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In order to identify physical model parameters of a high-rise building, a new story stiffness
identification method is presented based on a shear-bending model and the identification
function. Although a shear building model may be the simplest conventional model
for representing tall buildings, the system identification (SI) method using that model
is not necessarily appropriate. This is because the influence of bending deformation is
predominant in such high-rise buildings. For this reason, a shear-bending model is used
where the shear and bending stiffnesses are unknown. In the previous researches using
the shear-bending model, it was difficult to identify the bending stiffnesses stably and
reliably. In this paper, to overcome such instability of bending stiffness identification of
the shear-bending model, a new SI algorithm using both the shear model and the shear-
bending model is presented. The proposed SI algorithm is based on the observation
that the fundamental-mode shape of the identified shear model is similar to that of the
shear-bending model identified in the previous SI method. In order to verify the advanced
SI method, two different 20-story building models are investigated in the numerical
simulations. From the results of the simulations, both the shear and bending stiffnesses
of the shear-bending model are identified reliably and stably in the proposed SI method.

Keywords: system identification, high-rise building, shear-bending model, microtremor input, ARX model, identi-
fication function

INTRODUCTION

The structural health monitoring has been studied and applied to many engineering fields, such
as civil, mechanical, and aerospace structures, for the evaluation of the structural safety and the
decision-making to operate the objective structures (Boller et al., 2009; Takewaki et al., 2011). In
the structural health monitoring, the system identification (SI) methodologies play a key role in
identifying mechanical properties of structures. It is well recognized that the modal-parameter SI
and physical-parameter SI are two major branches in the field of SI. Much interest is focused on the
modal-parameter SI, which can provide the overall mechanical properties of a structural system
and has a stable characteristic. On the other hand, the physical-parameter SI is important from
the different point of view that the physical parameters, e.g., stiffness or damping coefficient of
the structural model, can be obtained directly, and this is quite effective for the damage detection.
Although the physical-parameter SI is preferred in the structural healthmonitoring, its development
is limited due to the requirement of multiple measurements or the necessity of complicated
manipulation (Hart and Yao, 1977; Udwadia et al., 1978; Shinozuka and Ghanem, 1995; Takewaki
and Nakamura, 2000, 2005; Brownjohn, 2003; Nagarajaiah and Basu, 2009; Takewaki et al., 2011;
Zhang and Johnson, 2013).
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As one of limited works on physical-parameter SI, Takewaki
and Nakamura (2000) introduced a special SI formulation based
on the work by Udwadia et al. (1978). In that method, the stiffness
and damping coefficient at a specific story of a shear building
model (S model) can be identified directly from the floor accel-
eration records just above and below the target story using the so
called identification function (IDF). However, in the SI method
proposed by Takewaki and Nakamura (2000, 2005), there exists a
difficulty in applying to actual recorded data, e.g., microtremors,
due to the small signal/noise (SN) ratio in the low frequency
range. Furthermore, an S model is not necessarily appropriate for
representing the structural property of high-rise buildings with
large aspect ratios due to the influence of bending deformation.
The former problem has been a major and most difficult problem
in the field of the physical-parameter SI method, where the limit
value evaluation of the transfer function for ω → 0 is needed. The
Auto-Regressive with eXogenous (ARX) model with constraints
on the ARX parameters has been introduced by Maeda et al.
(2011) to eliminate the noise effect. By applying the ARX model
to transfer functions, the difficulty in the evaluation of limit value
for a small SN ratio data has been avoided. On the other hand,
the latter problem has been tackled by expanding the SI algorithm
to the shear-bending model (SB model) (Minami et al., 2013;
Fujita et al., 2013). Since the bending deformation of the high-
rise building is correlated with floor rotations, the SB model
is expected to be an appropriate simplified structural model to
analyze the actual high-rise building. However, the identification
of bending stiffness in the SB model is unstable in the previous SI
method. In the SImethod using the SBmodel (Minami et al., 2013;
Fujita et al., 2013), when the horizontal floor accelerations just
above and below the target story can be used from the first story
to the top story, it is needed to determine the ratio of the bending
stiffness to the shear stiffness at each floor by applying optimiza-
tion algorithms. Therefore, the identified results may depend on
the initial-value selection of the stiffness ratio. Furthermore, the
IDF (Takewaki and Nakamura, 2000) is included in the stiffness
evaluation. Since this formulation is also used in this paper, the
equations for stiffness evaluation using the IDF will be referred in
the next section. One of the reasons of the stability problem in the
previous SI method is caused by the accuracy of the evaluation
of the IDF from the measured data. Although the ARX model
is applied to raw data, the limit value of the IDF may vary in
various numbers of orders of the ARX model. In summary, the
difficulty in the previous proposed SI method may result from
the initial-value dependence problem in identifying the unknown
parameters and the accuracy problem in the evaluation of the
IDFs.

