
MLPhishChain: a machine
learning-based blockchain
framework for reducing phishing
threats

Fouad Trad1*, Elie Semaan-Nasr1,2 and Ali Chehab1

1Electrical and Computer Engineering Department, American University of Beirut, Beirut, Lebanon,
2Computer Science Department, American University of Science and Technology, Beirut, Lebanon

Introduction: Phishing attacks pose a significant threat to online security by
deceiving users into divulging sensitive information through fraudulent websites.
Traditional anti-phishing approaches are centralized and reactive, exhibiting
critical limitations such as delayed detection, poor adaptability to evolving
threats, susceptibility to data tampering, and lack of transparency.

Methods: This paper presents MLPhishChain, a decentralized application (DApp)
that integrates blockchain technology with machine learning (ML) to provide a
proactive and transparent solution for URL verification. Users can submit URLs for
automated phishing analysis via an ML model, with each URL’s status securely
recorded on an immutable blockchain ledger. To address the dynamic nature of
phishing threats, MLPhishChain features a re-evaluation mechanism, enabling
users to request updated assessments as URLs and website content evolve.
Additionally, the system incorporates data from external security services (e.g.,
VirusTotal) to offer a multi-source validation of phishing risk, enhancing user
confidence and decision-making.

Results: The system was built using Ganache and Truffle, and performance
metrics were computed to evaluate its efficacy in terms of latency, scalability,
and resource consumption. Results indicate that the proposed system achieves
rapid URL verificationwith low latency, scales effectively to handle increasing user
submissions, and optimizes resource usage.

Discussion: By leveraging the strengths of decentralized blockchain technology
and intelligent ML algorithms, MLPhishChain addresses the shortcomings of
traditional anti-phishing methods. It delivers a reliable and adaptable solution
capable of addressing the evolving nature of phishing threats. This approach
establishes a new standard in phishing detection, characterized by enhanced
transparency, resilience, and adaptability.

KEYWORDS

blockchain, decentralized application (Dapp),machine learning, phishing URL detection,
URL Re-evaluation

OPEN ACCESS

EDITED BY

Alex Zarifis,
University of Southampton, United Kingdom

REVIEWED BY

Qasem Abu Al-Haija,
Jordan University of Science and Technology,
Jordan
Abdur Rasool,
Chinese Academy of Sciences (CAS), China

*CORRESPONDENCE

Fouad Trad,
fat10@mail.aub.edu

RECEIVED 22 August 2024
ACCEPTED 28 November 2024
PUBLISHED 12 December 2024

CITATION

Trad F, Semaan-Nasr E and Chehab A (2024)
MLPhishChain: a machine learning-based
blockchain framework for reducing
phishing threats.
Front. Blockchain 7:1484894.
doi: 10.3389/fbloc.2024.1484894

COPYRIGHT

© 2024 Trad, Semaan-Nasr and Chehab. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Blockchain frontiersin.org01

TYPE Original Research
PUBLISHED 12 December 2024
DOI 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/articles/10.3389/fbloc.2024.1484894/full
https://www.frontiersin.org/articles/10.3389/fbloc.2024.1484894/full
https://www.frontiersin.org/articles/10.3389/fbloc.2024.1484894/full
https://www.frontiersin.org/articles/10.3389/fbloc.2024.1484894/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2024.1484894&domain=pdf&date_stamp=2024-12-12
mailto:fat10@mail.aub.edu
mailto:fat10@mail.aub.edu
https://doi.org/10.3389/fbloc.2024.1484894
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2024.1484894


1 Introduction

In the digital age, the widespread use of online services for
personal and financial transactions has brought convenience but
also increased exposure to sophisticated cyber threats, particularly
phishing attacks Aleroud and Zhou (2017). Phishing attacks deceive
users by impersonating legitimate institutions to gain access to
sensitive information, leading to financial losses, identity theft,
and compromised data security Vijayalakshmi et al. (2020).

Traditional phishing defenses typically rely on centralized
systems, which have significant limitations in adapting to the
rapidly evolving tactics of cybercriminals Sun et al. (2022). These
systems often suffer from delayed detection as updating databases
struggles to keep pace with the constant emergence of new phishing
sites Khonji et al. (2013). Additionally, centralized systems are
vulnerable to breaches and manipulation, creating single points
of failure where attackers can alter or delete critical data Oest
et al. (2019); Apruzzese et al. (2022). Their opacity also reduces
transparency, leaving users uninformed about how URLs are
classified, which undermines trust in these systems’ ability to
accurately differentiate between legitimate and malicious websites
Vidyakeerthi et al. (2022).

To address these challenges, this paper introduces
MLPhishChain, a decentralized application (DApp) that
combines blockchain’s immutable ledger technology with
machine learning (ML) to create a more proactive, transparent,
and reliable solution for URL verification. MLPhishChain enables
users to submit URLs for phishing risk assessment, using an ML
model to evaluate each URL and record its status on an immutable
blockchain ledger. This decentralized approach mitigates traditional
vulnerabilities by ensuring that once a URL’s risk status is recorded,
it becomes tamper-proof and verifiable by anyone. The immutability
of blockchain guards against unauthorized alterations, ensuring data
integrity and fostering transparency that centralized systems
cannot match.

MLPhishChain also introduces a re-evaluation mechanism to
ensure that URL classifications remain accurate and relevant as
websites evolve. Users can request a re-assessment of URLs, allowing
MLPhishChain to perform fresh analyses and detect any changes in
phishing risk. If a URL’s status changes, the system flags it for further
review, maintaining the balance between the blockchain’s
immutability and the need for up-to-date information. This
feature ensures that users have access to reliable and current
information on URL safety.

In addition, MLPhishChain integrates external evaluations
through sources such as VirusTotal, providing a secondary layer
of verification. This feature serves as a “second opinion,” leveraging
the extensive databases of established cybersecurity services to
further validate URL safety Peng et al. (2019); Salem et al.
(2021). By cross-referencing URLs with such services,
MLPhishChain enhances the robustness of its phishing detection
capabilities.

Finally, MLPhishChain leverages the distributed nature of
blockchain to ensure system resilience. Unlike centralized systems
susceptible to single points of failure, MLPhishChain’s decentralized
infrastructure enables continued operation even if parts of the
network are compromised or offline. Through these combined
features, MLPhishChain establishes a novel, decentralized

approach to phishing detection that is both adaptable to
changing threats and resilient against potential attacks.

In summary, the main contributions of this paper are:

• Integration of Blockchain and ML for phishing detection:
Introducing MLPhishChain, a novel DApp that combines
blockchain technology and ML for enhanced URL
phishing detection.

• Adaptive re-evaluation of URLs: Introducing a mechanism
that re-evaluates URLs to keep records up-to-date in response
to website changes, which, to the best of our knowledge, no
previous works have addressed.

• Incorporation of external sources: The Addition of an external
evaluation feature, provides users with a second opinion and
enhances the robustness and reliability of the phishing
detection system.

The rest of the paper is organized as follows: Section 2 covers
background concepts, including blockchain, machine learning
fundamentals, and current phishing detection methods. Section 3
reviews related work, discussing the limitations of traditional
systems. Section 4 details the MLPhishChain architecture,
focusing on integrating ML with blockchain for improved
security. Section 5 explains the technical simulation and testing
of the proof-of-concept, from URL querying to blockchain
recording and re-evaluation. Section 6 describes system
validation, and Section 7 discusses system limitations. Section 8
concludes the study, and Section 9 outlines future directions for
enhancing MLPhishChain.

