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This paper presents a generalized approach for predicting (i.e., interpolating) the

magnitude and distribution of roof pressures near separated flow regions on a low-rise

structure based on freestream turbulent flow conditions. A feed-forward multilayer

artificial neural network (ANN) using a backpropagation (BP) training algorithm is

employed to predict the mean, root-mean-square (RMS), and peak pressure coefficients

on three geometrically scaled (1:50, 1:30, and 1:20) low-rise building models for a family

of upwind approach flow conditions. A comprehensive dataset of recently published

boundary layer wind tunnel (BLWT) pressure measurements was utilized for training,

validation, and evaluation of the ANN model. On average, predicted ANN peak pressure

coefficients for a group of pressure taps located near the roof corner were within 5.1,

6.9, and 7.7% of BLWT observations for the 1:50, 1:30, and 1:20 models, respectively.

Further, very good agreement was found between predicted ANN mean and RMS

pressure coefficients and BLWT data.

Keywords: low-rise building, roof pressures, upwind terrain, freestream turbulence, artificial neural networks,

backpropagation

INTRODUCTION

Boundary layer wind tunnel (BLWT) testing is still considered the primary experimental
instrument to accurately reproduce and assess wind-induced loads on building structures. The
continued dependence on wind tunnels is ascribed, in part, to the inability of computational (e.g.,
CFD) methods to accurately capture local pressure fields in flow separating regions around sharp
edged bluff bodies (Ricci et al., 2017); these regions typically produce the largest peak loads on low-
rise structures. Furthermore, prior experimental work (e.g., Hillier and Cherry, 1981; Gartshore,
1984; Saathoff and Melbourne, 1997; Akon and Kopp, 2016) in BLWTs has revealed the strong
influence of the turbulence characteristics of the incident flow on the spatial distribution of local
pressures near separating shear layers developed around surface-mounted prisms (e.g., low-rise
structures). These localized pressure fields directly affect the overall (i.e., global) flow organization,
which often leads to inaccuracies in numerical (e.g., LES) results when attempting to recreate
the flow behavior around sharp-edged bluff bodies; even when simple geometries are considered
(e.g., Bruno et al., 2014). Alternatively, BLWTs experiments have proven to be an effective tool
for properly simulating the turbulence properties of approach flows and accurately capturing the
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complex pressure fields acting on sharp-edged bluff bodies. Yet,
due to cost and time constraints, experiments in the BLWT
commonly entail a limited number of building configurations
and approach flow conditions. To address gaps in experimental
databases, this study makes use of existing experimental BLWT
datasets and artificial neural networks (ANN) to assist in the
development of robust and reliable mathematical models for
accurately quantifying peak wind loading on low-rise structures
and their inherent dependence on freestream turbulent flows.

Adequate assessment of wind-induced loads in the BLWT
requires proper simulation of the turbulent structures present
in the lower part of the atmospheric boundary layer (ABL). In
the case of low-rise structures, previous studies have suggested
that achieving the desired full-scale turbulence characteristics
at (or near) the model height is one of the main requirements
for accurately quantifying the magnitude and distribution of
surface pressures in separated flow regions (Tieleman et al., 1978;
Tieleman, 1992; e.g., St. Pierre et al., 2005); flow parameters,
such as the roughness length and the displacement height are
often poor indicators of the local pressure fields in the separated
flow region. Akon and Kopp (2016) investigated the structure
of the separation bubble near the leading edge of the roof of a
generic low-rise building model immersed in several turbulent
boundary layer flows. They found that the turbulence properties
of the approaching flow affected both the pressure distributions
and the mean size of the separation bubble. Subsequently,
Fernández-Cabán and Masters (2018) independently confirmed
these observations through a comprehensive series of BLWT
experiments for a family of boundary layer flows. The two studies
focused on approach flows acting parallel and perpendicular
to the building faces; i.e., cornering wind directions were not
investigated.

The present work aims at developing a generalized high-
fidelity approach to accurately predict (i.e., interpolate) the
distribution of surface pressures near separated flow regions
on a low-rise structure based on freestream turbulent flow
conditions. A robust feed-forward multilayer artificial neural
network (ANN) using a backpropagation (BP) training algorithm
is employed to analytically predict the mean, RMS, and
peak pressure coefficients on the roof of a low-rise structure
given the freestream turbulence intensity (at eave height)
and the normalized plan roof coordinates. A robust feed-
forward multilayer artificial neural network (ANN) using
a backpropagation (BP) training algorithm is employed.
ANNs are biologically inspired mathematical models well-
suited for solving non-linear multivariate modeling problems.
ANNs generate complex functional relationships (Turkkan and
Srivastava, 1995) to produce analytical models through training
using experimental (or computational) datasets, even when
given noisy or incomplete information (Haykin, 1994), thus
providing a resourceful alternative to other multivariate/non-
linear interpolation techniques, such as regression polynomials
and kriging methods (Franke, 1982).

Several works can be found in literature which apply ANNs
for characterizing wind load effects on building structures.
For instance, Chen et al. (2003) employed a backpropagation
training algorithm to predict mean and root-mean-square

(RMS) pressures acting on gable roofs of low-rise buildings.
Subsequently, Gavalda et al. (2011) further expanded on this
work by presenting an ANN driven interpolation methodology
that incorporated variable plan dimensions and roof slopes.
Additionally, a fuzzy neural network (FNN) approach was
developed in Fu et al. (2006) for the prediction of mean pressure
distributions and power spectra of fluctuating wind pressures on
a cantilevered flat roof. The use of ANNs have also been examined
in the evaluation of tall wind-exited buildings. For example,
Zhang and Zhang (2004) applied a radial basis function (RBF)
neural network to predict and analyze wind-induced interference
effects from surrounding obstructions on tall buildings. More
recently, Dongmei et al. (2017) coupled a backpropagation
neural network (BPNN) with proper orthogonal decomposition
(POD-BPNN) for the prediction of wind-induced mean and
RMS pressures acting on the surface of a high-rise building.
The current work further exploits the capabilities of ANNs by
integrating upwind terrain parameters into a network to produce
functional relationships between the turbulence features of the
approaching flow and the peak pressure loading on bluff bodies.

