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An equi-spaced consecutive impulse input is treated as a simplified representative for

a long-duration earthquake ground motion. The key property of such input can be

captured approximately by using harmonic waves. An approximate closed-form solution

is derived for the elastic-plastic response of a two-degree-of-freedom (2DOF) system

under the “critical multiple impulse input” based on some assumptions. The 2DOF system

is assumed to consist of an elastic-perfectly plastic restoring-force characteristic in the

first story and a linear elastic restoring-force characteristic in the second story. The

fact that only the free vibration emerges under such multiple impulse input enables

the utilization of the energy approach in the derivation of the explicit expression for

a complicated elastic-plastic response. The critical timing of the impulses is found to

correspond to the zero restoring-force timing in the first story. The validation and accuracy

check of the proposed theory are conducted by implementing the response analysis to

the corresponding sinusoidal input as a representative of the long-duration earthquake

ground motion. It is also demonstrated that the proposed theory can be applied to a

base-isolated building with hysteretic property in the base-isolation story regardless of

the number of stories of superstructures.

Keywords: critical excitation, 2DOF model, elastic-plastic response, long-duration ground motion, base-isolated

building, resonance

INTRODUCTION

Long-period, long-duration earthquake ground motions, which were not expected in the
structural design of super high-rise buildings in 1970s, were observed during Mexico
earthquake in 1985, Tokachi-oki earthquake in 2003, Chuetsu earthquake in 2004 and
Tohoku earthquake in 2011 (Takewaki et al., 2011, 2012). Many seismic damages due
to these earthquakes were observed. The ground motions with predominant period of
about 2 s continued for more than 2min during Mexico earthquake in 1985, and around
15-story buildings were collapsed by these long-period and long-duration ground motions
(Beck and Hall, 1986). Oil storage tanks at Tomakomai were damaged by the sloshing
phenomenon caused by the long-period ground motions during Tokachi-oki earthquake
in 2003 (Hatayama et al., 2004; Aoi et al., 2008). In the 2004 Chuetsu earthquake, the
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long-period ground motions with the duration of more than
5min were observed in Tokyo 150–200 km away from the
epicenter, and elevator cables in high-rise buildings were
damaged by the resonance with the long-period ground motions
(Furumura and Hayakawa, 2007). Rather recently remarkable
long-period, long-duration ground motions were observed in
Tokyo and Osaka far from the epicenter during the Tohoku
earthquake in 2011, and vibrations of high-rise buildings in
Tokyo and Osaka continued for more than 10min. Therefore, it
is necessary to investigate the resonance phenomenon of high-
rise buildings and base-isolation buildings to such long-period,
long-duration ground motions. Repeated earthquake ground
motions are another kind of long-duration input (Amadio et al.,
2003; Fragiacomo et al., 2004). However, this kind of ground
motions is not treated here.

Various researches on the steady-state response of elastic-
plastic structures have been conducted since 1960s (Caughey,
1960a,b; Iwan, 1961, 1965a,b; Roberts and Spanos, 1990; Liu,
2000). Caughey (1960a) derived a resonance curve of a single-
degree-of-freedom (SDOF) bilinear hysteretic system by using
the equivalent linearization method based on a least squares
approximation and Iwan (1961, 1965a) derived the exact solution
for the steady-state response of an SDOF bilinear hysteretic
system with a positive post-yield stiffness ratio under the
harmonic wave and the square wave. Since his expression
includes the transcendental equations, it is necessary to obtain
the resonance curve numerically with repetition. Furthermore,
an approximate theory for the steady-state response of 2-degree-
of-freedom (2DOF) bilinear hysteretic system was derived by
Iwan (1961, 1965b). However, it may be difficult to deal with
the steady state of 2DOF bilinear hysteretic systems because
of a difficulty in the iterative procedure for a complicated
system with phase lag and a number of parameters to be
considered in the transcendental equations. On the other hand,
the transformation method of the one-cycle sinusoidal wave
and the 1.5 cycle sinusoidal wave, which represent the main
parts of the fling-step input (fault-parallel component) and the
forward-directivity input (fault-normal component) of the near-
fault ground motion, to double and triple impulses has been
introduced and the closed-form solutions for the critical elastic-
plastic responses under the double impulse and triple impulse
have been derived by Kojima and Takewaki (2015a,b, 2016) and
Kojima et al. (2017). The theory using the double impulse was
extended to a 2DOF elastic-perfectly plastic system by Taniguchi
et al. (2016), but only an expression for the upper bound of the
critical elastic-plastic response was derived by taking into account
the phase lag between the two masses of the system. A multiple
impulse input has also been introduced as a substitute for amulti-
cycle sinusoidal wave representing the main part of a long-period
and long-duration ground motion, and a closed-form expression
has been derived for the steady-state response of an SDOF elastic-
perfectly plastic and bilinear hysteretic systems under the critical
multiple impulse by Kojima and Takewaki (2015c, 2017). It has
been demonstrated that the elastic-plastic response under such
multiple impulse can be expressed by the continuation of free
vibrations and a closed-form solution for the plastic deformation
amplitude under the critical multi impulse can be obtained by

using the energy balance law without solving the equation of
motion directly.

In this paper, a closed-form solution for the critical steady-
state response of an undamped SDOF elastic-perfectly plastic
system under the critical multi impulse is extended to a 2DOF
system and a closed-form expression is derived for the critical
steady-state response of an undamped 2DOF elastic-perfectly
plastic system under a multiple impulse as a good substitute
for the long-duration ground motions. Furthermore, the critical
non-linear response is investigated for a base-isolated building
under such long-duration ground motion by using the proposed
closed-form solution for the 2DOF system. The closed-form
solution for the elastic-plastic response under the critical multi
impulse can be obtained by introducing the approximation
based on the results by time-history response analysis because
it is difficult to derive the critical elastic-plastic response of
the undamped 2DOF system by the energy balance law due
to the phase lag of two masses. In this paper, the structural
model is restricted to a simple model without viscous damping
and the plastic deformation is concentrated in the first story.
This is because the present paper proposes an analytical explicit
approach for 2DOF models for the first time and it is intended
to concentrate on a simple model. The steady state in which
each impulse acts at the zero-restoring force timing in the first
story is also assumed. The multiple impulse is introduced in
section Multiple impulse input as substitute for long-duration
ground motions. Then an approximate closed-form solution
is derived in section Approximate closed-form solution for
elastic-plastic steady-state response under critical multi impulse.
The validity and accuracy of the approximations introduced
here is investigated by time-history response analysis in section
Verification of accuracy of approximation in steady state by
time-history response analysis. The accuracy of the approximate
closed-form solution is also investigated in section Numerical
example and accuracy check of proposed closed-form solution
through comparison with time-history response analysis result.
The validity of the critical timing of themultiple impulse assumed
in this paper is confirmed by time-history response analysis
for the 2DOF elastic-perfectly plastic system under the multi
impulse with various impulse time intervals in section Validity
of critical timing. The proposed approximate solution is applied
to base-isolated buildings in section Application of approximate
closed-form solution to base-isolated building. Conclusions are
summarized in section Conclusions.