2 Background and preliminaries

2.1 Blockchain technology

Blockchain is a decentralized digital ledger that records
transactions securely and transparently across a network of
nodes. Originally developed for Bitcoin Vranken (2017),
blockchain applications now span finance Zhang et al. (2020);
Varma (2019), supply chain management Moosavi et al. (2021);
Cole et al. (2019); Queiroz et al. (2020), cybersecurity Maleh et al.
(2020); Hasanova et al. (2019); Demirkan et al. (2020), and
healthcare Agbo et al. (2019); Attaran (2022); Hölbl et al. (2018).
Blockchain’s decentralized nature eliminates the need for a central
authority, improving resilience to tampering and fraud. Each block,
cryptographically sealed and chronologically linked, creates a secure,
immutable chain of records, verifiable by all network participants.
Blockchain’s decentralized and tamper-resistant structure not only
secures transactions but also supports smart contracts—self-
executing agreements embedded in code Chen J. et al. (2020)—
and decentralized applications (DApps) that operate without a
central authority.

2.1.1 Blockchain protocols
Various blockchain protocols offer distinct capabilities. For

example, Ethereum is a decentralized platform enabling DApp
development via smart contracts Aljofey et al. (2022). Unlike
Bitcoin’s peer-to-peer transaction focus, Ethereum supports

Frontiers in Blockchain frontiersin.org02

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


diverse applications Buterin (2014); Tikhomirov (2018).
Hyperledger Fabric, by contrast, is an enterprise-grade platform
for private, permissioned networks. This structure allows
organizations to tightly control their blockchain environments,
making it well-suited for applications demanding high
confidentiality and performance, such as in supply chain
management and healthcare Androulaki et al. (2018).

2.1.2 Ganache and Truffle
Ganache is a personal blockchain for Ethereum development,

simulating a local blockchain network to facilitate the testing and
development of smart contracts. It allows developers to control
block mining, log events, and customize blockchain behavior. The
Truffle framework complements Ganache by offering a
development environment and testing tools for Ethereum,
enabling automated smart contract compilation, deployment, and
testing. Together, Ganache and Truffle streamline smart contract
development.

2.1.3 Wallets
Digital wallets store cryptographic keys and sign transactions,

enabling secure blockchain interactions. Wallets can be software- or
hardware-based Thota et al. (2020); Khan et al. (2019). MetaMask, a
widely-used Ethereum wallet, allows users to manage keys, interact
with DApps, and sign transactions Lee and Lee (2019).

In MLPhishChain, blockchain’s immutability enhances
phishing detection by recording URL classifications securely,
making them tamper-proof and verifiable. Through Ethereum,
MLPhishChain uses smart contracts to automate URL re-
evaluation, ensuring data remains current. Users interact with the
MLPhishChain DApp via wallets like MetaMask to submit URLs
and view results.

2.2 Machine learning

Machine learning (ML), a subset of artificial intelligence (AI),
focuses on developing systems that learn from data and make
decisions with minimal human input. ML algorithms improve as
they process more data, creating predictive models for applications
in language processing, fraud detection, and recommendation
systems Studer et al. (2021). In cybersecurity, ML adapts to
evolving threats, providing enhanced anomaly detection and
threat prediction compared to rule-based methods Dasgupta
et al. (2022). In MLPhishChain, ML is combined with blockchain
to create a resilient phishing detection system, leveraging ML’s
adaptability and blockchain’s transparency.

2.3 Phishing detection

Phishing detection aims to identify deceptive attempts to acquire
sensitive information by impersonating legitimate entities Varshney
et al. (2016). Traditional phishing databases use signature- and
heuristic-based methods that compare URLs or messages to known
phishing patterns. While effective for previously identified threats,
these approaches struggle with rapidly evolving phishing tactics
Alzahrani and Ghorbani (2015). To address these limitations,

modern phishing systems incorporate ML techniques, such as
traditional ML and data mining algorithms Al-Haija and Al
Badawi (2021); Jibat et al. (2023); Odeh et al. (2023); Al-Fayoumi
et al. (2024); Rao et al. (2020), deep learning models Do et al. (2022);
Catal et al. (2022); Yang et al. (2019); Aslam et al. (2024), and more
recently, large language models Trad and Chehab (2024a), Trad and
Chehab (2024b), Trad and Chehab (2024c), to enhance detection
capabilities. These ML models, trained on extensive datasets, can
identify new phishing strategies and analyze URLs and websites in
real-time, improving the adaptability to emerging threats Shahrivari
et al. (2020). However, even withML integration, phishing databases
still face challenges like delayed updates and limited transparency. In
this work, MLPhishChain utilizes anMLmodel to analyze URLs and
records their status on the blockchain, ensuring secure, transparent,
and immutable evaluations, and addressing key limitations of
traditional phishing detection systems.

3 Related work

Crowdsourced phishing blacklists are instrumental in defending
against phishing attacks Bell and Komisarczuk (2020). Among these,
PhishTank stands out as one of the most longstanding and widely
utilized platform, hosting a substantial repository of phishing URLs
PhishTank (2024). Despite its significant contributions, PhishTank,
like other centralized blacklisting systems, faces several challenges: it
operates on a centralized architecture that has a single point of
failure, it lacks transparency in decision-making, and is vulnerable to
manipulations Sheng et al. (2009). For example, Vidyakeerthi et al.
highlight notable discrepancies in PhishTank’s labeling process,
where URLs might be erroneously marked as phishing despite a
majority of verifiers identifying them as legitimate, and vice versa
Vidyakeerthi et al. (2022). Furthermore, there are instances where a
URL is deemed legitimate without any verification from a verifier.
These issues underscore concerns about the reliability and
transparency of such systems.

In response to the escalating threat of phishing attacks and the
inherent limitations of centralized blacklisting systems, there has
been a growing interest in leveraging blockchain technology for
decentralized phishing detection solutions Andryukhin (2019).
While a number of studies have explored the potential of
blockchain to identify phishing nodes and behaviors within
blockchain networks Chen W. et al. (2020); Fu et al. (2022);
Joshi et al. (2023); Zhang et al. (2021), efforts aimed specifically
at detecting and blacklisting phishing URLs are still relatively
uncommon. Identifying malicious nodes and behavioral patterns
on blockchain networks plays a critical role in enhancing the overall
security and integrity of these systems. Nevertheless, the specific
challenge of URL phishing, which directly threatens end-users by
leading to financial losses and data breaches, necessitates solutions
that can accurately identify and address such threats in real-time.

One innovative initiative, PhishLedger, introduces a consortium
blockchain-based mechanism specifically designed for the anti-
tamper recording and multi-source reporting of phishing URLs.
This approach aims to overcome the shortcomings of centralized
systems by providing a platform for transparent, multi-party
participation, thereby enhancing the efficiency and reliability of
phishing detection mechanisms Liu et al. (2019). PhishLedger

Frontiers in Blockchain frontiersin.org03

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


employs a structured model comprising four types of nodes:
reporting nodes, accounting nodes, servicing nodes, and
supervising nodes. Each type of node plays a crucial role in the
ecosystem, facilitating a streamlined process for reporting, verifying,
and disseminating information on phishing URLs across a select
consortium of organizations. By utilizing a consortium blockchain,
PhishLedger ensures that the data within the network is immutable,
preventing tampering and promoting a secure environment for data
exchange. Despite its innovative design, PhishLedger faces certain
limitations that restrict its broader applicability and impact.
Primarily, the system’s access is limited to specific organizations,
thereby constraining the diversity and volume of phishing reports.
This limitation potentially affects the comprehensiveness of the
phishing URL database, as it excludes significant data that could
be sourced from a broader community. Additionally, the lack of
public accessibility raises questions about the credibility of its
verifications, since external stakeholders cannot independently
verify or contribute to the data. This restricts the system’s
transparency and limits its potential for collaborative enhancement.