In this paper, in order to enhance the applicability of the pro-
posed SI method using the SB model, the difficulty in the limit
manipulation of the transfer function is overcome by introducing
the filter design method using a quantitative index in terms of
the ARX model parameters. Furthermore, a statistical evaluation
method in the limit manipulation for the IDF is presented where
the specification of the number of orders of the ARX model is
not needed. These proposed procedures on the filter design and
the selection of the number of orders of the ARX model can
provide the limit value of the IDF in a relatively stable manner
without any further manipulation. By enhancing the accuracy

of the evaluation of the IDF, the influence of the initial values
on the identification stability can be improved. Formulations to
evaluate the bending stiffnesses are presented using both an S
model and an SB model. It is shown that these formulations
are also effective to stabilize the identification. The proposed
method can be applied to the input of earthquake groundmotions
or microtremors. For numerical verification of the advanced SI
method, the presentmethod is applied to stiffness identification of
high-rise buildings undermicrotremors. As shown in the numeri-
cal simulations, the advanced SI method can provide reliable stiff-
ness identification results, whichmay be effective in the structural
health monitoring, e.g., the evaluation of the structural perfor-
mance of high-rise buildings in the operating term or after an
earthquake.

SYSTEM IDENTIFICATION USING
SHEAR-BENDING BUILDING MODEL

In this section, the theoretical formulation of the SI method using
the SB model is briefly introduced. Since the formulations for
the SI method using the SB model introduced in Takewaki and
Nakamura (2000, 2005), Kuwabara et al. (2013), and Minami
et al. (2013) are also important in the present SI method, some
related equations based on the stiffness identification method are
presented here to apply for the identification of the SB model.
In the previous SI method using the SB model, there exists a
stability problem of the identification of bending stiffnesses due
to various uncertainties in the determination of the identification
parameters. On the other hand, the advanced SI method is mainly
aimed at overcoming this difficulty to obtain more reliable stiff-
ness identification results and apply the advanced SI method to
the actual health monitoring of high-rise buildings.

Formulation of Stiffness Identification of
Shear-Bending Model
In a high-rise building due to the influence of bending defor-
mation on the interstory drift, the SB model can be regarded as
an appropriate model. Consider an N-story SB model as shown
in Figure 1. Let mj, Ij, Hj, Ht

j , ksj ,SB, and kbj ,SB denote the mass,
the moment of inertia, the story height, the floor height from the
ground, the story shear stiffness, and the bending stiffness of the
j-th story, respectively. Since the frequency-domain approach is
appropriate in the present formulation, all the governing equa-
tions subjected to the ground motion Üg(ω) are expressed in the
frequency domain by

(−ω2M + iω C + K)U(ω) = −MrÜg(ω) (1)

where M, C, and K denote the mass, damping, and stiffness
matrices of the SBmodel, and “i” denote the imaginary unit.U(ω)
is the Fourier transform of u(t) described as

u(t) = {u1(t), · · · , uN(t), φ1(t), · · · , φN(t)} (2)

where uj(t) and φj(t) are the horizontal displacement and floor
rotation angle of the SBmodel. In Eq. 1 is the influence coefficient
vector defined by {1, · · · , 1, 0, · · · , 0}.

Frontiers in Built Environment | www.frontiersin.org November 2016 | Volume 2 | Article 292

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Fujita and Takewaki Identification of High-Rise Building

The IDF in terms of the transfer function between the floor
responses at j-th story and ( j− 1)-th story has been proposed
by Takewaki and Nakamura (2000, 2005). It has been proved
theoretically that the limit value of the IDF for ω → 0 becomes
the shear stiffness of the shear buildingmodel (Smodel). Based on
the concept of the SI method using the IDF theory, the theoretical
formulation of the physical-parameter SI method using the SB
model has been proposed (Kuwabara et al., 2013; Minami et al.,
2013). In those SI methods, the bending and shear stiffnesses of
the SB model can be derived from the following equations with
the stiffness ratio Rj = kbj ,SB/ksj ,SB.

kbj,SB =
Rj +

Hj
Mj

∑N
i= j
{
mi(Ht

i − Ht
j−1)

}
lim
ω→0

[
1

fj(ω)

]
− Hj

Mj

j−1∑
m= 1

[∑N
i=m {mi(Ht

i−Ht
m−1)}

kbm,SB

] (3)

ksj,SB = kbj,SB/Rj (4)

where fj(ω) is called the IDF and is defined by

fj(ω) = Re

{
− ω2Mj

1
Gj,j−1(ω) − 1

}
(5)

