AUTHOR=Noh Nurbaiah Mohammad , Tesfamariam Solomon TITLE=Seismic Collapse Risk Assessment of Code-Conforming RC Moment Resisting Frame Buildings Designed With 2014 Canadian Standard Association Standard A23.3 JOURNAL=Frontiers in Built Environment VOLUME=4 YEAR=2018 URL=https://www.frontiersin.org/journals/built-environment/articles/10.3389/fbuil.2018.00053 DOI=10.3389/fbuil.2018.00053 ISSN=2297-3362 ABSTRACT=

This paper presents collapse risk assessment of code-conforming reinforced concrete moment resisting frame (RC MRF) buildings located in Vancouver, Canada. This assessment investigates the three- and six-story of regular RC MRF building systems, with and without unreinforced masonry infill wall, representing low- to mid-rise structures. These buildings are designed according to the current National Building Code of Canada and detailed based on the 2014 Canadian Standards Association A23.3 standard provision for high seismic regions. Two different ductility classes of seismic building design, namely ductile and moderately ductile, are considered to identify the capability, equality, and/or difference of the seismic performance of these designed buildings. Nonlinear dynamic analysis is applied in the performance-based seismic assessment procedures to assess the collapse response of structural for the set of 50 pair ground motion records. Next, the seismic fragility curves are developed through incremental dynamic analysis. Finally, mean annual frequency of collapse is calculated through combination of fragility curve and hazard curve. The results indicate that the bare RC buildings are vulnerable to earthquake-induced collapse when the number of the story increased. The presence of the URM infill walls significantly influence the collapse behavior of the frame structure. Compared to moderately ductile MRF buildings, ductile MRF buildings show a better collapse performance, are strongly influenced by the capacity of the building system.