PhishChain represents another significant advancement in the
field of phishing detection, leveraging the power of blockchain
technology to decentralize the process. By enabling open access
and participation, PhishChain democratizes the task of phishing
URL classification, thus addressing one of the limitations identified
in PhishLedger’s approach, which restricted access to specific
organizations. This open participation model facilitated by
PhishChain ensures that a wider base of users can contribute to
and benefit from the phishing detection process, thus potentially
increasing the volume and diversity of phishing URL data available
for analysis and blacklisting Vidyakeerthi et al. (2022). While
PhishChain’s model of incentivizing participation through the
assignment of skill points is a novel approach to encourage user
engagement, it also presents challenges. The primary concern
revolves around ensuring the quality and reliability of
contributions. Since phishing detection expertise varies widely
among participants, there is a risk that non-expert assessments
could potentially dilute the accuracy of the phishing URL database.
Additionally, the model’s reliance on crowdsourced verification
raises questions about the system’s resilience to manipulation by
malicious actors, who might seek to undermine the system’s
integrity for personal gain or to facilitate phishing attacks.

Building upon the insights gained from previous blockchain-
based solutions like PhishLedger and PhishChain, this work
introduces MLPhishChain, a novel transparent and decentralized
framework. MLPhishChain distinctively leverages ML technologies
to automate and refine the process of phishing URL detection. This
approach significantly diverges from PhishLedger’s reliance on a
closed consortium model and PhishChain’s dependency on
crowdsourced user assessments. By integrating ML for the initial
screening of URLs, MLPhishChain addresses a critical gap in
existing systems: the variability in the quality of phishing
detection stemming from the wide range of user expertise. This
ML-driven method ensures a high level of accuracy and reliability in
phishing detection, independent of user proficiency.

Moreover, MLPhishChain integrates with external sources such
as VirusTotal for the additional assessment of URLs, allowing users
to seek opinions other than those generated by the ML model. This
integration enables MLPhishChain to utilize an extensive database

of malware signatures and phishing heuristics, thereby significantly
enhancing the depth and breadth of phishing URL analysis. Such an
approach contrasts sharply with PhishChain’s model, which, while
inclusive and participatory, may lack the technical depth in its
assessment capabilities due to its reliance on non-expert
contributions.

Furthermore, MLPhishChain is the first to introduce a dynamic
re-assessment mechanism for URLs, a feature not present in prior
works like PhishChain and PhishLedger. This innovative approach
enables continuous updates to URL classifications as content
changes, ensuring that the detection system remains responsive
to evolving phishing tactics.

This work aims to bridge the expertise gap in blockchain-based
phishing detection systems by employing an ML model for initial
assessments, supplemented by the option to re-evaluate URLs as
their content changes, and further enhanced by the comprehensive
external analysis for additional verification. This approach promises
to significantly enhance the reliability and effectiveness of phishing
blacklists while maintaining the benefits of decentralization and
community involvement.

4 Methodology

MLPhishChain encompasses communication between six
components as shown in Figure 1.

1. The user, who submits URLs for phishing assessment and
requests re-evaluations.

2. The DApp, which provides an interface for user interactions
and displays phishing assessment results.

3. The smart contract, which handles requests, queries the ML
service and the external validation system, records and updates
URL statuses on the blockchain, and flags URLs that need
verification by an admin.

4. The admin, an expert who reviews flagged URLs and makes
final decisions on uncertain classifications through the DApp;

5. The ML-based phishing detection service, which analyzes
URLs to classify their phishing risk.

6. The external validation system, which provides an independent
assessment of URLs for additional user verification.

The MLPhishChain methodology is designed as a user-centric
process that begins when a user inputs a URL into the
DApp. Initially, the smart contract verifies whether the URL’s
phishing status is already recorded on the ledger. If a status is
found, it is immediately made available to the user. For URLs
without a pre-recorded status, the smart contract queries the
ML-based phishing detection service to determine the phishing
status of the URL. This status is then securely recorded on the
blockchain via the smart contract, ensuring immutability and
transparency for future queries. As websites may evolve over
time, MLPhishChain incorporates a mechanism for re-evaluation,
reinforcing the platform’s commitment to accuracy and adaptability.
When the user initiates a re-evaluation request, the smart contract
re-queries the ML model to obtain an updated classification for the
URL, regardless of any previous status recorded on the ledger. If the
new classification differs from the recorded status, the URL is

Frontiers in Blockchain frontiersin.org04

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


FIGURE 1
The six components of MLPhishChain: 1) User submits URLs and requests re-evaluations, 2) DApp displays results and interacts with the user, 3)
Smart Contract processes requests, queries services, and records data on the blockchain, 4) Admin reviews flagged URLs for final classification, 5) ML-
based Phishing Detection Service classifies URLs based on phishing risk, and 6) External Validation System provides independent URL assessments.

FIGURE 2
MLPhishChain FlowChart. The user submits a URL via the DApp, the smart contract checks if the URL’s phishing status is recorded on the blockchain.
If not, it queries the ML model to classify the URL. The status is then recorded. The user can request a re-evaluation, triggering the smart contract to re-
query the ML model. If there’s a discrepancy, the URL is flagged for admin review. The system also supports external validation via a third-party service.

Frontiers in Blockchain frontiersin.org05

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


flagged for expert review by the admin to determine a final decision
for the ledger. This process ensures the blockchain reflects the most
current and accurate status of URLs. Additionally, even if the
classification changes, the full history of status changes is
permanently recorded on the ledger, preserving its immutability.

To avoid reliance on a single source, MLPhishChain enables
users to seek an additional assessment of a given URL. In such cases,
the smart contract queries a system for external validation to retrieve
an independent phishing risk score. This score is then displayed to
the user via the DApp but is not recorded on the blockchain. The
purpose of this step is to provide users with a second opinion on the
URL’s safety within the same platform, helping them decide whether
or not to visit the site.

To optimize the service’s efficiency and discourage unnecessary
re-evaluations, MLPhishChain enforces specific usage guidelines.
Each user is allotted a limited number of re-evaluation and external
validation requests within a specific timeframe, which cannot be
exceeded. This policy manages the rate of API calls to external
services, preventing system overload. These measures ensure fair
distribution of system resources among users and encourage
thoughtful submission of URLs for re-evaluation.

A detailed breakdown of the process is illustrated in the
flowchart provided in Figure 2.

Through these structured processes and the integration of
trusted external data, MLPhishChain not only improves the
transparency and reliability of its operations but also ensures that
its database of phishing URLs is continuously updated and reflective
of the changing nature of web threats. The combination of
Blockchain with advanced ML techniques and the comprehensive
cybersecurity knowledge from external sources provides
MLPhishChain with a powerful mechanism to protect users from
phishing, ensuring a secure and trustworthy Internet environment.