A large dataset comprising an extensive series of aerodynamic
pressure tests conducted in a large BLWT was utilized for
training, validation, and testing the ANN model. The dataset
encompasses 33 different terrains, three building model scales
(1:20, 1:30, and 1:50) and three wind directions (parallel and
perpendicular to the ridgeline and cornering), which equates to
nearly 300 independent experiments. The present work focuses
on the cornering (i.e., 45◦) wind direction, critical for roof
suction pressures. The 33 upwind terrains simulate approach flow
conditions ranging frommarine (i.e., smooth) to dense suburban
exposures.

The predictive capabilities of ANN can supplant the need for
additional experiments to investigate terrain effects in the BLWT,
which typically entail laborious and time consuming alterations
of the upstream terrain (e.g., roughness grid) to achieve targeted
roughness parameters and turbulent characteristics at the test
section. In addition, the approach can be used to further expand
existing aerodynamic databases; which commonly cover a limited
number of upwind terrain conditions (e.g., open and suburban);
and provide a tool for design practitioners to rapidly and reliably
quantify the effects of changes in upstream terrain and extreme
pressure loading acting on low-rise structures.

EXPERIMENTAL DATASET

The experimental dataset applied in this study comprises a
series of BLWT pressure tests conducted on a 1:20, 1:30, and
1:50 scaled rigid building models of the Wind Engineering
Research Field Laboratory (WERFL; Levitan andMehta, 1992a,b)
experimental building. The complete dataset is publicly accessible
through the Natural Hazard Engineering Research Infrastructure
(NHERI) DesignSafe cyberinfrastructure web-based research
platform (Fernández-Cabán and Masters, 2017; dataset). BLWT
experiments were conducted at the University of Florida (UF)
NHERI Experimental Facility. The UF BLWT is a low-speed
open circuit tunnel with dimensions of 6m W × 3m H × 38m
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L. The maximum blockage ratio in the tunnel was <0.8%. A
more detailed description of the UF BLWT can be found in
Fernández-Cabán and Masters (2018).

Model Geometry, Tap Layout, and Pressure
Measurements
The three WERFL building models were instrumented with 266
pressure taps; 152 roof taps and 114 wall taps. The tap location
followed the layout used in the 1:100 WERFL building model
of the NIST aerodynamic database (Ho et al., 2003; Test 7,
ST3/ST4), however 60 additional taps were added on the roof
of the model to improve the spatial resolution of the pressure
field in this region, as shown in Figure 1. The plan dimensions
in Figure 1 are shown in terms of the eave height of the model
H. The full-scale dimensions of the WERFL building are 45 ft
[13.7m] × 30 ft [8.9m] × 13 ft [3.96m] (¼:12 roof slope; i.e.,
aerodynamically flat). A cornering (α = 45◦) wind direction was
considered in this study.

Simultaneous pressure measurements were recorded using
eight high-speed electronic pressure scanning modules from
Scanivalve ZOC33 (Scanivalve, 2016). Pressure taps were
connected to the modules using 122 cm long urethane tubing.

FIGURE 1 | Pressure tap layout on the roof of the three UF WERFL building

models. Tap ID and (normalized) coordinates follow the layout of Test 7

(ST3/ST4) of the NIST aerodynamic database. The red “x” markers represent

additional taps that were added to the original layout (blue “o” markers).

Pressure coefficients shown in this paper are computed as the
ratio of the differential pressure and the mean velocity (dynamic)
pressure at the eave height of the model:

Cp (t) =
p(t)− p0

1/2ρU2
H

(1)

where p (t) is the (absolute) pressuremeasured, p0 is the reference
(static) pressure, ρ is the air density, and UH is the mean
streamwise velocity at eave height estimated from the mean
reference velocity pressure in the freestream at z = 1.48m above
the floor. The reference velocity pressure was converted to the
eave height of the building model using an empirical adjustment
factor (k) obtained from flow measurements with the model
removed; UH = kUref , where Uref is the mean velocity at
z = 1.48m. Static reference pressures (p0) were taken from
the static port of the Pitot tube to ensure stable measurements
with negligible fluctuations. Air density (ρ) was calculated from
the air temperature, barometric pressure, and relative humidity
measured during each test.

The pressure signals were digitally filtered to remove
resonance and damping effects in the tubes (Irwin et al., 1979)
using transfer functions following the approach described in
Pemberton (2010). The test durations for the 1:20, 1:30, and 1:50
models were 300, 180, and 120 s, respectively. These equate to a
full-scale duration of ∼30min for the three models—assuming
a 1/3.33 velocity scale. Data was recorded at sampling rate of
625Hz. The pressure measurements in the dataset are digitally
filtered using a third order Butterworth low-pass filter with a
cutoff frequency of 200Hz.