In the previous paper (Minami et al., 2013), the inverse of the
function in Re{} in Eq. 5 was defined as the IDF. In Eqs 3 and 5,
Mj =

∑N
i= j mi and Gj,j−1(ω) = (Üg(ω) + Üj(ω))/(Üg(ω) +

Üj−1(ω)) is the transfer function.
From Eqs 3 and 4, the shear and bending stiffnesses are iden-

tified sequentially from the first story. In this procedure, the
bending stiffness at the first story and the stiffness ratio Rj( j= 1,
2, · · · , N) are unknown parameters. These unknown parame-
ters are necessary to identify by applying the conventional opti-
mization algorithm. The objective function fobj evaluated in the
optimization is defined by

fobj =
3∑

i= 1
{(ω obs,i − ω ide,i)/ωobs,i} (6)

where ωobs,i and ωide,i, are the natural circular frequencies derived
from observed data and those derived by the eigenvalue analy-
sis of the identified SB model. Depending on the optimization
algorithm, the influence of the selection of the initial value may
cause unstable identification. In the present SI method, these
initial values are determined by introducing a random searching
technique. A detailed explanation will be presented in numerical
simulations.

The SI method using the SB model is summarized in Figure 1.
The IDFs at all stories are also necessary to identify the stiff-
ness of the building. Even though the simultaneous measurement
of all floor responses is needed in the conventional physical-
parameter SI method, the IDF derived in Eq. 5 can be eval-
uated only from the simultaneous recorded data at j-th story
and ( j− 1)-th story. From the view point of the measurement
system installation, this advantage enables the practical appli-
cation of the proposed SI method to the existing high-rise
building.

FIGURE 1 | System identification using shear-bending model based on
the identification function.

Evaluation of Limit Value of Identification
Function Using ARX Model
In the previous SImethod based on the IDF as formulated in Eq. 3,
the limitmanipulation of the IDF for ω → 0was needed.However,
when the IDFs are evaluated from the raw recorded data, e.g., the
microtremormeasurement, the IDFs become unstable and exhibit
a large variability in the low frequency range due to the measure-
ment noise. In order to eliminate the influence of these noises,
the ARX model as a time-domain model has been introduced
(Takewaki and Nakamura, 2009; Takewaki et al., 2011; Minami
et al., 2013). By using ARX parameters, the transfer function
Gj ,j−1(ω) can be described as

Gj,j−1(ω) =
b1e−iωT0 + · · · + bne−iNARXωT0

1 + a1e−iωT0 + · · · + ane−iNARXωT0
(7)

where NARX, {a1, · · · , aNARX}, and {b1, · · · , bNARX} are the num-
ber of orders of the ARX model and the ARX parameters of the
polynomial estimation between input and output, respectively.
The limit value of the transfer function Gj ,j−1(ω) for ω → 0
can be derived by the Taylor series expression of Gj ,j−1(ω) as
described by

Gj,j−1(ω) ≃ A0 + A1ω + A2ω2 + · · · (8)

From the structural investigations that the j-th floor and
( j− 1)-th floor move identically at ω → 0, and the transfer func-
tion Gj ,j−1(ω) should not have a linear term of ω, the following
relations can be derived as

lim
ω→0

Re {Gj,j−1(ω)} = 1 (9)

lim
ω→0

d
dω

Im {Gj,j−1(ω)} = 0 (10)

These constraints are also considered in the determination of
the ARX parameters. By substituting Eqs 9 and 10 into Eq. 8, and
then substituting this into Eq. 5, the limit value of the IDF can be
derived finally using AR

2 , the real part of A2, as

lim
ω→0

{ fj(ω)} = −Mj

AR
2

(11)
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where AR
2 can be expressed in terms of the ARX parameters

(Kuwabara et al., 2013). This formulation in terms of the ARX
model is also used in the present SI method. However, there still
exists a difficulty in the determination of NARX in the application
to the proposed SI method. Since the evaluation of the limit
value of IDF is included in Eq. 3, it is important to clarify the
influence of the estimation error of theARXmodel on the stiffness
identification.