It was found in the previous paper (Takewaki et al., 2017)
that, when a 2DOF base-isolated building is transformed into an
SDOF system and a closed-form solution for the critical elastic-
plastic response of the SDOF system is applied to obtain the
maximum deformation of the base-isolation story, it is necessary
to select a transformation method from the two candidates, i.e.,
(i) the rigid super-structure approximation (low or middle-rise
buildings), (ii) the series-spring approximation after ignorance
of the base-isolation story mass (high-rise buildings), depending
on the number of stories of the building. In contrast, the method
proposed in this paper do not need to select the transformation
methods and it enables a unified evaluation of the maximum
deformation of the base-isolated story regardless of the number
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of stories. This advantage is an innovative point of the proposed
method.

MULTIPLE IMPULSE INPUT AS
SUBSTITUTE FOR LONG-DURATION
GROUND MOTIONS

Kojima and Takewaki (2015c, 2017) introduced the multiple
impulse as a substitute for the multi-cycle sinusoidal wave
representing the main part of long-duration ground motions
(Takewaki and Tsujimoto, 2011). The multi impulse with the
equal time interval, as shown in Figure 1, is expressed by the
following equation.

üg(t) = 0.5Vδ(t)− Vδ(t − t0)+ Vδ(t − 2t0)− Vδ(t − 3t0)

+ · · · + (−1)N−1Vδ
{

t − (N − 1)t0
}

, (1)

whereV is the given velocity allocated tomasses or amass by each
impulse (the input velocity level), t0 is the time interval between
two consecutive impulses,N is the number of impulses and δ(t) is
the Dirac delta function. Considering the rising phase, the input
velocity level of the first impulse is adjusted to 0.5 V. The ground
acceleration, velocity and displacement of the multi impulse and
the corresponding multi-cycle sinusoidal wave, which represents
a long-duration ground motion, are shown in Figure 1A. It can
be confirmed that the multiple impulse is a good approximate of
the corresponding sinusoidal wave even in the form of velocity
and displacement. To compare the response under the multiple
impulse with that under the multi-cycle sinusoidal wave, it is
important to adjust the input level of two inputs. The input
levels of the multiple impulse and the multi-cycle sinusoidal wave
are adjusted based on the equivalence of the maximum Fourier
amplitude. The adjustment method is shown in the previous
paper (Kojima and Takewaki, 2015c, 2017).

The Fourier transform of üg(t) of the multiple impulse can be
derived as

Üg(ω) =

∫ ∞

−∞

[0.5Vδ(t)− Vδ(t − t0)+ · · ·

+(−1)N−1Vδ{t − (N − 1)t0}]e
−iωtdt (2)

= V{0.5+
∑N−1

n=1
(−1)ne−iωnt0}

APPROXIMATE CLOSED-FORM
SOLUTION FOR ELASTIC-PLASTIC
STEADY-STATE RESPONSE UNDER
CRITICAL MULTI IMPULSE

Undamped Two-Degree-Of-Freedom
(2DOF) Elastic-Perfectly Plastic System
Consider a 2DOF system with the elastic-perfectly plastic
restoring force-interstory drift characteristic only in the first
story. The second story is assumed to be linear elastic. Letmi and
ki denote the i-th story mass and stiffness, respectively. ui, di and
fi denote the displacement of the i-th mass relative to the ground,
the interstory drift of the i-th story and the restoring force in

the i-th story, respectively. dy1 and fy1 = k1dy1 denote the yield
deformation and the yield force, respectively, in the first story.

Steady-State Response Under Critical
Multiple Impulse
A steady-state response under the critical multiple impulse is
assumed in which each impulse acts at the zero restoring-force
timing in the first story. dp1 is the plastic deformation amplitude
in the first story in the steady state. The critical multiple impulse
means the impulse which maximizes dp1 for variable timing of
impulses under a constant input velocity level V. The purpose
of this paper is to obtain a closed-form solution for the plastic
deformation amplitude dp1 in the first story under the critical
multiple impulse. Figure 2 shows the steady state with the point
symmetry in the restoring force-interstory drift relation. It is
noted that dp1 is not affected by the existence of the residual
deformation.

The following transition points are defined in the restoring
force-interstory drift relation in the first story in the steady state.

Point (A): the acting point of each impulse at the zero restoring-
force timing.

Point (B): the yielding point in the first story.
Point (C): the point attaining the maximum deformation d1max

in the first story (the zero velocity point).

Points (A′), (B′), and (C′) in Figure 2 are defined to be point
symmetric to the Points (A), (B), and (C). ui(A), vi(A), di(A) and

ḋi(A) denote the displacement of the mass in the i-th story relative
to the ground, the velocity of the mass in the i-th story relative to
the ground, the interstory drift of the i-th story, and the interstory
velocity in the i-th story at Point (A), respectively. The relative
displacement, the relative velocity, the interstroy drift and the
inetrstory velocity in the i-th story at Points (B) and (C) are
denoted by ui(B), vi(B), di(B), ḋi(B) and ui(C), vi(C), di(C), ḋi(C).

Approximation of Steady-State Response
Based on Time-History Response Analysis
Result
Kojima and Takewaki, 2015a,b,c derived the closed-form
expressions for the critical elastic-plastic response under the
double, triple and multi impulse by using the energy balance
law between the acting point of each impulse and the point
attaining the maximum deformation (the zero velocity point).
However, it seems difficult to derive such closed-form solution
for the elastic-plastic response of the 2DOF system under the
critical multi impulse only by using the energy balance law due
to the phase lag between two masses of the 2DOF system. To
overcome this difficulty, the following four approximations are
introduced to derive an approximate closed-form expression
for the plastic deformation amplitude in the steady state. The
following approximations are based on the time-history response
analysis result, in which each impulse acts at the zero restoring-
force timing in the first story.

Approximation (a): It is assumed that, between Point (C′)
and Point (A), two energy balance laws hold independently in the
first story and second story. The kinetic energy of the first-story
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FIGURE 1 | Multiple impulse and sine wave, (A) Correspondence of acceleration, velocity and displacement, (B) Acceleration and velocity of multiple impulse (Kojima

and Takewaki, 2015c, 2017).

FIGURE 2 | Transition points in first-story restoring force-interstory drift relation

and second-story restoring force-interstory drift relation together with multiple

impulse timing, (A) Restoring force-interstory drift relation in first story, (B)

Restoring force-interstory drift relation in second story.

mass at the zero restoring-force timing [Point (A)] just before
the input of the impulse is equal to the elastic strain energy in the
first story corresponding to the yield deformation at Point (C′),
and the following approximate equation holds.

0.5m1v1(A)
2 ≃ 0.5k1dy1

2 (3)

Approximation (b): It is assumed that the restoring force of
the second story also becomes zero at Point (A), at which
the restoring force of the first story, is zero and the following
approximate equation holds.

d2(A) ≃ 0 (4)

Approximation (c): It is assumed that the interstory drift in the
second story at Point (B), at which the interstory drift in the first
story just attains the yield deformation, is zero and the following
approximate equation holds.

d2(B) ≃ 0 (5)

Approximation (d): It is assumed that the velocity of the second
story mass at Point (B) is equal to the velocity of the second
story mass at Point (A) just after the input of each impulse.
This assumption indicates the fact that the time interval between
Point (A) and Point (B) is short and the amount of change
of the deformation in the second story is small. The following
approximate equation holds due to Approximation (d).

v2(B) ≃ v2(A) + V (6)

Approximate Closed-Form Expression for
Steady-State Response of 2DOF
Elastic-Perfectly Plastic System Under
Critical Multiple Impulse
An approximate closed-form solution for the plastic deformation
amplitude dp1 in the first story of the 2DOF elastic-perfectly
plastic system under the critical multi impulse is derived
by using the energy balance law and Approximations
(a)–(d). The restoring force-interstory drift relations in the
first and second stories in the steady state are shown in
Figure 3.
The energy balance law between Point (A) just after the input of
each impulse and Point (A′) as shown in Figure 3 is obtained as
follows.