Terrain Simulation
Simulation of upwind terrain roughness is achieved through the
Terraformer, an automated roughness element grid that rapidly
reconfigures the height and orientation of 1,116 roughness
elements in a 62 × 18 grid to produce desired upwind terrain
conditions along an 18.3m fetch (Fernández-Cabán andMasters,
2018). Roughness elements are 5× 10 cm in plan, and are spaced
30 cm apart in a staggered arrangement. Height and orientation
can be varied from 0–160mm and 0–360 degrees, respectively.
The turbulence properties of the approach flow at the test section
were varied by adjusting the configuration of the Terraformer
upwind of the model. Wide and narrow edge windward element
orientations were applied (Figure 2). Roughness elements were
elevated from h = 0 mm−160mm using increments of 10mm,
thus producing 16 upwind terrain conditions for each element
orientation; totaling 33 terrains including the base floor (i.e.,
flush) case. Reynolds number (Re = HUH/ν) ranged from
3.2 × 104 (UH∼6 m/s and H = 79.2mm; 1:50 model) to 14.9
× 104 (UH∼11.4 m/s and H = 198mm; 1:20 model). Table 1
summarizes the freestream turbulence levels at the eave height
of the models for the range of roughness element heights and
orientations examined.

Figure 3 illustrates two representative longitudinal turbulence
spectra of the freestream measured at eave height of the model
z=H;H = 79.2, 132, 198mm for the 1:50, 1:30, and 1:20 models,
respectively; for sparse and dense open terrain simulations.
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FIGURE 2 | Six representative upwind terrain configurations for the UF 1:20 WERFL building model oriented at a 45◦ (cornering) wind direction.

Measurements were collected at the center of the test section
using Cobra velocity probes with themodel removed. The spectra
are normalized by the squared of themean velocity (U2) at z=H.
The von Karman spectrum—adopted in ESDU 83045 (1983)—
was fitted to the data using equivalent full-scale roughness lengths
z0 = 0.01 and 0.087m. These roughness lengths represent the two
WERFL site conditions (i.e., exposures) examined for the 1:100
WERFL model in the NIST aerodynamic database; z0 = 0.01m
(ST3) and z0 = 0.087m (ST4). The sparse open exposure was
achieved in the UF BLWT for a roughness element height
h = 40mm while h = 90mm produced the dense open terrain
simulation. Both examples used the wide edge windward element
orientation in the Terraformer.

ARTIFICIAL NEURAL NETWORKS (ANNs)

ANNs are biologically inspired mathematical methods which
loosely resemble the complex functions of the human brain for
learning and pattern recognition (Nasrabadi, 2007). Common

ANN systems contain a collection of interconnected parallel
processing units, called neurons. These neurons can store
experimental knowledge and transmit signals to other neurons
to establish complex functional relationships between inputs
and outputs. Consequently, ANNs have been frequently
used for addressing multivariate models, non-linear models,
and interpolation problems for function approximation and
classification (Ghosh and Shin, 1992).

The most widely utilized ANN model is the multilayer
feedforward perceptron (MFP). The current work implements a
backpropagation (BP) neural network (Rumelhart et al., 1986),
which is a type of MFP that integrates error backpropagation
training algorithms into the network. The generalized schematic
of the BP-ANN architecture is illustrated in Figure 4. The
network consists of a series of layers; an input layer, an output
layer, and one or more hidden layers—e.g., the network in
Figure 4 is composed of two hidden layers. Each layer is made up
of multiple nodes (i.e., artificial neurons) operating in parallel. It
is common practice to define ANNs in a simple notation form.
For example, the ANN architecture in Figure 4 can be defined as
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m− r− k− n, wherem is the number of inputs, n is the number
of outputs, and r and k are the number of neurons in the first and
second hidden layers, respectively.

In ANNs, artificial neurons in consecutive layers are
connected through a series of links. These links act as
signal transmitters; resembling the synapses in a biological
brain; and are allocated with adaptive weights which are
calibrated during the training process using backpropagation
algorithms. The training of BP networks typically consists of
two stages; feedforward (or activation propagation) and error

TABLE 1 | Longitudinal turbulence intensities of the freestream measured at the

eave height of the 1:50, 1:30, and 1:20 building models.

Roughness element

height, h (mm)

Turbulence intensity at eave height, Iu,H (%)

1:50 1:30 1:20

Wide Narrow Wide Narrow Wide Narrow

0 9.1 8.5 7.9

10 10.9 10.3 10.3 9.6 9.7 9.0

20 12.8 11.3 12.3 10.6 11.8 9.9

30 15.2 12.5 13.8 12.0 13.9 11.2

40 17.2 13.4 16.7 13.0 16.2 12.5

50 18.2 14.9 18.6 14.3 18.1 13.7

60 18.2 15.7 19.2 15.2 19.5 14.7

70 20.4 16.2 21.2 15.9 20.9 15.1

80 21.4 16.5 21.5 16.6 22.1 15.8

90 22.7 17.3 22.5 17.7 23.2 16.7

100 22.8 17.7 24.0 17.8 24.5 17.0

110 24.4 18.8 24.7 19.1 25.2 18.3

120 25.3 19.4 24.7 19.8 26.3 18.5

130 25.0 20.1 26.2 19.7 26.2 19.2

140 26.9 20.6 26.5 20.7 28.0 20.2

150 27.7 20.1 27.6 21.7 30.4 19.9

160 30.2 22.2 28.5 23.0 29.6 21.1

backpropagation. Figure 5 depicts the two stages for neuron j in
a generic single layer BP ANN. During the feedforward stage, the
input signal to the neuron (sj) is computed as the sum of the
weighted inputs and bias, as show in Figure 5, where Wji is the
weight of the link connecting neuron i of the preceding layer and
neuron j, xi is the input from neuron i of the previous layer, and
bj is the bias of the current neuron. The output signal yj for the
neuron j is then obtained by passing the input signal sj through
a non-linear transfer (activation) function. Common activation
functions used in ANN for neurons in the hidden layer include
the tangent sigmoid and the logarithmic sigmoid (Basheer and
Hajmeer, 2000). In the case of multilayer ANNs, the output signal

FIGURE 4 | Architecture of multilayer artificial neural network with error

backpropagation.