Instability of Identification of Bending
Stiffness
In the previous researches (Kuwabara et al., 2013; Minami et al.,
2013; Ikeda et al., 2014, 2015), the bending stiffness kb1,SB at the
first story and the stiffness ratio Rj( j= 1, 2, . . ., N) at all stories
are unknown parameters to be identified. In order to identify
these unknown parameters, it is needed to minimize a certain
objective function by applying an optimization algorithm. By
using identified parameters, the shear and bending stiffnesses of
the SB model can be obtained sequentially in Eqs 3 and 4. In
those previous researches, the error of the natural frequencies of
the identified SB model from the observed ones was employed as
an example of the objective function. However, due to the initial-
value dependence problem in the optimization algorithm and the
inaccuracy of the evaluation of the limit value of the IDF, the
identified stiffnesses of the SB model exhibit a large variability
compared with the specified values. Especially for the bending
stiffnesses, when the objective function is given by the error of the
natural frequencies, the insensitivity of the bending stiffness to the
natural frequencies becomes amajor problem and causes unstable
identification results.

DEVELOPMENT OF RELIABLE
EVALUATION METHOD OF LIMIT VALUE
OF IDENTIFICATION FUNCTION

In the previous stiffness identificationmethodusing the SBmodel,
there still exists a problem of instability in the identification of
bending stiffnesses. In order to overcome this difficulty, it seems
important to enhance the reliability of the limit value evaluation
of the IDF for ω → 0. In the previous SI method, the number of
orders of the ARX model and the cut-off frequencies of the filter-
ingwere determined by a trial-and-error approach. The variability
of the limit value of IDF may result from these reasons.

In this section, a reasonable filtering design method is pre-
sented first. After applying the ARX model to time series data
processed by the proposed filters, a statistical evaluation method
for the limit value of the IDF is proposed where the selection of
the number of orders of ARX model is not necessary.

Design of Cut-Off Frequencies of Filter
It is well known that the application of the filter to raw data can
help eliminating the noise and improving the accuracy of the
transfer function evaluation in the ARX model. In the conven-
tional filters, such as low-pass, band-pass, high-pass filters, the
cut-off frequencies are the important parameters of those filters.
A band-pass filter is used in the advanced SI method. In order to

obtain stable identification results, appropriate cut-off frequencies
are recommended to be determined in accordance with the pro-
posed quantitative index. From the observation of the theoretical
transfer functionwhich can be derived by the equation of dynamic
equilibrium in frequency domain, the gradient of the transfer
function in terms of circular frequency becomes a positive value in
the frequency range from 0 to the fundamental natural frequency
of the objective building. In this paper, the following accuracy rate
function FTF,j is proposed based on the above observation.

FTF, j =
∑Nα

i=1 gsgn,j (ωi)
Nα

gsgn,j(ωi) =
1
2

(
1 + sgn

(
d
dω

[Re {Gj,j−1(ω)}]
∣∣∣∣

ω = ωi

))
(0 ≤ ωi ≤ ωNα ) (12a,b)

where sgn() is a mathematical function which gives −1 for the
negative argument and 1 for the positive argument. Therefore,
gsgn,j(ωi) can be used as a Boolean data type function where
the case that the gradient of the real part of transfer function
at ω = ωi becomes a positive value is true and the case that the
gradient of the real part of transfer function at ω = ωi becomes
a negative value is false. In Eq. 12, Nα denotes the element
number in the frequency domain from 0 to the upper bound
frequency to evaluate FTF,j. The upper bound frequency is deter-
mined as the fundamental natural circular frequency of the objec-
tive building which can be obtained easily from the microtremor
measurement.

Figure 2 presents examples to explain the relationship between
the real part of transfer function Re{Gj ,j−1(ωi)} and gsgn,j(ω)
( j= 1, 5, 10, 15, 20) of a 20-story SB model under microtremor

A B

FIGURE 2 | Application of quantitative index to determine filtering
parameters. (A) Real part of transfer function and (B) Boolean data type
function in Eq. 12b.
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(see Microtremor Ground Motion). The structural properties of
the SB model are shown in Section “Numerical Examples.” In
Figure 2A, the real part of the transfer function evaluated by using
the ARXmodel (NARX = 150) is compared with that derived theo-
retically from the equations of motion. Furthermore, the transfer
function estimated in the conventional manner from the ratio of
an ensemble average of the cross spectrum to that of the power
spectrum of the raw data is described. As mentioned before, only
the value of the transfer function for ω → 0 is needed to identify
stiffnesses. As observed in Figure 2, gsgn,j(ωi) of the theoretical
transfer function becomes a constant value in the lower frequency
domain than the fundamental natural circular frequency. In the
transfer function estimated from raw data, gsgn,j(ωi) becomes false
in some frequencies and the limit value of the transfer function
seems to be unstable. On the other hand, gsgn,j(ωi) of the transfer
function derived by the ARX model indicates an accurate fit-
ness of the transfer function with the theoretically given transfer
function. However, gsgn,1(ωi) for NARX= 150 becomes false in the
most frequency domain. This indicates that the fitness of the
transfer function is not good. Therefore, to determine the cut-off
frequencies of the filter, gsgn,j(ωi) should be evaluated for various
numbers of orders of the ARX model.

