Figure 12C shows the comparison between the observation wave
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and the artificial wave by the recipe model. It can be observed
that the frequency content is well simulated at OSK002. However,
the amplitude is evaluated in a damped manner. On the other
hand, at OSK003, the wave can be simulated well until t = 22 s.
However, the amplitude does not correspond well after t = 22 s.

Figure 13 illustrates the comparison of the box-and-whisker
plot of the ratio of displacement response to artificial wave to that
to the observation wave between the recipe model (Figure 13A)
and the critical model (Figure 13B). It may be concluded that
we can produce the critical ground motion under which the
displacement response spectrum becomes larger than that under
the observed ground motion in the rate of 50% in all natural
period ranges and in the rate of 75% in the natural period range
up to 13 (s).

CONCLUSIONS

The finite difference method (FDM)-based critical excitation
method has been proposed for building structures with rather
long fundamental natural periods. The uncertain parameter is
the fault rupture slip distribution described in terms of seismic
moments at fault elements. Since the FDM is time-consuming,
it is unfavorable to use it in a simple sensitivity algorithm
where an independent response sensitivity is calculated for
each design parameter (seismic moment at a fault element).
To overcome this difficulty, the control points (representative
points in the fault) have been introduced. Then the bi-cubic
spline interpolation of uncertain parameter distributions (seismic
moment distribution) and the response surface method for
predicting the response surface from some sampling points
have been used effectively. The robustness of building structures
for varied uncertainty level of the fault rupture slip (seismic
moments in the fault elements) has also been evaluated by
using the robustness function. The main conclusions can be
summarized as follows.

(1) The introduction of control points in the fault enabled efficient
calculation of response sensitivity with respect to change of
uncertain parameters (seismicmoments in the fault elements).
The response surface method also enabled efficient search
of the critical distribution of seismic moments in the fault
elements.

(2) In addition to the conventional hyper cube variation model,
the hyper sphere variation model has been introduced. It
was found that the hyper sphere variation model can avoid a
drastic change of seismic moments in the fault elements and
realistic treatment of uncertainty in the fault is possible.

(3) It was found that the critical ground motion for 20-story
building structures with rather long natural period can be
found effectively by the proposed method (Figure 9). The
maximum ductility under the critical ground motion is 3.2
times larger than that under the ground motion with nominal
parameters and 1.1 times larger than that under the ground
motion generated by the strong ground motion predicting
recipe. As the uncertainty level α in the fault elements becomes
larger, the ductility becomes larger linearly approximately
(Figure 11).

(4) The fault model of the Osaka North earthquake has been
treated as an actual earthquake fault for the investigation of
accuracy and reliability of the proposed method. Two kinds
of uncertainty modeling, R1 andR2, were used. If we use the
setting α = 1.1 and β = 0.95 for R1 andR2, we can produce
the critical groundmotion under which the response spectrum
becomes larger than that under the observed ground motion
in the rate of 50% in all natural period ranges and in the rate
of 75% in the natural period range up to 13 (s).
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APPENDIX

Verification of the Present Computational
Method
To investigate the accuracy and reliability of the GMS
(software), the comparison with the benchmark test (Yoshimura
et al., 2011) has been conducted. Figure A1A shows the fault
plane and recording points in the benchmark test. The fault
length is 8 km and the fault width is 4 km. The other
parameters are strike = 90◦, dip = 90◦, rake = 180◦. The
base point is located at (0,0,2)(Km). The seismic size is
M0 = 1.0 × 1018 (Nm). The fault rupture is assumed to
propagate concentrically from the source H(Hx,Hy,Hz) =
(0, 1, 4)(km) with the propagation speed Vr = 3000(m/s).
The number of division of the fault plane is 80 × 40
(3,200). The triangle function was used as the source time
function.

The three-dimensional difference grids are set as 30km ×
30km × 17km (−15 km ≤ X ≤ 15 km, −15 km ≤ Y ≤ 15
km, 0 km ≤ Z ≤ 17km) . Figure A1A shows 1/4 of the total
model. The material properties of soil layer and source layer are
shown in the reference. The effective frequency is 0–1 Hz. Since
inhomogeneous grids are used in GMS, the grid interval in the
soil layer, and the source layer are 50 m and 150 m, respectively.
The absorbing zones are set at the side and bottom of the object
region to damp the reflected wave as shown in Figure A1A

(60grids). The time duration is 15 (s) and the time increment is
0.005 (s). The number of time steps is 3,000.

Figure A1B presents the comparison (the observation point
+010) between the result due to the GMS [designated by “Makita
(GMS)”] and the benchmark test. Although the amplitude of
the present GMS is slightly smaller than the benchmark test
result, the overall velocity wave exhibits a similar property. This
indicates the validity of the used software GMS.

FIGURE A1 | Verification of the present computational method through comparison with benchmark test. (A) Fault plane and recording points (Yoshimura et al.,

2011). (B) Comparison between the result due to the GMS and benchmark test (Partly from Yoshimura et al., 2011).
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