0.5m1(v1(A) + V)2 + 0.5m2(v2(A) + V)2 + 0.5k2d2(A)
2

= 0.5m1v1(A)
2 + 0.5m2v2(A)

2 + 0.5k2d2(A)
2 + fy1dp1

(7)

The left-hand side of Equation (7) indicates the sum of the kinetic
energy of each story mass and the elastic strain energy of the
second story at Point (A) just after the input of each impulse.
The right-hand side of Equation (7) indicates the sum of the
kinetic energy of each mass at Point (A′), the elastic strain energy
of the second story and the energy dissipated by the plastic
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FIGURE 3 | First- and second-story restoring force-interstory drift relations for

evaluating the maximum deformation, (A) Restoring force-interstory drift

relation in first story, (B) Restoring force-interstory drift relation in second story.

deformation of the first story shown by the blue shaded area in
Figure 3A.

In order to derive the plastic deformation amplitude dp1 in the
first story in the steady state from Equation (7), it is necessary to
obtain the velocities of v1(A) and v2(A) of the first- and second-
story masses at Point (A). The derivation process of v1(A) and
v2(A) is explained in below sections.

Velocity v1(A) of First-Story Mass at Point
(A)
The velocity v1(A) of the first-story mass at Point (A)
can be obtained approximately by using Approximation (a)
(0.5k1dy1

2 ≃ 0.5m1v1(A)
2) as follows.

v1(A) ≃ dy1
√

k1/m1 = ω̄1dy1, (8)

where ω̄1 =
√

k1/m1.

Velocity v2(A) of Second-Story Mass at
Point (A)
The velocity v2(A) of the second-story mass at Point (A) is
obtained next. The energy balance law between Point (C′) and
Point (A) can be expressed by

0.5k1dy1
2 + 0.5m2v2(C)

2 + 0.5k2d2(C)
2

= 0.5m1v1(A)
2 + 0.5m2v2(A)

2 + 0.5k2d2(A)
2 (9)

The left-hand side of Equation (9) expresses the sum of the
kinetic energy computed by the velocity v2(C) of the second-
story mass at Point (C′) and the elastic strain energy of each
story. On the other hand, the right-hand side of Equation (9)
indicates the sum of the kinetic energies computed by the
velocities v1(A) and v2(A) of the first- and second-story masses at
Point (A) and the elastic strain energy in the second story. The
following approximate equation can be obtained by substituting
Equation (3) from Approximation (a) and Equation (4) from
Approximation (b) into Equation (9).

0.5m2v2(C)
2 + 0.5k2d2(C)

2 ≃ 0.5m2v2(A)
2 (10)

Since the velocity v1(C) of the first-story mass is zero at Point (C)
at which the first-story mass attains the maximum deformation,

the velocity of the second-story mass is expressed by v2(C) =

v1(C) + ḋ2(C) = ḋ2(C) and Equation (10) can be transformed into
the following equation.

0.5m2ḋ2(C)
2 + 0.5k2d2(C)

2 ≃ 0.5m2v2(A)
2 (11)

Consider the equations of motion for the free vibration between
Point (B) and Point (C). At first,ḋ2(C), d2(C) are derived to obtain
the velocity v2(A). The first story is in the loading stage (the
plastic deformation stage) between Point (B) and Point (C). The
equations of motion between Point (B) and Point (C) is expressed
by

m1ü1 + fy1 − k2 (u2 − u1) = 0 (12)

m2ü2 + k2 (u2 − u1) = 0 (13)

The following equation can be derived from Equations (12, 13)
and d2 = u2 − u1.

d̈2 + ω̄2
2d2 =

(

k1/m1

)

dy1, (14)

where ω̄2 =
√

(m1 +m2) k2/ (m1m2). The interstory drift and
the interstory velocity in the second story at Point (B) are
expressed by d2(B), ḋ2(B)(= v2(B) − v1(B)), respectively, and the
following equations can be obtained.

d2 =

{

d2(B) −
1

1+ (m1/m2)

k1

k2
dy1

}

cos (ω̄2t)

+
ḋ2(B)

ω̄2
sin (ω̄2t) +

1

1+ (m1/m2)

k1

k2
dy1 (15)

ḋ2 = −ω̄2

{

d2(B) −
1

1+ (m1/m2)

k1

k2
dy1

}

sin (ω̄2t) (16)

+ḋ2(B) cos (ω̄2t)

Equations (15) and (16) can be transformed into the following
equations by introducing Approximation (c) (d2(B) ≃ 0).

d2 =
1

ω̄2

√

(

ḋ2(B)

)2
+

{

(ω̄1/ω̄2) v1(A)
}2

× sin
[

ω̄2t − arctan
{

(

ω̄1v1(A)
)

/

(

ω̄2ḋ2(B)

)}]

+
(

ω̄1/ω̄
2
2

)

v1(A)

= D1 sin (ω̄2t − θ1) + D2 (17)

ḋ2 = ω̄2D1 cos (ω̄2t − θ1) (18)

where D1,D2, θ1 in Equations (17) and (18) are expressed by

D1 =

√

(ḋ2(B))
2
+ {(ω̄1/ω̄2)v1(A)}

2/ω̄2 (19)

D2 = (ω̄1/ω̄
2
2)v1(A) (20)

θ1 = arctan{(ω̄1v1(A))/(ω̄2ḋ2(B))} (21)

The sum of the kinetic energy computed by the velocity of the
second-story mass and the elastic strain energy in the second
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story at Point (C) is denoted by E, at which the first-story mass
attains the maximum deformation. By substituting Equations
(17) and (18) into Equation (11), E can be expressed by

E = 0.5m2v2(A)
2 = 0.5k2d2(C)

2 + 0.5m2ḋ
2
2(C)

= 0.5k2{D1 sin (ω̄2tBC − θ1) + D2}
2

+0.5m2{ω̄2D1 cos (ω̄2tBC − θ1)}
2

= −0.5 (m2/m1) k2{D1 sin (ω̄2tBC − θ1) − (m1/m2)D2}
2

+0.5 {1+ (m1/m2)} k2D2
2 + 0.5m2ω̄

2
2D1

2 (22)

where tBC denotes the time interval between Point (B) and Point
(C).

Taniguchi et al. (2016) proved that the critical timing of the
second impulse in the double impulse for a 2DOF system is the
zero restoring-force timing in the first story. This is based on the
theory that the increment of the kinetic energy by the second
impulse is maximized at the critical timing. This critical timing
is equal to the timing at which the sum of momentum of each
story mass after the input of the second impulse is maximized. In
this paper, for themultiple impulse input, the zero restoring-force
timing in the first story is assumed as the critical timing of each
impulse and the sum of momenta of the masses in the first and
second stories (m1v1(A)+m2v2(A)) is also assumed to become the
maximum at the critical timing. The validity of this assumption
will be examined in Appendix. To obtain v2(A) which maximizes
the sum of momenta of two masses just before the input of each
impulse, it is also assumed that the sum of the kinetic energy and
elastic strain energy E in the steady state is maximized at Point
(C).