The variations of the gradient of the real part of transfer func-
tion are presented in Figure 3 for various numbers of orders of
the ARX model (21≤NARX ≤ 300) with and without using the
band-pass filter, respectively. In this figure, the domain where
gsgn, 1 (ω)| ω=ωi, NARX becomes 0, i.e., the gradient of the real part
of transfer function is negative, is emphasized in red marker.

Limit Value Evaluation of Identification
Function without Determination of Number
of Orders of ARX Model
In applying the ARXmodel to the SI to reduce the noise influence,
it is generally important to determine the number of orders of the
ARX model. In the previous SI method using the SB model,
the ARX model was introduced to evaluate the limit value of
the IDF in Eq. 10. However, since the number of orders of the
ARX model was determined by trial and error calculations, the
accuracy of the identification may depend on the experiences of
structural engineers. Therefore, it seems difficult to obtain stable
identification results in the previous SI method. In this paper,

the limit value of the IDF is determined by a statistical approach,
where various numbers of orders of the ARXmodel are applied in
the parametric calculation.

Figure 4 shows an example of the evaluation of the limit value
of the IDF lim

ω→0
{ fj(ω)} ( j= 1, 5, 15, 20) in a 20-story building

model under microtremor (see Microtremor Ground Motion).
Figure 4A indicates the variation of the limit value of the IDF
with respect to number of orders of the ARX model. Figure 4B
shows the cumulative distribution of the limit value of the IDF
corresponding to the result shown in Figure 4A. As shown in
Figure 4A, the limit value of the IDF cannot be evaluated stably
in the small number of orders of the ARX model especially in the
lower stories. Since the IDF is derived from the transfer function
between the floor responses just above and below the target story,
the reliable identification of the limit value of the IDF at the lower
stories can be performed through the wide range calculations in
the number of orders. This is because the number of degrees of
freedom of the substructure of the objective building becomes
larger at the lower stories when the floor response at the below
of the current story is regarded as the input to the substructure.
Although the instability in the estimation of the limit value of
the IDF in terms of the ARX model is shown in Figure 4A, the
limit value of the IDF is determined by the mean value statisti-
cally obtained in the cumulative distribution in the proposed SI
method.

As mentioned above, an unstble domain, where the limit value
of the IDF varies in the small number of orders of the ARXmodel,
becomes larger at lower stories. If the number of stories of the
object building is higher than the current example, the variability
of the limit value of the IDF would be larger. Therefore, it is
needed to calculate the limit value of the IDF in a larger number
of orders of the ARX model. It is recommended that the range of
the number of orders of the ARX model to inspect the limit value
of IDF is changed in the lower story and higher story, respectively.

Refinement of Identification Function by
Shear Model
Since the stiffness of the S model is derived directly from the limit
value of the IDF in the previous SI method, the fundamental nat-
ural frequency of the identified Smodel does not necessarily coin-
cide with the observed lowest natural frequency. This difference of

FIGURE 3 | Comparison of gradient of real part of transfer function d[Re{Gj , j−1(ωi)}]/dω with and without filter.
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A B

FIGURE 4 | Limit value evaluation of identification function without selection of number of orders of ARX model: (A) variation of limit value of IDF and
(B) cumulative distribution of limit value of IDF.

FIGURE 5 | Refinement of limit value of identification function by using
identified shear model.

the fundamental natural frequency indicates that there still exists
an estimation error in the limit value of the IDF. While, due to the
difference of the identification algorithm using the conventional
optimization calculation in the SBmodel, the fundamental natural
frequency of the identified SB model can be obtained as almost
the same value of observed one. Therefore, in the present identi-
fication method, the limit value of the IDF is refined through an

A B

FIGURE 6 | Building models: (A) shear model and (B) shear-bending
model.

optimization procedure where the objective function is defined as
an error of the fundamental natural frequencies between observed
one and identified one. Figure 5 illustrates the concept of update
of the IDF using the S model.
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SYSTEM IDENTIFICATION USING BOTH
SHEAR MODEL AND SHEAR-BENDING
MODEL

In this section, a new approach for the stable identification of
bending stiffnesses is presented. The proposed method is based
on the observation that the fundamental natural frequencies and
the first-mode shapes of the identified S model are similar to
those of the identified SB model. By combining the modal infor-
mation from the identified S model in the SI method using the
SB model, the bending stiffness of the SB model can be evalu-
ated without depending on the identification algorithm based on
the IDF.