5 Simulation

This section details the steps followed to implement a proof of
concept for the presented methodology, allowing for both validation
and replication of the system with the same or different
design choices.

5.1 Experimental setup and design choices

First, we detail the key design choices behind MLPhishChain,
including the selection of the ML model, the external validation
system, re-evaluation/external validation criteria, and admin
evaluation.

5.1.1 Selection of ML model for phishing detection
A variety of ML systems can fulfill the requirements of

MLPhishChain; however, the primary criteria for model selection
include high accuracy, accessibility, and the ability to assess website
content rather than relying solely on URL patterns. This approach
ensures that re-evaluations can reflect content changes accurately, as
the model does not rely on precomputed results but performs a fresh
analysis for each evaluation. CheckPhish by Bolster AI was chosen as
it meets these criteria effectively. Known for its high accuracy in

detecting phishing patterns, CheckPhish employs sophisticated ML
techniques trained on diverse phishing data to analyze complex
indicators, such as visual and contextual elements, making it well-
suited for identifying evolving phishing tactics. By leveraging
CheckPhish, MLPhishChain gains robustness in detecting both
known and novel phishing URLs.

5.1.2 External validation system
To provide an independent secondary assessment of URL

classifications, MLPhishChain integrates an external validation
system. The selected system must offer a reliable, comprehensive
phishing threat database and an extensive reputation-scoring
mechanism to reinforce user confidence in URL classifications.
VirusTotal was chosen for this role due to its well-regarded,
extensive database and its ability to draw on multiple threat
detection sources to assess phishing risks. By using VirusTotal,
MLPhishChain provides users with an additional layer of
validation, enhancing the reliability of phishing detection and
offering an extra level of confidence in the system’s URL
classifications.

5.1.3 URL Re-evaluation and external
validation criteria

To ensure that URL classifications remain up-to-date,
MLPhishChain allows users to request re-evaluations. The system
can determine re-evaluation intervals based on specific criteria,
including the time elapsed since the last check, user re-evaluation
requests, and significant changes in the URL’s content or structure.
For the initial setup presented in this paper, users are allowed a
limited number of re-evaluation or external validation requests per
minute (e.g., 3 requests per minute). Once this limit is reached,
further requests are blocked until the next time interval, preventing
excessive usage and ensuring fair resource distribution. As the
system scales, these parameters and conditions can be adjusted
based on usage patterns and resource constraints to maintain
optimal performance.

5.1.4 Admin evaluation
In the initial deployment, the admin is expected to be a

professional security analyst who manually reviews URLs flagged
by the system to confirm or override phishing classifications,
providing a critical check for edge cases and ambiguous results.
To ensure objectivity and reduce potential bias, MLPhishChain
records all admin decisions on the blockchain, preserving a
transparent history. In future iterations, we aim to replace admin
oversight with an automated review system based on advanced
consensus algorithms or multi-model voting to handle increased
scale. This transition would further enhance the system’s objectivity
and resilience, as well as reduce potential human errors or biases.

5.2 Smart contract design

The smart contract is the backbone of any blockchain-based
application, as it encapsulates all the logic and rules governing user
interactions with the DApp. The smart contract of MLPhishChain
primarily involves three elements: data assets, modifiers,
and functions.

Frontiers in Blockchain frontiersin.org06

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


5.2.1 Data assets
In terms of data assets, the smart contract primarily tracks URLs

and their classifications. Additionally, it records the last time a user
requested an external validation or re-evaluation, the number of
requests made by a user within a specified time frame, the duration
of this time frame, and the maximum number of requests permitted
within it. The contract also monitors URLs flagged for manual
review by the admin and maintains the addresses of both
CheckPhish and VirusTotal to be able to communicate with
them (more on that in next sections). It is important to note that
MLPhishChain does not require any personal data from the user.
The system exclusively processes URLs and their classifications,
which are inherently public and do not include any personally
identifiable information (PII) that would be subject to GDPR or
other data privacy regulations.

5.2.2 Modifiers
One modifier is declared to identify the admin, who is the only

entity authorized to check the URLs flagged for manual review.
These URLs have ML classifications that have changed following re-
evaluation.

5.2.3 Functions
The functions enable users to interact with the smart contract.

There are nine functions, as depicted in the use case diagram
in Figure 3.

1. ClassifyURL: This is the main function called when a user
wishes to evaluate a URL. It takes the URL and returns a
classification (phishing or legitimate). This function first
checks if the URL’s classification exists on the blockchain.
If it does, the classification is returned. If not, the classification
is determined using the checkphish function.

2. ReconsiderURL: This function sends a URL for reconsideration
by checkphish, after verifying that the conditions for re-checking
are met. If so, it returns a classification.

3. AssessURLexternally: This function is used to check the
classification of a URL by Virus Total. It also ensures the
conditions for this request are met before obtaining Virus
Total’s classification via the virustotal function.

4. Checkconditions: This internal function is used when re-
evaluating a URL with checkphish or with Virus Total. Its
primary aim is to minimize API requests by verifying whether
the user has exceeded the maximum number of requests per
time frame.

5. Checkphish: An internal function that interacts with
CheckPhish to obtain a URL’s classification.

6. Virustotal: An internal function that communicates with
Virus Total to obtain a URL’s classification.

7. UpdateRequestCount: An internal function that updates the
count of requests within the time frame whenever a user
requests re-evaluation or external verification.

8. GetRemainingReevaluations: A public function that the
DApp automatically calls to determine the number of
remaining re-evaluations or external verifications a user
can perform within the current time frame.

9. GetTimeUntilNextRequest: A public function that the DApp
automatically calls to retrieve the remaining time until a user
can submit a new request for re-evaluation or external
assessment within the current time frame.

10. ManuallyCheckURL: A public function that only the admin
can execute. This function is designed to manually assign a
phishing status to a URL whose classification has changed
following re-evaluation.

The smart contract diagram is illustrated in Figure 4.

FIGURE 3
MLPhishChain use case diagram showing the interactions between users, the DApp, and the smart contract through various functions. Users can
classify URLs, request re-evaluations, or seek external validation. The system checks conditions to prevent excessive requests, interacts with external
services like CheckPhish and VirusTotal, and updates request counts. The admin has the ability to manually check and assign classifications to URLs after
re-evaluation. The DApp can get the remaining evaluations in a given time frame, and the time until the next request could be sent.

Frontiers in Blockchain frontiersin.org07

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


5.3 DApp

A screenshot of the DApp is shown in Figure 5. The DApp is
constructed as a user interface using HTML/CSS and JavaScript,

with web3.js for connecting to the smart contract. Users enter a
URL and click on the “Check with ML” button to receive a
classification. Once the result is obtained, users can request a re-
evaluation or an external check by clicking the corresponding

FIGURE 4
MLPhishChain contract diagram showing the data assets, modifiers, and available functions.

FIGURE 5
MLPhishChain DApp showingwhere a user can check a given URL, ask for reconsideration, or externally validate. Also, the admin panel is shown only
for admins and lists URLs requiring evaluation.

Frontiers in Blockchain frontiersin.org08

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


buttons. All transactions must be confirmed via MetaMask
before execution. The DApp also has an admin section that
displays the URLs submitted for re-evaluation, and this only
happens if the entity logged in is the admin, which is identified
by the address of the MetaMask account in use. The admin has
to manually inspect each of the flagged URLs and assign a
suitable class for it.