FIGURE 3 | Longitudinal turbulence spectra; at eave height (z = 3.96m full-scale); of the freestream measured at the center of the test section; with the building

model removed. The simulation of the two terrains is achieved for roughness element heights of 40mm (sparse open) and 100mm (dense open) in a wide edge

windward orientation.
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FIGURE 5 | Feedforward (or activation propagation) and error backpropagation phases for neuron j.

yj is transmitted to the neurons of the following layer as an input
signal.

At the end of the feedforward stage, the final output vector
is compared to a target output; commonly through calculation
of the mean squared error (MSE). The error is then back-
propagated from the output layer to the input layer using a
backpropagation training algorithm to adjust weights of the
connecting links for minimization of the MSE. The error
backpropagation stage continues until a convergence criteria
is reached. The Levenberg–Marquardt (LM) backpropagation
algorithm was selected in this study. The algorithm was designed
to approach second-order training speed without having to
compute the Hessian matrix, and has proven very efficient when
training networks with up to a few hundred weights (Hagan and
Menhaj, 1994); which is the case in the present study.

PREDICTING MEAN, RMS, AND PEAK
ROOF PRESSURES USING ANN

Designing an ANN model requires the selection of multiple
parameters; e.g., number of inputs and output, number of
hidden layers, and the number of neurons in each layer. These
parameters often have a strong influence in the performance
and computational efficiency of the network. Currently, there
are no general rules—and very few guidelines—for defining
the optimum ANN architecture. Therefore, trial-and-error
approaches are regularly employed to calibrate the network to
achieve the best ANN structure for a particular problem (e.g.,
Bre et al., 2018). A common approach; which is adapted in
this study; is to begin with a small number of neurons and
progressively increase their number until achieving adequate
training results and observing diminishing returns with further
additional neurons.

In the current work, an ANN using a backpropagation
training algorithm was employed to predict the distribution
of mean, RMS, and peak pressure coefficients on the roof of
a low-rise structure from the turbulence characteristics of the
freestream. The ANN parameters are summarized in Table 2.
The inputs to the ANN are the freestream turbulence intensity

at eave height (Iu,H) and the normalized roof coordinates (x/H
and y/H), while the ANN outputs are the mean (Cp,mean),
RMS (Cp,rms), and peak (Cp,peak) pressure coefficients for all 152
roof taps (Figure 1) of each model. Peak values are estimated
from a Fisher-Tippett Type I (Gumbel) distribution for a
78% probability of non-exceedance (Cook and Mayne, 1979).
Although mean, RMS and peak Cp values were obtained from
time series, the time-varying Cp signal is not an output of the
ANN; i.e., statistical analysis of the pressure time series was
performed prior to training the network. The hyperbolic tangent
sigmoid function was selected as the transfer function for the
hidden layers. The function can generate values in the range [−1,
1], and thus can accommodate for both positive (e.g., Cp,rms) and
negative (e.g., Cp,peak) outputs. Linear transfer functions are used
in the output layer. As previously mentioned, only the 45◦ wind
direction is considered.

For each model scale, the complete BLWT dataset was divided
into subsets for training, validation, and testing of the ANN.
The training data is used to adjust the weight and bias values
of each neuron during ANN training (Figure 5). The validation
data subset supervises the training process; without performing
weight/bias adjustments; and can terminate the training process
if the error (i.e., observed vs. predicted) of the validation subset
increases repeatedly for a specified number of epochs (i.e.,
iterations). That is, the validation data serves as a stopping
criteria during ANN training to improve generalization and
avoid overfitting of the training data. Finally, the testing data
subset is used to independently assess the predictive capabilities
of the ANN model after training; i.e., the test data does not
participate in the training process.

During training of the ANNs, multiple training initializations
runs were performed due to the random nature of the weight
and bias initialization functions in feedforward ANNs, which
often produce variations in the training results. The termination
criteria for the training process was chosen as the magnitude
of the performance gradient (measured by the LM algorithm)
and the number of validation checks. As training progresses, the
performance gradient becomes significantly small. The training
process terminates if the magnitude of the gradient falls below
0.00001. Further, the training was halted after eight validation
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TABLE 2 | Backpropagation ANN parameters for the 1:20, 1:30, and 1:50 building model.

Inputs Iu,H, x/H, y/H

Outputs Cp,mean, Cp,rms, Cp,peak

ANN architecture BP 3–12–10–3

Transfer functions

Tangent sigmoid Linear

(hidden layers) (output layer)

Wind direction α = 45◦ (cornering)

Training data h = 0–30mm, 50–70mm, 90–110mm, 130mm, 150–160mm (wide edge windward), and h = 0–50mm, 70–90mm,

110mm, 130mm, 150–160mm (narrow edge windward)1

Validation data h = 60, 100, 120, 140mm (narrow edge windward)

Test data h = 40, 80, 120, 140mm (wide edge windward)

Training algorithm Levenberg–Marquardt (LM) backpropagation

Number of validation checks 8

Training performance gradient 0.00001

1Roughness element height ranges are in 10mm increments.

checks. The number of validation checks represents the number
of consecutive iterations that the validation performance fails to
decrease.

Upwind terrains for both narrow and wide edge roughness
element orientations were used for training the network;
including the smoothest (h= 0mm; i.e., flush floor) and roughest
(h = 160mm, wide edge) Terraformer configurations. These are
listed in Table 2. The training data comprised nearly 76% of the
upwind terrains. Four narrow edge element heights were chosen
for validating the training data. Finally, roughness heights h= 40,
80, 120, and 140mm for a wide edge windward orientation were
selected to test the ANN.