FIGURE 7 | Identification of bending stiffness using first-mode shapes
of shear model and shear-bending model.

Consider an N-story S model and an SB model as shown in
Figure 6. Let mi denote the i-th mass of the S model and the SB
model and let Ii denote the i-th mass moment of inertia of the SB
model. Those are given as known parameters. The story stiffnesses
of the S model can be derived from the theory using the IDF.
After the shear stiffnesses of the S model are refined as shown
in previous section (see Refinement of Identification Function
by Shear Model), the story shear force Q̂i,S in the free vibration
of the first mode can be derived using the fundamental natural
frequency and the first-mode shape of the S model as

Q̂i,S =
N∑
j=i

mj ω̄1,S
2 Uj,S (13)

where ω̄1,S and Uj ,S denote the fundamental natural circular
frequency and the first-mode shape of the S model. In the fol-
lowing formulation, the hat above symbol, such as X̂, denotes the
estimation from the S model. The shear deformation δ̂si,SB in the
i-th story of the SB model can be estimated by dividing Q̂i,S by
shear stiffness ksi,SB of the SB model.

δ̂si,SB = Q̂i,S/ksi,SB (14)

where the shear stiffness ksi,SB of the SB model can be derived
by the previous identification method. From this estimation, the
interstory drift δ̂bi,SB caused by the floor rotation of the SB model
in the free vibration of the first mode can be obtained as

δ̂bi,SB = Δi,SB − δ̂si,SB (15)

FIGURE 8 | Flowchart of stiffness identification using both S model and SB model.
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where Δi,SB is the interstory drift of the SB model in the free
vibration of the first mode. The absolute floor rotation angle can
be obtained by dividing δ̂bi,SB by floor heightHi. Since the absolute
floor rotation angle is the cumulative sum of the interstory floor
rotation angle, the interstory floor rotation angle λ̂i,SB can be
derived as

λ̂i,SB =

{
δ̂bi,SB/Hi (i = 1)
δ̂bi,SB/Hi − δ̂bi−1,SB/Hi−1 (i = 2, 3, · · · ,N)

(16)

Considering the rotational equilibrium equation, the product
of λ̂i,SB and kbi,SB becomes the overturning moment at the i-th
floor level. The overturning moment of the first mode can also
be obtained from the identified S model as

M̂f i,S =
N∑
l=i

{(∑l

j=i
Hj

)
ml ω̄1,S

2 Ul,S

}
(17)

Finally, the bending stiffness of the SB model can be derived as

k̂bi,SB =M̂f i,S/λ̂i,SB (18)

Figure 7 shows the diagram of the formulation for the evalua-
tion of bending stiffnesses of the SB model using the identified
S model. The flowchart of the proposed stiffness identification
method is summarized in Figure 8.

NUMERICAL EXAMPLES

Shear-Bending Model Parameters
In order to verify the validity and stability of the advanced SI
method, the time history responses of two different 20-story SB

TABLE 1 | Structural properties of Model A.

Number of
stories

Story
height (m)

Mass
(×103 kg)

Fundamental
natural

period (s)

Structural
damping
ratio

Stiffness
ratio

20 4.0 500 4.00 0.02 1000

models, called Models A and B, have been simulated numeri-
cally and applied as the recorded data. The shear and bending
stiffnesses of Model A are given as follows. First, the S model
is used and its shear stiffnesses are determined so as to have a
specified fundamental natural frequency and a specified inter-
story drift of the first-mode shape. The first-mode distribution
of interstory drifts is given by a trapezoidal shape where the first
story is 1.0 and top story is 0.7. This shear stiffnesses of the S
model are used as the shear stiffnesses of the SB model. Second,
the bending stiffnesses are given by the product of the specified
stiffness ratio and obtained shear stiffnesses. The stiffness ratio
is defined as the ratio of the bending stiffness to the shear stiff-
ness. The structural properties of Model A are summarized in
Table 1. In Model A, the stiffness ratio is given as uniform in all
stories. On the other hand, the shear and bending stiffnesses of
Model B are provided by referring to the 20-story plane-frame
building model. From the relationship between the static external
force and nodal displacement of the frame model, the equivalent
shear and bending stiffnesses of the shear-bending model can
be derived. The mass at each story is 220× 103 kg in Model
B. The story height and structural damping ratio are the same
as Model A. Figure 9 shows the shear and bending stiffness of
Models A and B.