5.4 Connection to CheckPhish and
VirusTotal

To access the necessary information from CheckPhish and
VirusTotal, oracles are typically employed. However, to simulate
this functionality without real Ether, and with more flexibility to
illustrate how a URL class might change over time, two additional
contracts were created: one for CheckPhish and one for VirusTotal
to emulate how the main contract can communicate with and
retrieve information from these services, as shown in Figure 6.

5.4.1 CheckPhish contract
The CheckPhish contract includes a list of URLs with their

classifications. It features a function that the main smart contract
can use to retrieve a URL classification (checkURL). Additional
functions are included for adding a URL with its classification to the
list (addURL) and for updating the status of a URL
(updateURLStatus), which can only be performed by the
administrator. The use case diagram for this contract is shown in
Figure 7, and the contract diagram is shown in Figure 8. The
VirusTotal contract features similar functionalities.

5.4.2 CheckPhish DApp
To simulate scenarios where a URL’s classification might

change, a CheckPhish DApp was developed. This allows
CheckPhish’s admin to change the status of a URL. In such a
case, when a user from the MLPhishChain DApp requests
reconsideration, the new class is retrieved from CheckPhish. If
the new class is the same as the one recorded on the ledger,
nothing happens. However, if the new class is different, we
should wait for the admin to check the URL manually. Once this

FIGURE 6
Emulating communication between the main contract and the services via two additional smart contracts; one for CheckPhish and the other for
VirusTotal.

FIGURE 7
CheckPhish use case diagram showing how a CheckPhish admin
can add URLs and update their statuses. Any user can check the status
of a given URL.

Frontiers in Blockchain frontiersin.org09

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


is done, the new status is updated on the ledger, and historical
classifications are always saved and cannot be altered. A screenshot
of the admin panel in the CheckPhish DApp is presented in Figure 9.

5.5 Deployment

To deploy the full MLPhishChain system, we utilized Ganache
and the Truffle framework. Ganache is a personal blockchain that
allows us to simulate a local Ethereum network, enabling us to
deploy and test multiple smart contracts in a controlled
environment. This setup includes the core contract responsible
for URL classification, alongside contracts for external validation
and re-evaluation. It allows testing of user interactions, including
URL submissions, re-evaluations, external validation requests via
services like CheckPhish and VirusTotal, and admin reviews. For the
test, we set up a simulated environment with 10 sample users, each
holding an amount of 100 Ether to interact with the contract and
request URL classifications or re-evaluations. One of the users is
designated as an admin, to make sure they have exclusive access to
perform admin-related tasks. Users could request up to 3 re-
evaluations per minute, and their request counts were monitored
and recorded. The setup allowed us to ensure that the system
functions correctly across different types of interactions, from
user requests to admin manual reviews of flagged URLs. This

approach is valuable for validating the system’s core
functionalities before deployment on a live network, as it ensures
that the entire interaction chain—from user actions to external
validations and admin oversight—is working as intended.

However, while Ganache and Truffle provide an effective testing
environment, they do not fully simulate a live Ethereum network,
where factors such as gas fees, network latency, and the decentralized
nature of transactions can affect system performance. These
limitations are further discussed in Section 7 of the paper.

5.6 Demo

A demo of the DApp is available on YouTube and can be
accessed through the link below: https://www.youtube.com/watch?
v=xc49i3phlcU.

6 Validation

The proposed blockchain system adheres to the major
cybersecurity principles required, as it ensures integrity,
reliability, and immutability. To validate the effectiveness of
MLPhishChain, a series of tests were conducted to demonstrate
the system’s capabilities in detecting and managing phishing threats.

FIGURE 8
CheckPhish contract diagram showing the data assets, modifiers, and available functions.

FIGURE 9
CheckPhish DApp showing how an admin can change the status of a given URL.

Frontiers in Blockchain frontiersin.org10

Trad et al. 10.3389/fbloc.2024.1484894

https://www.youtube.com/watch?v=xc49i3phlcU
https://www.youtube.com/watch?v=xc49i3phlcU
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


6.1 Integrity and immutability

First, the integrity and immutability of the blockchain-based records
were validated. Each transaction on the blockchain—whether adding a
new URL’s classification or updating an existing one—creates a
permanent, unalterable record. A list of sample transactions is shown
in Figure 10 where each transaction is identified by a specific hash, and
any attempt to alter the content of the transaction will change this hash.
This is crucial because it ensures that the data remains tamper-proof and
verifiable, thereby maintaining trust in the system.

In addition, the immutability feature provides a transparent
audit trail, allowing stakeholders to trace the history of any URL’s
classification. Such transparency is essential for building user
confidence in the platform’s reliability and accuracy. Moreover, it
prevents malicious actors from manipulating past records to hide
phishing activities, as any unauthorized changes would be
immediately detectable through the altered hashes.

6.2 Reliability

To assess reliability, the system’s uptime and responsiveness
under various conditions were measured. MLPhishChain was
subjected to continuous operation over a prolonged period,
during which it processed URL classifications without significant
downtime. Additionally, high traffic was simulated with multiple

simultaneous requests. The results showed that MLPhishChain
maintained functionality with minimal latency, thus confirming
its capability to handle real-world operational demands.

6.3 Performance metrics

To evaluate the practical performance ofMLPhishChain, keymetrics
such as transaction latency, scalability, and resource consumption were
measured using a simulated blockchain environment with Ganache. This
setup allowed us to obtain preliminary insights into the system’s
performance under controlled conditions.

6.3.1 Latency
The average transaction confirmation time for operations such as

URL classification or re-evaluation was observed to be 0.1489 s when
running on a Ganache simulated blockchain. To obtain this metric, a
script was created to perform a single transaction—specifically, classifying
a random URL. The script was executed 10 times as shown in Table 1,
and the average time across these runs was calculated to be 0.1489 s. This
value reflects the fast processing capabilities of a local blockchain
environment like Ganache. Also, the standard deviation is 0.0071,
reflecting the low variability of the system. However, it is important
to note that on a production-level network such as Ethereum Mainnet,
transaction confirmation times can vary significantly due to factors such
as network congestion, fluctuations in gas prices, and miner

FIGURE 10
Sample transactions recorded by Ganache.

Frontiers in Blockchain frontiersin.org11

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


prioritization. As a result, transaction times in a live environment are
likely to be higher and less predictable.

6.3.2 Scalability
Scalability was tested by simulating high traffic volumes with

multiple simultaneous requests. The system demonstrated
consistent performance, with no significant increase in latency,
indicating that the underlying smart contract design and logic
can efficiently handle high transaction volumes. The number of
simultaneous transactions and the time to complete them is reported
in Figure 11. Specifically, the time taken to complete 10, 100, and
200 simultaneous transactions was 0.492, 3.084, and 6.011 s,
respectively. While these results are promising, scalability on
real-world blockchains may vary due to factors such as block size
limitations and fluctuating transaction throughput capacities.

6.3.3 Resource consumption
Gas consumption per transaction was measured for different

functions. URL classification operations consumed less than
30,000 gas units, while more complex operations, such as re-
evaluation or external validation requests, or updates required
30,000–50,000 gas units, as seen in Figure 10. These values
indicate that the smart contract was designed to minimize
unnecessary computations, optimizing cost efficiency in
environments where gas fees are a significant consideration.
However, in a real-world deployment, the gas fees could differ.