From Equation (22), the following equation can be obtained.

E ≤ 0.5 {1+ (m1/m2)} k2D2
2 + 0.5m2ω̄

2
2D1

2 (23)

By substituting Equations (19) and (20) into Inequality (23), v2(A)
maximizing the sum of the momenta of the first- and second-
story masses can be obtained by using the following equation.

0.5m2v2(A)
2 = 0.5

m1 +m2

m2
k2{(ω̄1/ω̄

2
2)v1(A)}

2
+ 0.5m2[(ḋ2(B))

2

+{(ω̄1/ω̄2)v1(A)}
2] (24)

The interstory velocity ḋ2(B) in the second story at Point (B)

is expressed as follows by using v2(B) = v1(B) + ḋ2(B) and
Approximation (d) (v2(B) ≃ v2(A) + V).

ḋ2(B) ≃ v2(A) + V − v1(B) (25)

Then v1(B) is derived to obtain v2(A) fromEquations (24) and (25).
The energy balance law between Point (A) and Point (B) can be
expressed by

0.5m1

(

v1(A) + V
)2

+ 0.5m2

(

v2(A) + V
)2

+ 0.5k2d2(A)
2

= 0.5m1v1(B)
2 + 0.5k1dy1

2 + 0.5m2v2(B)
2 + 0.5k2d2(B)

2 (26)

The left-hand side of Equation (26) expresses the sum of the
kinetic energies of the masses at Point (A) just after the input of

each impulse and the elastic strain energy in the second story.
The right-hand side of Equation (26) expresses the sum of the
kinetic energies of the masses and the first- and second-story
elastic strain energies at Point (B). The following approximate
equation can be obtained by substituting Equations (4), (5) and
(6) obtained from Approximations (b), (c) and (d) into Equation
(26).

0.5m1

(

v1(A) + V
)2

≃ 0.5m1v1(B)
2 + 0.5k1dy1

2 (27)

Finally v1(B) can be obtained approximately from Equation (27).

v1(B) ≃

√

v1(A)2 + 2v1(A)V + V2 −
(

k1/m1

)

dy1
2

≃

√

2v1(A)V + V2 (28)

By substituting Equations (25) and (28) into Equation (24), the
following approximate equation can be obtained.

m2v2(A)
2 = (m1 +m2)

(

ω̄1

ω̄2
v1(A)

)2

+m2{v2(A)
2 + 2(V − v1(B))v2(A) + (V − v1(B))

2} (29)

From Equation (29), v2(A) can be derived as follows.

v2(A) ≃ 0.5

{

m1 +m2

m2

(

ω̄1

ω̄2
v1(A)

)2

+

(

V −

√

2v1(A)V + V2

)2
}

/

{(

√

2v1(A)V + V2

)

− V

}

(30)

Approximate Closed-Form Solution for
Plastic Deformation Amplitude dp1 in
Steady State
The plastic deformation amplitude dp1 can be derived from
Equation (7).

dp1 = {(m1v1(A)V +m2v2(A)V)+ 0.5(m1 +m2)V
2}/fy1 (31)

By substituting the velocity v1(A) of the first-story mass and the
velocity v2(A) of the second-story mass at Point (A), obtained
approximately in sections Velocity v1(A) of mass of second story
at Point (A) and Velocity v2(A) of mass of second story at Point
(A), into Equation (31), the plastic deformation amplitude dp1
can be obtained approximately.

VERIFICATION OF ACCURACY OF
APPROXIMATION IN STEADY STATE BY
TIME-HISTORY RESPONSE ANALYSIS

The validity and accuracy of Approximations (a)–(d) introduced
in section Approximate closed-form solution for elastic-plastic
steady-state response under critical multi impulse are verified by
using the time-history response analysis. These approximations
are based on the time-history response analysis result and
the parameters of the 2DOF system used for the time-history
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response analysis are set as follows. The masses in the first and
second stories are m1 = m2 = 800 × 103[kg], the fundamental
natural period is T1 = 1.0[sec] and the ratio of the first-story
stiffness to the second-story stiffness is k1 : k2 = 2 : 1. Therefore,
the stiffnesses of the first and second stories are k1 = 1.0783 ×

108[N/m] and k2 = 0.53915× 108[N/m]. The yield deformation
and the yield force in the first story are dy1 = 0.01[m] and
fy1 = 1.0783×106[N], respectively. In this and following sections,
each impulse acts at the zero restoring-force timing in the first
story until the response converges to a steady state in the time-
history response analysis in estimating the steady-state response.
The validity of this method is investigated in section Validity
of impulse timing. The time of computation in the time-history
response analysis is 100[s] in order for the response to converge
to a steady state and the time history response analysis results
after 95[s], at which responses are sufficiently converged to a
steady state, are shown in Figure 4. Although the closed-form
solution of the 2DOF elastic-perfectly plastic system is derived
in this paper, 0.001 × k1 as a post-yield stiffness of the first story
is used in the time-history response analysis to make the steady-
state maximum deformation in the first story point-symmetric

FIGURE 4 | Time-history response of 2DOF elastic-perfectly plastic system

under critical multiple impulse with V = 0.3 [m/ s] by time-history response

analysis, (A) Relative horizontal displacement, (B) Relative horizontal

displacement (normalized by dy1), (C) Interstory drift, (D) Relative horizontal

velocity, (E) Restoring force, (F) Restoring force-interstory drift relation.

with respect to the origin. The time increment is 1t = 1.0 ×

10−3[sec].
Figures 4A–F show the time histories of the relative

horizontal displacement, the relative horizontal displacement
normalized by dy1, interstory drift, relative horizontal velocity,
restoring force and restoring force-interstory drift relation in
the first and second stories under the multi impulse with the
input velocity level V = 0.3[m/ sec] obtained by the time-history
response analysis.

Approximation (a)
The validity of Approximation (a) is investigated first. Figure 5
shows a schematic diagram of the restoring force-interstory drift
relation in the first story under the critical multi impulse. It
is assumed that two energy balance laws hold independently
in the first and second stories between Point (C′) and Point
(A), and the kinetic energy of the first-story mass at Point
(A) is equal to the elastic strain energy in the first story
corresponding to the yield deformation at Point (C′). Figure 6
shows the comparison of the velocity v1(A) of the first-story
mass at Point (A) obtained from Approximation (a) and
that obtained by the time-history response analysis. It can be
observed that v1(A) by Approximation (a) is a good approximate

FIGURE 5 | Restoring force-interstory drift relation in first story under critical

multi impulse.

FIGURE 6 | Comparison of velocity v1(A) of first-story mass at Point (A) derived

from Approximation (a) and that obtained by time-history response analysis.
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FIGURE 7 | Time histories between Point (A) and Point (A′) of restoring force of first and second stories under critical multiple impulse with V= 0.1, 0.3[m/s], (A)

V=0.1[m/s], (B) V=0.3[m/s].

of the velocity v1(A) of the first-story mass at Point (A) as
shown in Figure 6 and v1(A) can be obtained approximately by
Equation (8).

Approximation (b)
In this section, it is investigated whether the restoring force in
the second story is approximately zero at the zero restoring-
force timing in the first story. Figure 7 shows the time histories
between Point (A) and Point (A′) of the restoring force in the
first and second stories under the multiple impulse with the
input velocity level V = 0.1, 0.3[m/sec] evaluated by the time-
history response analysis. In Figure 7, it can be observed that
the restoring force in the second story is almost zero at the zero
restoring-force timing in the first story and d2(A) ≃ 0 can be
derived.