RESULTS

ANN Training Performance
Figure 6 depicts subplots of performance histories during ANN
training for the 1:50, 1:30, and 1:20 datasets. The performance
function was chosen as the combined MSE of the predicted
(i.e., ANN) and observed (i.e., BLWT) mean, RMS, and peak
Cp values. The training, validation, and test subsets each have
predicted and observed values for the three Cp statistics. The
LM backpropagation algorithm was employed to optimize (i.e.,
minimize) the MSE. At the end of the training process, the
ANN for the 1:50 model achieved the lowest MSE from the
three model scales, with a training performance of MSE= 0.021.
Nevertheless, the three ANNs achieved satisfactory performance
results.

Linear regression was performed on the ANN Cp outputs
and BLWT data to assess the predictive power of the network.
Figure 7 includes subplots of ANN outputs (i.e., predictions) of
mean, RMS, and peak pressures plotted against observed BLWT
data (i.e., target) for the three WERFL models. Each subplot in
Figure 7 includes data points from all 152 roof taps and upwind
terrains considered in the training, validation, and testing of the
network. Error indices computed from least-squares linear fits of
the data are also reported in the figure; i.e., root mean squared
error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2); and are defined as

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Oi − Pi)
2 (2)

MAE =
1

n

n
∑

i=1

|Oi − Pi| (3)

R2 = 1−

∑n
i=1 (Oi − Pi)

2

∑n
i=1

(

Oi − O
)2

(4)

where Oi is the observed BLWT data, Pi is the predicted ANN
data, ō represents the mean value of the observed data and
n represents the total number of data points in the subset.
Values of RMSE and MAE near zero and R2 close to unity
indicate high predictive capability of the ANNmodel. Very good
agreement is observed in mean, RMS, and peak pressures for all
model scales and data subsets; i.e., training, validation, and test
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FIGURE 6 | ANN backpropagation performance history for training, validation,

and testing subsets: (A) 1:50, (B) 1:30, and (C) 1:20 building models.

data. Particularly, the ANNmodel displays remarkable predictive
capabilities on the test data; which is not used during the training
process.

Table 3 summarizes the test data error indices for the three
Cp statistics individually. In the three model scales, peak pressure

coefficients show higher values of MAE and RMSE when
compared to RMS and mean Cp. For instance, MAE = 0.215
for the peak Cp data of the 1:50 model, while the RMS and
mean MAE are 0.042 and 0.045, respectively. Further, MAE
and RMSE of peak pressures appear to increase marginally for
larger building models. The larger errors in peak Cp data can
be attributed to the inherent uncertainties (i.e., variability) when
estimating pressure extrema (Gavanski et al., 2016; Huang et al.,
2017) which results in more spread in the data. This is reflected
in Figure 7 where peak pressures (magenta markers) display a
more scattered behavior than RMS and mean pressure data.
Nevertheless, the R2 of the peaks reported in Table 3 show very
good results, and closely match R2 values for mean and RMS
pressures.

Predicting Roof Corner Pressures From
Freestream Turbulence
Table 4 includes mean, RMS, and peak pressure coefficients
predicted by the ANN model for three representative pressure
taps located near the roof corner of the 1:50 model. Only ANN
predictions from the test data are reported in the table; i.e.,
four upwind terrain configurations (see test data in Table 2).
Roof tap 215 is located closest to the roof corner (x/H = 0.02,
y/H = 0.04), while taps 301 and 314 are further away from
the roof corner, but near roof edges (see Figure 1). These
taps were strategically selected to evaluate the performance of
the ANN model in extreme suction regions resulting from
a cornering wind direction. In general, ANN results show
remarkable predictive power for the 1:50 model. For example,
the largest errors reported for tap 215 were −3.7, +4.1, and
+14.4% for the mean, RMS, and peak pressures, respectively. The
smallest error in the peak was −0.7% corresponding to tap 314
for a freestream turbulence of Iu,H = 26.9% (h = 140mm). The
distribution of peak pressures on the 1:50model for this upstream
condition is illustrated in Figure 8 for both the BLWT data and
ANNmodel.

ANN Cp predictions of roof corner taps 215, 301, and 316
for the 1:30 model (see Figure 1) are listed in Table 5. For the
most part, reasonably good agreement is found between the ANN
model and BLWT data. Particularly, the ANN model was highly
proficient in predicting the mean, RMS, and peak pressures for
taps 215 and 314, where the highest errors in Cp,mean were −9.7
and −5.4%, respectively. However, noticeable discrepancies are
evident in the mean and RMS pressures for tap 301, where the
ANN model consistently underestimated the BLWT data (i.e.,
negative % errors). This was also observed on the 1:50 model;
although to a lesser extent. These discrepancies are noticeable in
Figure 9; i.e., “hot spots” near the roof edge of the short building
dimension. Yet, the distribution of mean pressures predicted
by the ANN model closely resembles the wind tunnel data.
Moreover, the ANN model shows good predictive performance
of the peaks, where errors between the ANN model and BLWT
data were <10% in most cases.

Table 6 summarizes ANN Cp results obtained for the 1:20
model at the three roof tap locations considered in Tables 4, 5.
In general, the ANN model demonstrates adequate predictive
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FIGURE 7 | ANN regression plots showing the relationship between the outputs (Cp ANN) of the network and the targets (Cp BLWT) for the three WERFL building

models.

performance of peak pressures for the three corner taps, where
absolute errors between 1.2 and 21.9% were found. However,
similar to the 1:50 and 1:30 models, lower mean and RMS
pressures are predicted by the ANN model at tap 301 compared
to the BLWT data. This is observed for the four upwind
terrain cases. Additionally, ANN predictions of the mean Cp

for tap 314 display noticeable deviations from the BLWT data.
Figure 10 presents contour maps of observed and predicted
(i.e., ANN) RMS pressures on the roof of the 1:20 model
for Iu,H = 22.1% (h = 8mm; wide). This upwind terrain
configuration corresponds to the largest errors in both mean
and RMS in the 1:20 model. The pressure maps illustrate how
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the ANN underestimates the intensity of the RMS pressures.
Nevertheless, the errors in the mean and RMS pressures did not
seem to affect the prediction of the peaks, where more than half
of the values reported in Table 6 were <3.8% of the BLWT data.
Of the three model scales, the ANN performed the best on the
1:50 dataset, while the 1:20 produced the largest discrepancies
between the model and BLWT data.