7 Limitations

In a simulated testing environment, Ganache and Truffle offer
several advantages for rapid development, including fast transaction

processing, easy blockchain resets, and customizable mining speeds.
These features provide a controlled environment to test smart
contract functionality, enabling developers to identify and
address logic errors and conduct initial performance testing
without the costs associated with gas fees. While this simulated
testing is sufficient for the proof-of-concept presented in this paper,
it also presents some limitations that need to be addressed before
moving to the Ethereum Mainnet or other production-
level networks:

• Network Conditions and Latency: Ganache and Truffle do not
replicate the network latency, variability in node response
times, or potential congestion encountered on the Mainnet.
This can lead to discrepancies between simulated and real-
world transaction times and network behavior, affecting how
certain timing-sensitive functions or concurrent transactions
may perform.

• Gas Costs and Optimization: In Ganache, gas costs are
minimal or customizable, which means that developers do
not experience the actual economic constraints of gas
optimization as they would on the Mainnet. This
difference can result in smart contracts that function
well in a test environment but encounter issues with gas
costs and efficiency when deployed on a
production network.

• Security and Robustness Testing: Testing in Ganache may not
reveal security vulnerabilities that could be exploited in a more
distributed, public network environment. For instance, attack
vectors like front-running, denial-of-service attacks, or spam
transactions that might occur on Mainnet cannot be fully
simulated on Ganache, limiting the assessment of the
contract’s robustness against such threats.

TABLE 1 Transaction times for 10 runs.

Run 1 2 3 4 5 6 7 8 9 10 AVG

Time (sec) 0.154 0.154 0.147 0.164 0.143 0.144 0.141 0.144 0.155 0.143 0.1489

Bold value represents the average runtime of a single transaction.

FIGURE 11
Number of Simultaneous transactions and their required times.

Frontiers in Blockchain frontiersin.org12

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


• Decentralization and Consensus: Ganache operates with a
single instance simulating a blockchain network, lacking the
true distributed nature of Ethereum’s consensus mechanism.
As a result, testing on Ganache does not account for the
potential variability introduced by decentralized consensus
processes, which could affect how transactions are ordered
and confirmed on the Mainnet.

• Immutable Data and Irreversibility: On Ganache, developers
can easily reset or alter blockchain states, which is not possible
on the Mainnet where transactions are irreversible. This
difference impacts how data integrity and error-handling
procedures are tested, as issues that are easily corrected in a
test environment could have significant, irreversible
consequences on the Mainnet.

To address the limitations of Ganache and ensure a more
realistic evaluation, future work will involve deploying a beta
version of the system on a public test network, such as Ethereum
Testnet, to gather real-world performance metrics. This will help
assess the system’s behavior under actual network conditions,
including transaction latency, gas costs, and network congestion.
Additionally, stress testing will be conducted to simulate high
transaction volumes and peak usage, providing insights into the
system’s scalability and identifying any potential bottlenecks. By
integrating real-time performance monitoring and feedback from
external users during the beta phase, we can continuously fine-tune
the system for improved efficiency and robustness before full
deployment on the Mainnet.

8 Conclusion

In this paper, we have introduced MLPhishChain, a DApp that
leverages the strengths of blockchain technology and ML to address
the limitations of traditional anti-phishing methods. By combining
the analytical capabilities of CheckPhish AI with the immutable and
transparent nature of blockchain, MLPhishChain provides a more
secure and trustworthy solution for URL verification and
phishing detection.

The integration of blockchain ensures that URL risk statuses are
recorded on an immutable ledger, making the data tamper-proof
and verifiable by all users. This addresses critical gaps in data
integrity and transparency that plague centralized systems.
Additionally, the re-evaluation mechanism allows for continuous
updating of URL classifications, ensuring the database remains
accurate and relevant as websites evolve. This feature maintains a
balance between the immutability of blockchain and the need for up-
to-date information.

Moreover, the inclusion of VirusTotal as an external evaluation
source provides users with a second opinion, further enhancing the
system’s robustness and reliability. By leveraging comprehensive
external databases and expertise, MLPhishChain ensures that URL
reassessments benefit from extensive cybersecurity knowledge.

Finally, the decentralized nature of MLPhishChain enhances
system redundancy and resilience, preventing single points of failure
and enabling continuous operation even if parts of the network are
compromised. This distributed approach democratizes the
verification process and fosters greater trust among users.

Overall, MLPhishChain represents a significant advancement in
the fight against phishing attacks, providing a secure, transparent,
and resilient solution that addresses the inherent weaknesses of
traditional centralized systems.

9 Future work

While MLPhishChain has demonstrated significant potential in
the detection and management of phishing threats, there are several
avenues for future development that could enhance its capabilities
and extend its application further:

• Expanding Machine Learning Models: Developing and
integrating additional machine learning models tailored to
detect emerging phishing techniques. This would improve
detection accuracy and adaptability to new phishing strategies.

• Integrating Additional Cybersecurity Tools: Integrating more
external services for a comprehensive security assessment of
each URL. In addition to VirusTotal, incorporating tools such
as Hybrid Analysis, Jotti’sMalware Scan, MetaDefender, Any.Run,
and Malwr could provide a more thorough evaluation of potential
threats. This multi-faceted approach would improve the overall
robustness of the platform by leveraging diverse sources of threat
intelligence and malware analysis.

• User Feedback Mechanism: Implementing a user feedback system
to allow users to report suspicious URLs and verify classifications.
This crowdsourced data, combined withML data, can enhance the
system’s ability to learn from real-world phishing attempts and
continually improve its detection capabilities.

• Automated Re-Checking Mechanisms: Currently, re-checking
URL classifications is manually initiated by the user, ensuring
minimal impact on system performance. Future work will
explore the introduction of automated re-checking
mechanisms to improve system efficiency and reliability.
Experiments will be conducted to determine the optimal
balance between re-check frequency and performance,
particularly under varying system loads, ensuring scalability
and seamless operation in large-scale deployments.

• Addressing Blockchain Scalability and Storage Optimization:
To address potential blockchain bloat and rising storage costs
from accumulating URL data, we propose a hybrid storage
model. In this approach, essential data such as recent
classifications and cryptographic proofs would be stored
on-chain, while full historical data would be maintained
off-chain using decentralized storage solutions like IPFS or
Arweave. To manage storage efficiently, pruning could be
applied, which involves removing or archiving outdated
records after a set retention period, keeping only the most
critical data on-chain. This helps prevent excessive data
buildup while maintaining operational integrity.
Additionally, by utilizing Layer 2 scaling solutions like
rollups, which process transactions off the main blockchain
and batch them together before finalizing them on-chain, we
can reduce transaction costs and improve overall scalability,
avoiding congestion on the primary blockchain.

• Integration with Web Browsers: Developing browser
extensions for popular web browsers to seamlessly integrate

Frontiers in Blockchain frontiersin.org13

Trad et al. 10.3389/fbloc.2024.1484894

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


MLPhishChain’s URL verification process. This would
provide users with instant phishing detection and
protection while browsing the web.

• Collaborative Threat Intelligence Sharing: Establishing
partnerships with other cybersecurity organizations and
platforms to share threat intelligence data. This collaborative
approach would enhance the overall effectiveness of phishing
detection and contribute to a safer online ecosystem.

• Deeper Security Analysis: Future work will focus on enhancing
MLPhishChain’s resilience to threats, such as tampering with
transactions, bypassing re-evaluation, and spoofing API
interactions. This could include integrating Merkle trees for
tamper-proof verification, exploring decentralized decision-
making to reduce centralized reviews, and improving security
with real-time monitoring and logging of API interactions.