Approximation (c)
The validity of Approximation (c) is investigated next. It is
assumed that the interstory drift at Point (B) is almost zero
and the interstory drift in the second story at Point (B) is
d2(B) ≃ d2(A) ≃ 0. This is because the time interval between
Point (A) and Point (B) is small. In order to check the accuracy
of Approximation (c), it is investigated that the elastic strain
energy in the second story at Point (B) is sufficiently smaller
than that in the first story at Point (B). The comparisons of the
elastic strain energies in the first and second stories at Point
(B) evaluated by the time-history response analysis for V =

0.1, 0.2, 0.3, 0.4, 0.5[m/sec] are summarized in Table 1. It can be
observed from Table 1 that the elastic strain energy in the second
story at Point (B) is sufficiently smaller than that in the first story
at Point (B), and d2(B) ≃ 0 can be used in the derivation of an
approximate closed-form solution for the steady-state response.

Approximation (d)
It is checked here that the velocity v2(B) of the second-story mass
at Point (B) is approximately equal to the velocity of the second-
story mass at Point (A) just after the input of each impulse. This

TABLE 1 | Comparison of elastic strain energies at Point (B).

0.5k1dy1
2[Nm] 0.5k2d2

2[Nm] (k2d
2
2/k1d

2
y1) × 100[%]

v = 0.1[m/s] 5.392× 103 0.1442× 103 2.67

v = 0.2[m/s] 5.392× 103 0.054× 103 1.00

v = 0.3[m/s] 5.392× 103 0.504× 103 9.35

v = 0.4[m/s] 5.392× 103 0.295× 103 5.47

v = 0.5[m/s] 5.392× 103 0.0045× 103 0.08

is also based on the fact of the short time interval between Point
(A) and Point (B). Figure 8 shows the time histories, between
Point (A) and Point (A′), of the velocity of the second-story mass
under the multiple impulse with the input velocity level V =

0.1, 0.3[m/sec] obtained by the time-history response analysis. It
can be observed from Figure 8 that the velocity v2 of the second-
story mass does not change much between Point (A) and Point
(B), and therefore v2(B) ≃ v2(A) + V .

NUMERICAL EXAMPLE AND ACCURACY
CHECK OF PROPOSED CLOSED-FORM
SOLUTION THROUGH COMPARISON
WITH TIME-HISTORY RESPONSE
ANALYSIS RESULT

The accuracy of the approximate closed-form solution for the
plastic deformation amplitude dp1 in the first story under the
critical multiple impulse is verified through the comparison with
that by the time-history response analysis. The fundamental
natural period of the 2DOF system used in the time-history
response analysis is T1 = 1.0[sec], the yield deformation in the
first story is dy1 = 0.01[m], and the ratios of the masses and
stiffnesses in the first and second stories are varied as follows (9
models).

(a) m1 :m2 = 1 : 1, k1 : k2 = 2 : 1 (m1 = m2 = 800× 103[kg],
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FIGURE 8 | Time histories between Point (A) and Point (A′) of velocity of second-story mass under critical multiple impulse with V = 0.1, 0.3 [m/sec], (A)

V = 0.1 [m/sec], (B) V = 0.3 [m/sec].

k1 = 1.0783× 108[N/m], k2 = 5.3915× 107[N/m])

(b) m1 :m2 = 1 : 1, k1 : k2 = 1 : 1 (m1 = m2 = 800× 103[kg],

k1 = k2 = 8.2685× 107[N/m])

(c) m1 :m2 = 1 : 1, k1 : k2 = 1 : 2 (m1 = m2 = 800× 103[kg],

k1 = 7.2033× 107[N/m], k2 = 1.4407× 108[N/m])

(d) m1 :m2 = 1 : 2, k1 : k2 = 2 : 1 (m1 = 800× 103[kg],

m2 = 1600× 103[kg], k1 = 2.0125× 108[N/m], k2 = 1.0063

×108[N/m])

(e) m1 :m2 = 1 : 2, k1 : k2 = 1 : 1 (m1 = 800× 103[kg],

m2 = 1600× 103[kg], k1 = k2 = 1.4407× 108[N/m])

(f) m1 :m2 = 1 : 2, k1 : k2 = 1 : 2 (m1 = 800× 103[kg],

m2 = 1600× 103[kg], k1 = 1.1787× 108[N/m],

k2 = 2.3574× 108[N/m])

(g) m1 :m2 = 2 : 1, k1 : k2 = 2 : 1 (m1 = 1600× 103[kg],

m2 = 800× 103[kg], k1 = 1.2633× 108[N/m], k2 = 6.3165

×107[N/m])

(h) m1 :m2 = 2 : 1, k1 : k2 = 1 : 1 (m1 = 1600× 103[kg],

m2 = 800× 103[kg], k1 = k2 = 1.0783

×108[N/m])

(i) m1 :m2 = 2 : 1, k1 : k2 = 1 : 2 (m1 = 1600× 103[kg],

m2 = 800× 103[kg], k1 = 1.0063× 108[N/m], k2 = 2.0125

×108[N/m])

As shown before, each impulse acts at the zero restoring-force
timing in the first story until the response converges to a steady
state in the time-history response analysis to estimate the steady-
state response assumed in section Approximate closed-form
solution for elastic-plastic steady-state response under critical
multi impulse. The steady state in which each impulse acts at
the zero restoring-force timing in the first story is assumed in

this section, and the validity of this assumption is investigated
in next section. The plastic deformation amplitude is obtained
by subtracting 2dy1 from the sum of the absolute values of the
positive and negative maximum deformations after the response
converges to the steady state.

Comparison of Proposed Closed-Form
Solution and Time-History Response
Analysis Result
Figures 9A–I (left-side) show the comparison between the
approximate solution for the plastic deformation amplitude dp1
of models (a)-(i) under the critical multiple impulse with respect
to the input velocity level V = 0.1, 0.2, 0.3, 0.4, 0.5[m/sec], and
dp1 calculated by the time-history response analysis. It can be
observed that the approximate solution can simulate the steady-
state response under the critical multiple impulse with reasonable
accuracy as an upper bound of the time-history response analysis
result.

Accuracy Check by Time-History
Response Analysis Under Corresponding
Multi-Cycle Sinusoidal Wave
The steady-state response under the critical multiple impulse
is compared with the steady-state response under the
corresponding multi-cycle sinusoidal wave to investigate
the accuracy in using the multiple impulse as a substitute for
the multi-cycle sinusoidal wave representing the main part of a
long-duration earthquake ground motion.