Turbulence Effects on Area-Averaged Peak
Pressures
Figure 11 includes subplots of area-averaged peak pressures
acting on the roof corner as a function of freestream turbulence
intensity at eave height (Iu,H). The area-averaged pressures were
computed from peak Cp estimates of taps 215, 216, 301, 316, 315,
and 314 located near the roof corner of the three WERFL models
(see Figure 1). The six taps cover a normalized corner roof area

TABLE 3 | Regression performance for ANN test data (h = 40, 80, 120, 140mm;

wide edge windward).

Building model Pressure coefficient,

Cp

MAE RMSE R2

1:50 RMS 0.042 0.058 0.986

Mean 0.045 0.059 0.983

Peak 0.215 0.283 0.977

1:30 RMS 0.056 0.068 0.979

Mean 0.053 0.066 0.977

Peak 0.288 0.312 0.971

1:20 RMS 0.097 0.091 0.960

Mean 0.101 0.095 0.947

Peak 0.324 0.339 0.971

A/H2 of 0.15, where H is the eave height of the model;∼2.35 m2

in full-scale. In Figure 11, the red markers represent BLWT data
from the 33 upwind terrain configurations, while the continuous
black line is the ANN analytical (predictive) model. Peak pressure
estimates were calculated from Gumbel distribution for a 78%
probability of non-exceedance.

Area-average pressures for the three WERFL models display
similar trends of increasing peak suction with freestream
turbulence. For the smoothest upwind case (Iu,H ∼8%), the
three scales display peak pressures of approximately−3. Further,
little scatter is observed for turbulence levels ranging from 8 to
18%. In this range, the ANN model is able to closely follow the
monotonic trend in the data. However, for Iu,H exceeding 18%,
the scattering in the UF data becomes more pronounced. During
the ANN training process, the network parameters were carefully
calibrated to avoid overfitting of data subsets with significant
scatter (i.e., variability); e.g., peak pressure data associated with
highly turbulent approach flow conditions. This is particularly
evident in the 1:30 and 1:20 building models. This resulted in
improved generalization of ANNmodel for the roughest upwind
cases.

The subplots in Figure 11 also include area-averaged peak
estimates computed from tests ST3 and ST4 of the NIST database.
The turbulence intensity for the two experiments were derived
from the ESDU (1983) model based on full-scale roughness
lengths of z0 = 0.01 and 0.087m and a height z = 3.96m
above ground level. This resulted in turbulence levels of 16.4 and
23.3% for ST3 and ST4, respectively. Area-averaged peak values
for test ST3 (diamond green marker) show reasonably good
agreement with the UF data when matching the turbulence levels
at eave height, although NIST results displayed slightly lower
peak (area-averaged) suction values. Conversely, the averaged
peak pressure for test ST4 (square blue marker) shows noticeable
discrepancies when compared to the UF data for similar Iu,H .

TABLE 4 | Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:50 building model.

Tap ID h (mm)

(Wide)

Iu,H
(%)

Cp,mean Cp,RMS Cp,peak

BLWT ANN % Error BLWT ANN % Error BLWT ANN % Error

215 40 17.2 −1.53 −1.55 1.0 1.65 1.72 4.1 −5.80 −6.64 14.4

80 21.4 −1.78 −1.72 −3.7 2.04 2.01 −1.4 −10.08 −9.36 −7.1

120 25.3 −1.92 −1.90 −0.9 2.31 2.34 1.1 −12.95 −12.40 −4.3

140 26.9 −1.95 −1.98 1.9 2.44 2.48 1.6 −13.16 −13.71 4.2

301 40 17.2 −2.19 −2.10 −4.4 2.29 2.21 −3.5 −5.23 −5.46 4.4

80 21.4 −2.27 −2.08 −8.7 2.47 2.25 −8.9 −6.78 −6.68 −1.4

120 25.3 −2.12 −2.07 −2.7 2.42 2.30 −4.7 −8.60 −8.11 −5.7

140 26.9 −1.99 −2.06 3.6 2.31 2.33 0.8 −8.18 −8.75 6.9

314 40 17.2 −1.98 −1.97 −0.5 2.04 2.05 0.5 −4.45 −4.63 3.9

80 21.4 −1.89 −1.82 −3.6 2.01 1.95 −2.9 −5.70 −5.56 −2.5

120 25.3 −1.76 −1.67 −4.7 1.95 1.85 −4.9 −6.99 −6.62 −5.3

140 26.9 −1.67 −1.61 −3.6 1.91 1.81 −5.1 −7.12 −7.08 −0.7

Mean % Error 3.3 3.3 5.1
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FIGURE 8 | Prediction of peak pressure coefficients (Cp,peak ) for the 1:50 WERFL model and a freestream turbulence intensity of 26.9% at eave height: (A) BLWT

experimental data and (B) ANN prediction.

TABLE 5 | Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:30 building model.