Microtremor Ground Motion
The actual microtremor ground motion measured in the Dis-
aster Prevention Research Institute of Kyoto University in 2013
is applied as the base input in following numerical simulations.
Figure 10 shows an example of the measured microtremor on
the ground. In the numerical simulations, the band-limited white

s/
m[

noitarelecc
A

2 ]

0.05

-0.05

0

0

FIGURE 10 | Microtremor ground motion.
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Shear stiffness
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Shear stiffness
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Bending stiffness
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A B

FIGURE 9 | Target distributions of shear and bending stiffnesses: (A) Model A and (B) Model B.

Frontiers in Built Environment | www.frontiersin.org November 2016 | Volume 2 | Article 298

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Fujita and Takewaki Identification of High-Rise Building

noise data is added to each floor response to take into account the
influence of themeasurement noise. The noise data are given inde-
pendently at each floor in time domain. The ratio of root mean
square (RMS) of the added noise to that of the floor responses
without noise is given as 5% in all stories.

Stiffness Identification Using Theoretically
Given Identification Function
In order to demonstrate the validity of the identification algorithm
using both the S model and the SB model, the stiffness identifi-
cations of both Models A and B using the theoretical IDFs are
investigated. The theoretical IDF can be derived from the dynamic
equilibrium equation in the specified SB model. When the limit
value of the IDF is provided as known parameters or identified
parameters, there still exists the initial-value dependence problem
in the identification procedure, where the bending stiffness in
the first story and the stiffness ratio distribution for all stories
are unknown parameters to identify. In order to overcome the
initial-value dependence problem, a random search technique
is introduced to obtain an appropriate combination of these
unknown parameters as an initial value.

Figure 11 shows the minimization of the function in Eq. 6 for
various initial values of the first story bending stiffness and the

stiffness ratio by random search. The stiffness ratios are varied
from 500 to 5000 in the Model A, and from 500 to 10,000 in the
Model B. The stiffness ratio is assumed to be constant in all stories
in the random searching. The error of the natural frequencies
from the first mode to the third mode is used as the objective
function defined in Eq. 6. As shown in Figure 11, the initial value
of the bending stiffness in the first story can be selected from
the combination which makes the objective function minimum.
However, since the variation of the objective function is rela-
tively small when the bending stiffness in the first story becomes
larger than the specified bending stiffness, it may be difficult to
determine an appropriate initial value depending on the structural
properties.

Figure 12 shows the identified shear and bending stiffnesses
using the given IDF theoretically and the obtained initial values
in Figure 11. The bending stiffnesses derived by the proposed
identification method using both the S model and the SB model
are compared with that by the previous SI method. From these
figures, when the limit value of the IDF can be obtained in an
accurate manner, the advanced SI method can provide reliable
identification results.Table 2 shows the comparison of the natural
frequencies (1st, 2nd, 3rd, 4th, and 5th modes) of the specified
SB model with those derived by an eigenvalue analysis of the
identified SB model.

A B

FIGURE 11 | Minimization of function in Eq. 6 for various initial values of first story bending stiffness and stiffness ratio by random search: (A) Model A
and (B) Model B.

Bending stiffness

x 1012 [Nm/rad]

Shear stiffness
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Shear stiffness
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Bending stiffness
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FIGURE 12 | Stiffness identification using theoretical identification function of SB model: (A) Model A and (B) Model B.
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Stiffness Identification Using Estimated
Identification Function
In the application of the advanced SI method to actual buildings,
it seems impossible to obtain the theoretical IDF. Therefore, it is
important to enhance the accuracy of the estimation of the IDF.
In this section, the stiffness identification is implemented by using
numerically simulated structural response data including noise
influence.

Figure 13 presents the comparison of the identified limit value
lim
ω→0

{ f identified
j (ω)} with a theoretical one lim

ω→0
{ f theoretical

j (ω)}.
In addition, the error of the identified limit value is also shown
in these figures. It can be observed that the error defined by the
following formula becomes relatively large in the lower stories.

TABLE 2 | Identified natural circular frequencies.

Model A Model B

Specified
(rad/s)

Theoretical
(rad/s)

Proposed
(rad/s)

Specified
(rad/s)

Theoretical
(rad/s)

Proposed
(rad/s)

1st 1.574 1.562 1.568 1.913 1.911 1.916
2nd 5.150 5.180 5.215 4.964 4.968 4.985
3rd 9.164 9.213 9.221 7.952 7.951 7.982
4th 12.88 12.93 12.89 10.62 10.64 10.65
5th 16.51 16.58 16.46 13.90 13.93 14.00

Error
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FIGURE 13 | Estimation of limit value of IDF and error: (A) Model A and
(B) Model B.