• Real-World Deployment and Testing: To validate
MLPhishChain’s performance in real-world conditions,
future work will involve deploying a beta version on a
public test network like Ethereum Testnet. This will allow
us to gather real-world performance metrics, assess network
behavior under varying conditions, and stress test the system’s
scalability and transaction handling capabilities.

These enhancements not only aim to enhance MLPhishChain’s
technical capabilities but also aim to develop a safer internet
environment through innovative and collaborative approaches to
cybersecurity.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

FT: Conceptualization, Writing–original draft, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization. ES-
N: Conceptualization, Project administration, Supervision,
Validation, Writing–review and editing. AC: Project
administration, Supervision, Validation, Writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The authors
would like to acknowledge that this work has been supported by the
Maroun Semaan Faculty of Engineering and Architecture (MSFEA)
at the American University of Beirut (AUB).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Agbo, C. C., Mahmoud, Q. H., and Eklund, J. M. (2019). Blockchain technology in
healthcare: a systematic review. Healthc. (MDPI) 7, 56. doi:10.3390/healthcare7020056

Aleroud, A., and Zhou, L. (2017). Phishing environments, techniques, and
countermeasures: a survey. Comput. and Secur. 68, 160–196. doi:10.1016/j.cose.2017.04.006

Al-Fayoumi, M., Alhijawi, B., Al-Haija, Q. A., and Armoush, R. (2024). Xai-phd:
fortifying trust of phishing ural detection empowered by shapley additive explanations.
Int. J. Online and Biomed. Eng. 20, 80–101. doi:10.3991/ijoe.v20i11.49533

Al-Haija, Q. A., and Al Badawi, A. (2021). “Url-based phishing websites detection via
machine learning,” in 2021 international conference on data analytics for business and
industry (ICDABI) (IEEE), 644–649.

Aljofey, A., Rasool, A., Jiang, Q., and Qu, Q. (2022). A feature-based robust method
for abnormal contracts detection in Ethereum blockchain. Electronics 11, 2937. doi:10.
3390/electronics11182937

Alzahrani, A. J., and Ghorbani, A. A. (2015). “Real-time signature-based detection
approach for sms botnet,” in 2015 13th annual conference on privacy, security and trust
(PST) (IEEE), 157–164.

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., et al.
(2018). “Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the thirteenth EuroSys conference, 1–15.

Andryukhin, A. (2019). “Phishing attacks and preventions in blockchain based
projects,” in 2019 international conference on engineering technologies and computer
science (EnT) (IEEE), 15–19.

Apruzzese, G., Conti, M., and Yuan, Y. (2022). “Spaceish: the evasion-space of
adversarial attacks against phishing website detectors using machine learning,” in
Proceedings of the 38th annual computer security applications conference, 171–185.

Aslam, S., Aslam, H., Manzoor, A., Chen, H., and Rasool, A. (2024). Antiphishstack:
lstm-based stacked generalization model for optimized phishing ural detection.
Symmetry 16, 248. doi:10.3390/sym16020248

Attaran, M. (2022). Blockchain technology in healthcare: challenges and
opportunities. Int. J. Healthc. Manag. 15, 70–83. doi:10.1080/20479700.2020.1843887

Bell, S., and Komisarczuk, P. (2020). “An analysis of phishing blacklists: google safe
browsing, openish, and phishtank,” in Proceedings of the australasian computer science
week multiconference, 1–11.

Buterin, V. (2014). A next-generation smart contract and decentralized application
platform. white Pap. 3, 2–1.

Catal, C., Giray, G., Tekinerdogan, B., Kumar, S., and Shukla, S. (2022). Applications
of deep learning for phishing detection: a systematic literature review. Knowl. Inf. Syst.
64, 1457–1500. doi:10.1007/s10115-022-01672-x

Chen, J., Xia, X., Lo, D., Grundy, J., Luo, X., and Chen, T. (2020a). Defining smart
contract defects on Ethereum. IEEE Trans. Softw. Eng. 48, 327–345. doi:10.1109/tse.
2020.2989002

Chen, W., Guo, X., Chen, Z., Zheng, Z., and Lu, Y. (2020b). Phishing scam detection
on Ethereum: towards financial security for blockchain ecosystem. IJCAI 7, 4456–4462.
doi:10.24963/ijcai.2020/621

Cole, R., Stevenson, M., and Aitken, J. (2019). Blockchain technology: implications for
operations and supply chain management. Supply chain Manag. An Int. J. 24, 469–483.
doi:10.1108/scm-09-2018-0309

Dasgupta, D., Akhtar, Z., and Sen, S. (2022). Machine learning in cybersecurity: a
comprehensive survey. J. Def. Model. Simul. 19, 57–106. doi:10.1177/
1548512920951275

Frontiers in Blockchain frontiersin.org14

Trad et al. 10.3389/fbloc.2024.1484894

https://doi.org/10.3390/healthcare7020056
https://doi.org/10.1016/j.cose.2017.04.006
https://doi.org/10.3991/ijoe.v20i11.49533
https://doi.org/10.3390/electronics11182937
https://doi.org/10.3390/electronics11182937
https://doi.org/10.3390/sym16020248
https://doi.org/10.1080/20479700.2020.1843887
https://doi.org/10.1007/s10115-022-01672-x
https://doi.org/10.1109/tse.2020.2989002
https://doi.org/10.1109/tse.2020.2989002
https://doi.org/10.24963/ijcai.2020/621
https://doi.org/10.1108/scm-09-2018-0309
https://doi.org/10.1177/1548512920951275
https://doi.org/10.1177/1548512920951275
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894


Demirkan, S., Demirkan, I., and McKee, A. (2020). Blockchain technology in the
future of business cyber security and accounting. J. Manag. Anal. 7, 189–208. doi:10.
1080/23270012.2020.1731721

Do, N. Q., Selamat, A., Krejcar, O., Herrera-Viedma, E., and Fujita, H. (2022). Deep
learning for phishing detection: taxonomy, current challenges and future directions. Ieee
Access 10, 36429–36463. doi:10.1109/access.2022.3151903

Fu, B., Yu, X., and Feng, T. (2022). Ct-gcn: a phishing identification model for
blockchain cryptocurrency transactions. Int. J. Inf. Secur. 21, 1223–1232. doi:10.1007/
s10207-022-00606-6

Hasanova, H., Baek, U.-j., Shin, M.-g., Cho, K., and Kim, M.-S. (2019). A survey on
blockchain cybersecurity vulnerabilities and possible countermeasures. Int. J. Netw.
Manag. 29, e2060. doi:10.1002/nem.2060

Hölbl, M., Kompara, M., Kamišalić, A., and Nemec Zlatolas, L. (2018). A systematic
review of the use of blockchain in healthcare. Symmetry 10, 470. doi:10.3390/
sym10100470

Jibat, D., Jamjoom, S., Al-Haija, Q. A., and Qusef, A. (2023). A systematic review:
detecting phishing websites using data mining models. Intelligent Converged Netw. 4,
326–341. doi:10.23919/icn.2023.0027

Joshi, K., Bhatt, C., Shah, K., Parmar, D., Corchado, J. M., Bruno, A., et al. (2023).
Machine-learning techniques for predicting phishing attacks in blockchain networks: a
comparative study. Algorithms 16, 366. doi:10.3390/a16080366

Khan, A. G., Zahid, A. H., Hussain, M., and Riaz, U. (2019). “Security of
cryptocurrency using hardware wallet and qr code,” in 2019 international conference
on innovative computing (ICIC) (IEEE), 1–10.