Tap ID h (mm)

(Wide)

Iu,H
(%)

Cp,mean Cp,RMS Cp,peak

BLWT ANN % Error BLWT ANN % Error BLWT ANN % Error

215 40 16.7 −0.93 −0.84 −9.7 1.05 1.04 −0.9 −7.81 −7.27 −6.9

80 21.5 −1.09 −1.03 −5.5 1.43 1.34 −5.9 −11.77 −9.86 −16.2

120 24.7 −1.35 −1.33 −1.7 1.90 1.72 −9.6 −11.56 −11.90 2.9

140 26.5 −1.46 −1.51 3.6 2.09 1.94 −7.5 −12.67 −12.99 2.5

301 40 16.7 −2.41 −2.11 −12.7 2.51 2.22 −11.7 −6.13 −5.27 −14.0

80 21.5 −2.27 −1.88 −17.1 2.45 2.06 −15.9 −7.08 −6.64 −6.2

120 24.7 −2.13 −1.78 −16.7 2.41 2.02 −15.8 −8.51 −8.04 −5.5

140 26.5 −2.02 −1.73 −14.5 2.32 2.01 −13.4 −8.83 −8.73 −1.1

314 40 16.7 −1.94 −1.83 −5.4 1.99 1.87 −6.4 −4.64 −4.13 −10.9

80 21.5 −1.76 −1.71 −2.9 1.86 1.79 −3.8 −5.40 −5.03 −6.9

120 24.7 −1.68 −1.68 0.1 1.84 1.81 −1.9 −6.48 −6.02 −7.1

140 26.5 −1.65 −1.65 −0.1 1.85 1.81 −2.2 −6.84 −6.61 −3.3

Mean % Error 7.5 7.9 6.9

The discrepancy could be, in part, ascribed to uncertainties in
the turbulent characteristics of the approach flow during pressure
testing; i.e., surface pressures and approach flow conditions
near the model are usually not measured simultaneously. For
example, Figure 11 reveals how a slight reduction in Iu,H
(e.g., 2%) can cause the NIST data to fall in line with the
UF observations. This sheds light regarding the sensitivity

of peak pressures to the turbulent flow conditions of the
freestream.

DISCUSSION

In general, the results suggest that the ANN models can
accurately predict mean, peak, and fluctuating (i.e., RMS)
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FIGURE 9 | Prediction of mean pressure coefficients (Cp,mean) for the 1:30 WERFL model and a freestream turbulence intensity of 21.5% at eave height: (A) BLWT

experimental data and (B) ANN prediction.

TABLE 6 | Prediction of mean, RMS, and peak pressures for taps 215, 301, and 314 on the 1:20 building model.

Tap ID h (mm)

(Wide)

Iu,H
(%)

Cp,mean Cp,RMS Cp,peak

BLWT ANN % Error BLWT ANN % Error BLWT ANN % Error

215 40 16.2 −1.58 −1.42 −9.9 1.71 1.59 −7.1 −8.23 −8.46 2.8

80 22.1 −2.02 −1.68 −16.8 2.35 1.98 −15.6 −13.2 −11.9 −9.9

120 26.3 −2.11 −1.98 −6.1 2.58 2.38 −7.7 −14.8 −14.3 −3.8

140 28.0 −2.01 −2.07 3.3 2.54 2.48 −2.4 −14.8 −14.6 −0.9

301 40 16.2 −2.06 −1.87 −9.1 2.15 1.95 −9.3 −5.69 −4.45 −21.9

80 22.1 −2.48 −1.95 −21.2 2.66 2.11 −20.5 −8.24 −6.71 −18.5

120 26.3 −2.25 −1.91 −15.1 2.50 2.16 −13.6 −9.27 −8.92 −3.8

140 28.0 −1.94 −1.78 −8.4 2.21 2.05 −7.2 −8.50 −9.32 9.6

314 40 16.2 −1.74 −1.57 −10.1 1.80 1.64 −8.6 −4.17 −4.07 −2.5

80 22.1 −1.91 −1.50 −21.4 2.01 1.63 −19.2 −6.00 −5.19 −13.5

120 26.3 −1.75 −1.53 −12.6 1.90 1.71 −10.0 −6.77 −6.69 −1.2

140 28.0 −1.51 −1.52 0.8 1.68 1.71 2.2 −7.35 −7.10 −3.4

Mean % Error 11.2 10.3 7.7

pressures within the range of turbulent flow conditions
considered. However, in some cases, considerable errors exist
between experimental BLWT data and ANN predictions;
particularly for the larger building models (e.g., 1:20).
Discrepancies between BLWT data and the ANN model
appear to increase with building model scale for taps near

roof corners. For instance, the largest errors reported for mean
pressure coefficients correspond to the 1:20 model (see Table 6).
Peak and RMS Cp values also show relatively large errors for the
largest building model. While it is evident that the turbulence
intensity of the freestream near the model height is a key factor
for predicting peak surface pressures, previous studies (e.g.,
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FIGURE 10 | Prediction of RMS pressure coefficients (Cp,rms) for the 1:20 WERFL model and a freestream turbulence intensity of 22.1% at eave height: (A) BLWT

experimental data and (B) ANN prediction.

Tieleman, 1992; Saathoff and Melbourne, 1997) have shown that
the turbulence scales of the incident flow also play an important
role in the development of extreme pressures, particularly in the
mechanisms of transition within the separated shear layer (e.g.,
Lander et al., 2018).