∣∣∣ lim
ω→0

{
f identifiedj (ω)

}
− lim

ω→0

{
f theoreticalj (ω)

} ∣∣∣
lim
ω→0

{
f theoreticalj (ω)

} × 100 [%]

(19)

Figure 14 shows the identified shear and bending stiffnesses
using the estimated limit values of the IDF. It can be observed that
there exist some differences in the identified stiffnesses compared
with the specified stiffnesses. This difference may be related with
the estimation error of the limit value of the IDF. As seen in
Figure 14, the bending stiffnesses can be identified within an
allowable accuracy by improving the accuracy of the limit value
evaluation. The natural frequencies obtained by the eigenvalue
analysis of the identified SB model are summarized in Table 2. In
this table, the theoretical natural frequencies indicate that those
values are derived from the identification results using theoretical
IDF values. It can be seen that the SB model identified by the
proposed procedures can provide accurate natural frequencies
even in higher modes.

DISCUSSION

In the numerical verification presented above, two different 20-
story SB models have been identified. As shown in Figure 13,
although the estimation error in the limit value of the IDF
becomes large at some stories, i.e., the maximum error is 8.5% at
the 13th-story in Model A and 11.6% at the first story in Model
B, the identified shear and bending stiffnesses of the SB models
are relatively accurate. Compared with the shear stiffness, the
identified bending stiffness distribution is a little different from
the specified distribution as shown in Figure 14. However, the
natural frequencies from the first to fifth modes coincide well
between the specified model and the identified model. This is
because the bending stiffness of the SB model may have little
influence on the lower natural frequencies.

The number of stories of the building is limited to the 20th
story in this paper. In order to investigate the applicability of
the advanced SI method to any number of stories, especially for
buildings higher than the current verification, it is needed to
inspect how accurately the limit value of the IDF can be estimated
by this framework in the future study. Furthermore, when the

Bending stiffness

x 1012 [Nm/rad]

Shear stiffness

x 109 [N/m]
Bending stiffness

x 1012 [Nm/rad]

Shear stiffness

x 109 [N/m]

A B

FIGURE 14 | Identification of shear and bending stiffnesses: (A) Model A and (B) Model B.
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building height is higher than the current model, the influence
of the soil type and wind loadings on the stiffness identification
should be investigated in more detail. It was reported that the SI
method using the S model and the IDF for microtremor input on
relatively soft soil can provide a reliable results (Fujita et al., 2015).
On the other hand, the theoretical formulation to decrease the
influence of the wind loading on the identification was studied by
Koyama et al. (2015) for rather low-rise buildings. The theoretical
formulations by Koyama et al. (2015) showed that the term of the
floor mass can be included in the IDF as a compensated term
for considering the influence of wind loading. The applicability to
higher buildings should be discussed in more detail in the future.

CONCLUSION

The following conclusions have been derived.

(1) As an advanced stiffness identification method based on the
shear-bending model (SB model), a new practical approach
has been presented using both a shear model (S model) and
a SB model to overcome the stability problem in the identifi-
cation process in the previous SI method for the SB model. A
practical advantage of the proposed method applied to actual
buildings is that only simultaneous measurements at floors
just above and below of the target inspecting story are needed
to identify the structural properties, i.e., story stiffnesses. The
IDF derived from suchmeasurement is a powerful solution to
identify the building using the S model. However, the stabil-
ity problem in the identification, especially for the bending
stiffness of the SB model, may come from the initial-value
dependence problem in the optimization procedure and the
inaccurate limit value evaluation of the IDF at ω = 0. The
proposed practical procedure can resolve these problems by
applying the reasonably designed filters and ARX model.

(2) The cut-off frequencies of the filters, e.g., high-pass or band-
pass filters, have been determined by the proposed quanti-
tative index guaranteeing the accuracy of the estimation of

transfer functions. This quantitative index can provide the
fitness of the estimated transfer function. Furthermore in
the proposed identification method, the limit value of the
IDF is statistically evaluated without selecting the number
of orders of the ARX model. These practical procedures are
helpful to evaluate the limit value of the IDF within certain
accuracy. The accuracy of the limit value of the IDF can also
be improved bymodifying the fundamental natural frequency
of the identified S model so as to be equal to the observed
lowest natural frequency. This new approach to use the result
of the identification of the S model is effective to implement
the stable identification for the SB model.

(3) The theoretical formulations in the stiffness identification
method using both the S model and SB model have been
presented to evaluate the bending stiffness. This formulation
is based on the assumption that the first-mode shape of the
identified SB model should be similar to that of the identified
Smodel. From the firstmode of the identified Smodel, a shear
force and an overturning moment in the first mode can be
estimated. The bending stiffness of the SB model can then
be obtained by substituting these estimated values into the
equilibrium equation in the first mode.
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