The period Tl (the circular frequency ωl = 2π/Tl)
of the corresponding multi-cycle sinusoidal wave is specified
as Tl = 2t0, where t0 is the time interval between two
consecutive impulses in the steady state evaluated by the time-
history response analysis in section Comparison of proposed
closed-form solution and time-history response analysis result.
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FIGURE 9 | Comparison of plastic deformation amplitude under critical multiple impulse (approximate solution and time-history response analysis) and that under

corresponding multi-cycle sinusoidal wave (time-history response analysis); (A) m1 :m2 = 1 : 1, k1 : k2 = 2 :1, (B) m1 :m2 = 1 :1, k1 : k2 = 1 : 1, (C)

m1 :m2 = 1 :1, k1 : k2 = 1 : 2, (D) m1 :m2 = 1 : 2, k1 : k2 = 2 :1, (E) m1 :m2 = 1 : 2, k1 : k2 = 1 : 1, (F) m1 :m2 = 1 : 2, k1 : k2 = 1 : 2, (G)

m1 :m2 = 2 :1, k1 : k2 = 2 : 1, (H) m1 :m2 = 2 : 1, k1 : k2 = 1 :1, (I) m1 :m2 = 2 :1, k1 : k2 = 1 : 2, (J) m1 :m2 = 1 :1, k1 : k2 = 2 : 1 (coefficient 1.15, 1.25, 1.35),

(K) m1 :m2 = 1 : 1, k1 : k2 = 1 : 1 (coefficient 1.15, 1.25, 1.35).
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The acceleration amplitude Al of the corresponding multi-
cycle sinusoidal wave is amplified by 1.15 after it is adjusted
so that the maximum Fourier amplitude of the multi-cycle
sinusoidal wave is equal to that of the multiple impulse. This
adjustment method has been proposed for the SDOF elastic-
perfectly plastic system in the previous paper (Kojima and
Takewaki, 2015c). The procedure of using the equivalence of
the maximum value of the Fourier amplitude of acceleration
seems reasonable because the Fourier amplitude of acceleration
means the velocity-related quantity of the input and is closely
related to the input energy which plays a crucial role in the
energy balance law in the proposed method. In addition, the
coefficient 1.15 was introduced in the previous work (Kojima and
Takewaki, 2015c) for fitting the maximum response amplitudes
between the multiple impulse and the corresponding multi-
cycle sine wave. This means that the adjustment property
holds even in the 2DOF model with the same coefficient
even though the plastic deformation is restricted only to the
first story. The time incremental is 1t = 1.0 × 10−3[sec]
and the number of cycles is 200 in the time-history response
analysis.

Figures 9A–I (right-side) show the comparison between the
plastic deformation amplitude dp1 of models (a)-(i) under the
critical multiple impulse and that under the corresponding
multi-cycle sinusoidal wave. It can be observed that the closed-
form solution of the plastic deformation amplitude under the
critical multiple impulse is an upper bound of that under
the corresponding multi-cycle sinusoidal wave with reasonable
accuracy. Although dp1 under the critical multiple impulse is
relatively larger than that under the corresponding multi-cycle
sinusoidal wave in the range V > 0.3[m/sec], this is due to
the adjustment method. The multiplier 1.15 in the adjustment
method has been set so that the plastic deformation amplitude
of the SDOF elastic-perfectly plastic system under the critical
multiple impulse corresponds to that under the multi-cycle
sinusoidal wave in the range of normalized input velocity level

FIGURE 10 | Comparison of critical time intervals for input level calculated

with impulse timing at zero restoring force and varied for maximum

deformation [Model (a)].

V/Vy < 3. It is necessary to change the multiplier for adjustment
in the larger range of V , in order to upgrade the correspondence
between the steady-state response under the multiple impulse
and that under the multi-cycle sinusoidal wave. For example,
Figures 9J,K present the influence of the coefficient (1.15,
1.25, 1.35) multiplied on the multi-cycle sine wave. Figure 9J
shows the comparison of the plastic deformation amplitude dp1
of model (a) and Figure 9K illustrates that of model (b). It
can be observed that this coefficient influences much on the
response and, as the coefficient becomes larger toward 1.35, the
response under the magnified multi-cycle sine wave approaches
to the plastic deformation amplitude under the critical multiple
impulse. However, it should be noted that the fitting coefficient
depends on the structural model and the input level. It should
also be mentioned again that the coefficient 1.15 gives the upper
bound of the response under the magnified multi-cycle sine
wave in all structural models and in all input levels treated
here.

VALIDITY OF CRITICAL TIMING

In this paper, it is assumed that the critical timing is the zero
restoring-force timing in the first story and an approximate
solution is derived. The validity of the critical timing is
investigated in this section through the comparison with
the result by the time-history response analysis in which
each impulse acts at the zero restoring-force timing as
in sections Verification of accuracy of approximation in
steady state by time-history response analysis and Numerical
example and accuracy check of proposed closed-form
solution in comparison with time history response analysis
result.

FIGURE 11 | Restoring force-interstory drift of model (a) under multiple

impulse with V = 0.3[m/sec] and t0 = 0.910[sec] maximizing dp1.
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Verification by Time-History Response
Analysis
The critical time interval is evaluated by varying the time interval
t0 of the multiple impulse with constant input velocity level
in the time-history response analysis. The plastic deformation
amplitude is obtained by subtracting 2dy1 from the sum of

the absolute values of the positive and negative maximum
deformations after the response converges sufficiently to the
steady state. The time incremental is 1t = 1.0 × 10−4t0[sec]
and the number of impulses is 200 in the time-history response
analysis. The time interval of the multiple impulse is varied with
the increment of 0.005 s.

FIGURE 12 | Comparison among plastic deformation amplitude under critical multiple impulse by approximate solution, that under critical multiple impulse calculated

by varying time interval (time history response analysis) and that under corresponding multi-cycle sinusoidal wave (time history response analysis); (A)

m1 :m2 = 1 :1, k1 : k2 = 2 : 1, (B) m1 :m2 = 1 : 1, k1 : k2 = 1 : 1, (C) m1 :m2 = 1 :1, k1 : k2 = 1 : 2, (D) m1 :m2 = 1 : 2, k1 : k2 = 2 :1,

(E) m1 :m2 = 1 : 2, k1 : k2 = 1 : 1, (F) m1 :m2 = 1 : 2, k1 : k2 = 1 : 2, (G) m1 :m2 = 2 :1, k1 : k2 = 2 : 1, (H) m1 :m2 = 2 : 1, k1 : k2 = 1 : 1, (I)

m1 :m2 = 2 :1, k1 : k2 = 1 : 2, (J) m1 :m2 = 1 :1, k1 : k2 = 2 : 1 (coefficient 1.15, 1.25, 1.35), (K) m1 :m2 = 1 : 1, k1 : k2 = 1 :1 (coefficient 1.15, 1.25, 1.35).
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Figure 10 shows the comparison of the time interval
calculated in section Comparison of proposed closed-form
solution and time-history response analysis result and the critical
time interval calculated in this section with respect to the input
velocity level. The time intervals calculated by two methods
correspond fairly well except for the case with V = 0.3[m/sec].
Figure 11 presents the restoring force-interstory drift relation in
the first story under the multiple impulse with V = 0.3[m/sec]
and t0 = 0.910[sec], which is the critical multiple impulse
calculated by varying the time interval. The blank circles in
Figure 11 show the impulse timing in the steady state, and it
can be observed that each impulse acts at the zero restoring-
force timing in the first story. Therefore, the zero restoring-
force timing in the first story is a necessary condition for the
critical multiple impulse for the 2DOF elastic-perfectly plastic
system. It was also found that there are several time intervals
which maximize the plastic deformation amplitude. Further
investigation will be necessary.

Figures 12A–I (left-side) show the comparison of the plastic
deformation amplitude dp1 of models (a)-(i) obtained by the
proposed approximate solution and that under the critical
multiple impulse calculated by varying the time interval so as to
maximize the plastic deformation amplitude. It can be observed
from Figure 12 that the approximate solution can evaluate the
plastic deformation amplitude dp1 in the first story under the
critical multiple impulse with reasonable accuracy.