Early experimental work presented in Gartshore (1973) and
Laneville (1975) has demonstrated the effect of the small-scale
turbulence on the flow structure near the separated shear layer.
These small-scale eddies; approximately of the same order as the
thickness of the shear layer; predominantly control the roll-up
in flow separation regions. The level of small-scale turbulence is
typically quantified by the Melbourne parameter (1979), defined
as the normalized spectral density of the longitudinal velocity
fluctuations evaluated at a wavelength (nH/U) corresponding
to 1/10 of the characteristic dimension (e.g., eave height, H)
of the bluff body. Further, it has been shown that large-scale
turbulence; represented by the integral length scale Lxu; can also
influence the development and duration of extreme pressure
events (Tieleman, 2003). For instance, Saathoff and Melbourne
(1997) reported a noticeable increase in peak pressures; measured
on a blunt flat plate; with increasing Lxu for the same turbulence
intensity, although the turbulence levels were in relatively
smoother flows (Iu,H ∼8 and 12%). These authors argue that
large-scale turbulent eddies are less frequent and thus permit
shear layer vortices to further develop and strengthen, which
results in higher surface pressures near flow separated regions.
Nevertheless, further research is needed to better understand
(andmore accurately quantify) the effect of small- and large-scale

turbulence features in the freestream flow and their influence on
peak pressures; particularly for bluff-bodies immersed in highly
turbulent boundary layers. It can be inferred from Figure 11

that the largest discrepancies between the BLWT data and ANN
for the 1:30 and 1:20 models are generally found in BLWT
experiments where the model is immersed in more turbulent
boundary layer flows (e.g., Iu,H > 18%). These observations are
consistent with previous BLWT studies (Fritz et al., 2008) which
have shown significant variability in peak pressures near roof
corners when simulating rougher (i.e., suburban) upwind terrain
conditions in the wind tunnel.

Results from the three building models also suggest a clear
dependence of the building model size on the performance of the
neural network, where ANN predictions generally display larger
discrepancies in peak pressures with increasing model scale. This
trend could be, in part, due to Reynolds number effects in the
BLWT; e.g., the Re for the 1:20 model is ∼2.5 times greater
than the 1:50 model. Previous work (e.g., Lim et al., 2007) has
demonstrated the Re-dependence (that can persist well-beyond
Re > 2 × 104) when quantifying peak suction pressures on
sharp-edged bluff bodies oriented at 45◦ to the approach flow;
which is the wind direction considered in this study. This wind
orientation promotes the development of strong (and relatively
steady) “delta-wing type” conical vortices that originate at roof
corners and extend along line inclines of∼11–14◦ relative to roof
edges, where smaller angles are associated with larger Re numbers
(Tryggeson and Lyberg, 2010). The structure of conical vortices
has been shown to strongly affect Re, which partly explains
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FIGURE 11 | Area-averaged peak pressures from six corner roof taps (Tap IDs

215, 216, 301, 314, 315, and 316) as a function of freestream turbulence: (A)

1:50, (B) 1:30, and (C) 1:20.

the well-known mismatch between measured peak pressures
at model and full-scale under corner roof vortices (Cochran,
1992). Consequently, these disparities should be accounted for
when deriving full-scale pressure data from BLWT experiments.
Nonetheless, further work must be conducted to properly correct
these discrepancies.

CONCLUSIONS

A feed-forward multilayer ANN using a backpropagation (BP)

training algorithm is developed to predict the mean, RMS, and

peak pressures on the roof of three geometrically scaled low-
rise building models for a wide-range of upwind approach flow

conditions. A large dataset of BLWT experimental data was
utilized to train, validate, and test the network. The dataset
consists of pressure data collected on the surface of three low-
rise building models immerse in 33 unique boundary layer
flows. In general, results indicate that the ANN model can
accurately predict mean, RMS, and peak pressure coefficients on
the roof of a low-rise structure given the freestream turbulence
intensity at eave height and the normalized plan roof coordinates.
Predicted ANN peak pressure coefficients for a series of pressure
taps located near the roof corner were, on average, within
5.1, 6.9, and 7.7% of observed BLWT data for the 1:50,
1:30, and 1:20 model scales, respectively. The network also
displayed reasonably good agreement between predicted ANN
mean and RMS pressure coefficients and BLWT data. Further,
the ANN was also successful in generating reliable functional
relationships to associate area-averaged peak pressures near the
roof corner to the turbulence characteristics of the freestream.
These relationships similar trends for the three WERFL building
models.

While the present work centers on the prediction of peak
surface pressures from the freestream turbulence intensity
near the model height, it is well-established that other flow
parameters can influence the extreme pressure distribution,
particularly in the separated shear layer. Both small and large
turbulence scales in the freestream can affect the magnitude
and duration of peak pressure events. These turbulent scale
properties could potentially be introduced into the ANN model
as input parameters (in addition to Iu,H), where small turbulence
scales could be quantified by the Melbourne parameter, while the
integral length scale (Lxu) can be utilized to estimate the size of
large-scale turbulent eddies in the incident flow. Nonetheless, a
better understanding of these parameters and their effect on the
flow field around flow separated regions is still needed to more
accurately predict peak pressures.

In summary, the development of new predictive tools
for quantifying peak wind loading on civil infrastructure is
essential for improving the numerical accuracy of computational
modeling (e.g., CFD) and steadily reducing our dependence
on experimental testing. For instance, ANNs can be used
to expand existing aerodynamic databases and help cover a
wide range of possible experimental configurations. Further,
ANNs can enhance the efficiency of newly developed cyber-
physical methods (e.g., Whiteman et al., 2018) for investigating
and optimizing the performance of civil infrastructure systems
under wind hazards. Future work will further expand the
capabilities of the current ANN model by incorporating
additional input parameters, such as wind direction, roof
slope, and building aspect ratio (Chen et al., 2003; e.g., Bre
et al., 2018). Additionally, the predictive power of the neural
network can be further enhanced through simulation of more
realistic upwind terrain conditions. This can be achieved
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experimentally through the generation of random fields of
roughness elements to recreate real-world heterogeneous terrain
conditions.
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