Although themethod used in sections Verification of accuracy
of approximation in steady state by time-history response

analysis and Numerical example and accuracy check of proposed
closed-form solution in comparison with time-history response
analysis result sometimes cannot calculate the critical steady-
state response (this method sometimes calculates the local
maximum value of dp1), the approximate closed-form solution
can always evaluate the maximum steady-state elastic-plastic
response under the critical multiple impulse.

Comparison of Steady-State Response
Under Critical Multiple Impulse and That
Under Corresponding Multi-Cycle
Sinusoidal Wave
Figures 12A–I (right-side) show the comparison of the plastic
deformation amplitude dp1 of models (a)-(i) under the critical
multiple impulse obtained by the proposed approximate solution
and that under the corresponding multi-cycle sinusoidal wave.
The period of the multi-cycle sinusoidal wave is twice of the
critical time interval calculated by varying the time interval in

the previous section so as to maximize the plastic deformation
amplitude. It can be observed from Figures 12A–I (right-

side) that the approximate solution for the plastic deformation

amplitude under the critical multiple impulse is an upper bound
of that under the corresponding multi-cycle sinusoidal wave.

Figures 12J,K present the influence of the coefficient (1.15,

1.25, 1.35) multiplied on the multi-cycle sine wave which were
discussed in Figures 9J,K. Figure 12J shows the comparison
of the plastic deformation amplitude dp1 of model (a) and

FIGURE 13 | Procedure for transforming original base-isolated buildings into 2DOF elastic-perfectly plastic system.
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Figure 12K illustrates that of model (b). It can be observed,
as in Figures 9J,K, that this coefficient influences much on
the response. In addition, as the coefficient becomes larger
toward 1.35, the response under the magnified multi-cycle
sine wave approaches to the plastic deformation amplitude
under the critical multiple impulse. However, it should be
remarked that the fitting coefficient depends on the structural
model together with the input level and the coefficient 1.15
gives the upper bound of the response to the multi-cycle sine
wave in all structural models and in all input levels treated
here.

APPLICATION OF APPROXIMATE
SOLUTION TO BASE-ISOLATED BUILDING

The approximate closed-form solution for the plastic-
deformation amplitude in the first story derived in section
Approximate closed-form solution for elastic-plastic steady-state
response under critical multi impulse is applied to base-isolated
buildings with non-linear isolator.

Consider a base-isolated building which consists of anN-story
superstructure and a non-linear base-isolation story. m0, k0, dy0
denote the mass, stiffness and yield deformation in the base-
isolation story. The base-isolation story is assumed to consist of
lead rubber bearings (or steel dampers and laminated natural

rubber bearings), and modeled by a shear spring with an
elastic-perfectly plastic restoring-force characteristic. The elastic-
perfectly plastic restoring-force characteristic is used as the
restoring-force characteristic in the base-isolation story here,
although it is generally necessary to pay attention to the post-
yield stiffness of the steel damper in the base-isolation story. The
mass of each story in the superstructure is 200[ton] and the total
mass of the superstructure is 200 × N[ton]. The stiffness in each
story is determined so that the fundamental natural period of the
superstructure with fixed base is 0.1 × N[sec]. The distribution
of story stiffnesses is assumed to be the trapezoid distribution
and the ratio of the stiffness of the bottom story to that of the
top story is 2. The superstructure is assumed to be linear as

in most of base-isolated buildings. The mass m0 of the base-
isolation story is 600[ton], the stiffness k0 of the base-isolation
story is set so that the fundamental natural period of the rigid
superstructure on the base-isolation story is T1 = 1.0[sec],
and the yield deformation of the base-isolation story is dy0 =

0.03[m].
Figure 13 shows the procedure for transforming the original

base-isolated building into a 2DOF system. First, the original
system is transformed into a three-degree-of-freedom (3DOF)
system consisting of the base-isolated story, the upper half of
the superstructure and the lower half of the superstructure.
The superstructure is modeled by the two-degree-of-freedom
system here to consider the higher mode of high-rise buildings.

FIGURE 14 | Comparison of plastic deformation amplitude of base-isolation story by approximate solution for 2DOF model and that by time-history response analysis

for original model, (A) N = 10, (B) N = 20, (C) N = 30, (D) N = 40.
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m̃1, k̃1 denote the mass and stiffness of the lower half of the
superstructure and m̃2, k̃2 denote the mass and stiffness of
the upper half of the superstructure. m̃1, m̃2 are set to 200 ×

0.5N[ton], respectively. On the other hand, k̃1, k̃2 is determined
based on the equivalence of the fundamental natural period

and the fundamental natural mode. In order to obtain k̃1, k̃2,
the method reducing the multi-degree-of-freedom system into
the lower multi-degree-of-freedom system based on the inverse
formulation is used (Suzuki et al., 2009). Furthermore, the 3DOF
system is transformed into the equivalent 2DOF system by
neglecting the mass in the base-isolation story and considering
the stiffnesses of the base-isolation story and the lower half of the
superstructure as the series spring. The mass, stiffness and yield
deformation in the first story of the equivalent 2DOF system are
denoted by m̃1, ke, dye, respectively, and ke, dye can be obtained by

1

ke
=

1

k0
+

1

k̃1
(32)

dye =
k0

ke
dy0 (33)

The proposed approximate solution for the steady-state response
is applied to the equivalent 2DOF system, and the plastic-
deformation amplitude of the base-isolation story can be
obtained.

Figure 14 shows the comparison of the plastic deformation
amplitude in the base-isolation story by the proposed
approximate solution for the equivalent 2DOF system and
that by time-history response analysis for the original base-
isolated building, for N = 10, 20, 30, 40. It can be observed from
Figure 14 that the proposed method by using the equivalent
2DOF model and the approximate solution can evaluate the
plastic deformation amplitude in the base-isolation story under
the critical multiple impulse with reasonable accuracy. The
proposed method enables a unified evaluation of the steady-state
response in the base-isolation story regardless of the number
of stories, although the different procedures depending on
the number of stories were necessary in the previous method
where the closed-form solution for the SDOF is applied to the
base-isolated building (Takewaki et al., 2017).

CONCLUSIONS

The critical non-linear response has been investigated for a 2DOF
elastic-perfectly plastic system and a base-isolated building under
a multiple impulse as a substitute for long-duration earthquake
ground motions.

The conclusions may be summarized as follows.

(1) An approximate closed-form expression has been derived
for the critical steady-state response of an undamped 2DOF
elastic-perfectly plastic system under the critical multiple
impulse as a substitute for long-duration ground motions.
The steady state in which each impulse acts at the zero-
restoring force timing in the first story is assumed and a
closed-form solution for the plastic deformation amplitude
under the critical multi impulse has been derived by

introducing four approximations based on the result due to
time history response analysis. This is because it is difficult to
derive the critical elastic-plastic response of the undamped
2DOF system by the energy balance law due to the phase lag
of two masses.

(2) The accuracy of the proposed approximate solution for
the plastic deformation amplitude in the first story
under the critical multiple impulse has been investigated
through the comparison with the result of time-history
response analysis in which each impulse acts at the zero-
restoring force timing in the first story. The validity
of the four approximations used in the derivation of
the approximate solution has been investigated through
the comparison with the time-history response analysis
result.

(3) The validity of the multiple impulse as a substitute for
the long-duration ground motion has been investigated
through the comparison with the result for the steady-state
response under the corresponding multi-cycle sinusoidal
wave obtained by the time-history response analysis. It has
been demonstrated that the closed-form solution of the
plastic deformation amplitude under the critical multiple
impulse is an upper bound of that under the corresponding
multi-cycle sinusoidal wave and it is necessary to change the
multiplier of adjustment in the larger range of V, to upgrade
the correspondence between the steady-state response under
the multiple impulse and that under multi-cycle sinusoidal
wave.

(4) The validity of the critical timing of each impulse has
been investigated by varying the time interval of the
multiple impulse so as to maximize the plastic deformation
amplitude. The critical timing of each impulse is the zero
restoring-force timing in the first story, but there are several
time intervals with which each impulse acts at the zero
restoring-force timing. Therefore, the zero restoring-force
timing in the first story is a necessary condition of the critical
multiple impulse for the 2DOF system and there are several
time intervals which maximize the steady-state response.

(5) Amethod using the approximate solution has been proposed
to evaluate the critical steady-state response of a base-
isolated building under a long-duration ground motion.
The non-linear base-isolated building is first modeled by
an N-degree-of-freedom system on the elastic-perfectly
plastic shear spring representing the base-isolation story.
Then the (N+1)-degree-of-freedom base-isolated building
is transformed into the 3DOF system consisting of the
reduced 2DOF superstructure and the base-isolation story.
Finally, the 3DOF system is further transformed into the
equivalent 2DOF system by neglecting the mass on the base-
isolation story and considering the series spring assumption.
The approximate solution for the 2DOF system derived
in this paper has been applied to the equivalent 2DOF
system to evaluate the plastic deformation amplitude in
the base-isolation story. The accuracy of the proposed
method has been investigated by the time-history response
analysis for the original base-isolated building. It was
demonstrated that the plastic deformation amplitude in
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the base-isolation story can be evaluated by the proposed
method with reasonable accuracy. It was found in the
previous paper (Takewaki et al., 2017) that, when a 2DOF
base-isolation building is transformed into an SDOF system
and the closed-form solution for the critical elastic-plastic
response of an SDOF system is applied to obtain the
maximum deformation of the base-isolation story, it is
necessary to choose a transformation method based on (i)
the rigid super-structure approximation (low and middle-
rise buildings) and (ii) the ignorance of the base-isolation
story mass and series-spring treatment (high-rise buildings),
depending on the number of stories of buildings. In contrast,
the proposed method using the 2DOF system does not
need such selection of the transformation methods and it
enables a unified evaluation of the maximum deformation
in the base-isolated story regardless of the number of
stories.

In this paper, a method for long-duration ground motions
has been proposed. The applicability of the proposed method
to the pulse-type input and the analysis of rocking motion

of rigid bodies (Casapulla, 2015; Casapulla and Maione,
2017; Nabeshima et al., 2016) should be discussed in the
future. However, the extension of the SDOF model to the
2DOF model causes a lot of difficulty and the treatment
of irregular (or unsteady-state) responses due to the
pulse-type impulse may need innovative ideas to overcome
them.
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APPENDIX

PROOF OF MAXIMIZATION OF TOTAL
INPUT ENERGY BY EACH IMPULSE

It is proved here that the zero restoring-force timing
maximizes the total input energy by each impulse. The
total input energy 1E by each impulse is the increment
of the total mechanical energy just before and after
the input of each impulse and 1E can be expressed as
follows.

1E = m1v1
∗V +m2v2

∗V + 0.5(m1 +m2)V
2 (A1)

where v1
∗, v2

∗ denote the velocity of the first and second masses,
respectively, just before the input of each impulse. When the sum
of momenta P = m1v1

∗ + m2v2
∗ is maximized, 1E becomes

maximum.
The equations of motion can then be expressed by

m1ü1 + f1(t)− f2(t) = 0

m2ü2 + f2(t) = 0 (A2a, b)

where f1(t), f2(t) denote the restoring forces in the first and
second stories. Eqs. (A2a, b) can be transformed into the
following equation.

m1ü1 +m2ü2 + f1(t) = 0 (A3)

By integrating Eq. (A3) from t = t∗ to t = t∗+t0, the following
equation can be obtained.

∫ t∗+t0

t∗
(m1ü1 +m2ü2)dt +

∫ t∗+t0

t∗
f1(t)dt = 0 (A4)

where t∗, t0 denote the timing of impulse input and the time
interval of impulses. By manipulating Eq. (A4), the sum of
momenta P of the first and second stories can be obtained as
follows.

P = m1v1
∗V+m2v2

∗V = −(m1+m2)V−0.5

∫ t0

0
f1(t)dt (A5)

where it is noted that u̇1(t = t∗) = v1
∗ + V , u̇2(t = t∗) =

v2
∗ + V , u̇1(t = t∗ + t0) = v1

∗, u̇2(t = t∗ + t0) = v2
∗ and

∫ t0
0 f1(t)dt =

∫ t∗+t0
t∗ f1(t)dt in the steady state. By differentiating

Eq. (A5) by t0, the following equation can be derived.

dP

dt0
= −0.5f1(t) (A6)

The timing of maximizing 1E can therefore be characterized by

f1(t) = 0 (A7)

Since1E is stationary at the zero restoring-force timing, Eq. (A7)
is a necessary condition for the critical impulse timing.

Frontiers in Built Environment | www.frontiersin.org 18 January 2019 | Volume 4 | Article 81

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	Critical Earthquake Response of 2DOF Elastic-Perfectly Plastic Model Under Multiple Impulse as Substitute for Long-Duration Earthquake Ground Motions
	Introduction
	Multiple Impulse Input as Substitute For Long-Duration Ground Motions
	Approximate Closed-Form Solution For Elastic-Plastic Steady-State Response Under Critical Multi Impulse
	Undamped Two-Degree-Of-Freedom (2DOF) Elastic-Perfectly Plastic System
	Steady-State Response Under Critical Multiple Impulse
	Approximation of Steady-State Response Based on Time-History Response Analysis Result
	Approximate Closed-Form Expression for Steady-State Response of 2DOF Elastic-Perfectly Plastic System Under Critical Multiple Impulse
	Velocity v1(A) of First-Story Mass at Point (A)
	Velocity v2(A) of Second-Story Mass at Point (A)
	Approximate Closed-Form Solution for Plastic Deformation Amplitude dp1 in Steady State

	Verification of Accuracy of Approximation in Steady State by Time-History Response Analysis
	Approximation (a)
	Approximation (b)
	Approximation (c)
	Approximation (d)

	Numerical Example and Accuracy Check of Proposed Closed-Form Solution Through Comparison With Time-History Response Analysis Result
	Comparison of Proposed Closed-Form Solution and Time-History Response Analysis Result
	Accuracy Check by Time-History Response Analysis Under Corresponding Multi-Cycle Sinusoidal Wave

	Validity of Critical Timing
	Verification by Time-History Response Analysis
	Comparison of Steady-State Response Under Critical Multiple Impulse and That Under Corresponding Multi-Cycle Sinusoidal Wave

	Application of Approximate Solution to Base-Isolated Building
	Conclusions
	Author Contributions
	Funding
	References
	Appendix
	Proof of Maximization of Total Input Energy by Each Impulse