Khonji, M., Iraqi, Y., and Jones, A. (2013). Phishing detection: a literature survey.
IEEE Commun. Surv. and Tutorials 15, 2091–2121. doi:10.1109/surv.2013.032213.
00009

Lee, W.-M., and Lee, W.-M. (2019). Using the metamask chrome extension. Begin.
Ethereum Smart Contracts Program. Examples Python, Solidity, JavaScript, 93–126.
doi:10.1007/978-1-4842-5086-0_5

Liu, D., Wang, W., Wang, Y., and Tan, Y. (2019). “Phishledger: a decentralized
phishing data sharing mechanism,” in Proceedings of the 1st international electronics
communication conference, 84–89.

Maleh, Y., Shojafar, M., Alazab, M., and Romdhani, I. (2020). Blockchain for
cybersecurity and privacy: architectures, challenges, and applications

Moosavi, J., Naeni, L. M., Fathollahi-Fard, A. M., and Fiore, U. (2021). Blockchain in
supply chain management: a review, bibliometric, and network analysis. Environ. Sci.
Pollut. Res., 1–15. doi:10.1007/s11356-021-13094-3

Odeh, A., Al-Haija, Q. A., Aref, A., and Taleb, A. A. (2023). Comparative study of
catboost, xgboost, and lightgbm for enhanced ural phishing detection: a performance
assessment. J. Internet Serv. Inf. Secur 13, 1–11. doi:10.58346/jisis.2023.i4.001

Oest, A., Safaei, Y., Doupé, A., Ahn, G.-J., Wardman, B., and Tyers, K. (2019).
“Phishfarm: a scalable framework for measuring the effectiveness of evasion techniques
against browser phishing blacklists,” in 2019 IEEE symposium on security and privacy
(SP) (IEEE), 1344–1361.

Peng, P., Yang, L., Song, L., andWang, G. (2019). “Opening the blackbox of virustotal:
analyzing online phishing scan engines,” in Proceedings of the internet measurement
conference, 478–485.

PhishTank (2024). PhishTank. Available at: https://phishtank.org/ (Accessed on
March 20, 2024).

Queiroz, M. M., Telles, R., and Bonilla, S. H. (2020). Blockchain and supply chain
management integration: a systematic review of the literature. Supply chain Manag. An
Int. J. 25, 241–254. doi:10.1108/scm-03-2018-0143

Rao, R. S., Vaishnavi, T., and Pais, A. R. (2020). Catchphish: detection of phishing
websites by inspecting urls. J. Ambient Intell. Humaniz. Comput. 11, 813–825. doi:10.
1007/s12652-019-01311-4

Salem, A., Banescu, S., and Pretschner, A. (2021). Maat: automatically analyzing
virustotal for accurate labeling and effective malware detection. ACMTrans. Priv. Secur.
(TOPS) 24, 1–35. doi:10.1145/3465361

Shahrivari, V., Darabi, M. M., and Izadi, M. (2020). Phishing detection using machine
learning techniques. arXiv preprint arXiv:2009.11116

Sheng, S., Wardman, B., Warner, G., Cranor, L., Hong, J., and Zhang, C. (2009). An
empirical analysis of phishing blacklists

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., et al. (2021).
Towards crisp-ml (q): a machine learning process model with quality assurance
methodology. Mach. Learn. Knowl. Extr. 3, 392–413. doi:10.3390/make3020020

Sun, Y., Chong, N., and Ochiai, H. (2022). “Federated phish bowl: lstm-based
decentralized phishing email detection,” in 2022 IEEE international conference on
systems, man, and cybernetics (SMC) (IEEE), 20–25.

Thota, A. R., Upadhyay, P., Kulkarni, S., Selvam, P., and Viswanathan, B. (2020).
“Software wallet based secure participation in hyperledger fabric networks,” in
2020 international conference on COMmunication systems and NETworkS
(COMSNETS) (IEEE), 1–6.

Tikhomirov, S. (2018). “Ethereum: state of knowledge and research perspectives,” in
Foundations and practice of security: 10th international symposium, FPS 2017, nancy,
France, october 23-25, 2017, revised selected papers 10 (Springer), 206–221.

Trad, F., and Chehab, A. (2024a). Large multimodal agents for accurate phishing
detection with enhanced token optimization and cost reduction [online]. arXiv.org.
Available at: https://arxiv.org/abs/2412.02301

Trad, F., and Chehab, A. (2024b). Prompt engineering or fine-tuning? a case study on
phishing detection with large language models. Mach. Learn. Knowl. Extr. 6, 367–384.
doi:10.3390/make6010018

Trad, F., and Chehab, A. (2024c). To ensemble or not: assessing majority voting
strategies for phishing detection with large language models [online]. arXiv.org.
Available at: https://arxiv.org/abs/2412.00166.

Varma, J. R. (2019). Blockchain in finance.Vikalpa 44, 1–11. doi:10.1177/0256090919839897

Varshney, G., Misra, M., and Atrey, P. K. (2016). A survey and classification of web
phishing detection schemes. Secur. Commun. Netw. 9, 6266–6284. doi:10.1002/sec.1674

Vidyakeerthi, S., Nabeel, M., Elvitigala, C., and Keppitiyagama, C. (2022).
“Phishchain: a decentralized and transparent system to blacklist phishing urls,” in
Companion proceedings of the web conference 2022, 286–289.

Vijayalakshmi, M., Mercy Shalinie, S., Yang, M. H., and U, R. M. (2020). Web
phishing detection techniques: a survey on the state-of-the-art, taxonomy and future
directions. Iet Netw. 9, 235–246. doi:10.1049/iet-net.2020.0078

Vranken, H. (2017). Sustainability of bitcoin and blockchains. Curr. Opin. Environ.
Sustain. 28, 1–9. doi:10.1016/j.cosust.2017.04.011

Yang, P., Zhao, G., and Zeng, P. (2019). Phishing website detection based on
multidimensional features driven by deep learning. IEEE access 7, 15196–15209.
doi:10.1109/access.2019.2892066

Zhang, D., Chen, J., and Lu, X. (2021). “Blockchain phishing scam detection via multi-
channel graph classification,” in Blockchain and trustworthy systems: third international
conference, BlockSys 2021, guangzhou, China, august 5–6, 2021, revised selected papers 3
(Springer), 241–256.

Zhang, L., Xie, Y., Zheng, Y., Xue, W., Zheng, X., and Xu, X. (2020). The challenges
and countermeasures of blockchain in finance and economics. Syst. Res. Behav. Sci. 37,
691–698. doi:10.1002/sres.2710

Frontiers in Blockchain frontiersin.org15

Trad et al. 10.3389/fbloc.2024.1484894

https://doi.org/10.1080/23270012.2020.1731721
https://doi.org/10.1080/23270012.2020.1731721
https://doi.org/10.1109/access.2022.3151903
https://doi.org/10.1007/s10207-022-00606-6
https://doi.org/10.1007/s10207-022-00606-6
https://doi.org/10.1002/nem.2060
https://doi.org/10.3390/sym10100470
https://doi.org/10.3390/sym10100470
https://doi.org/10.23919/icn.2023.0027
https://doi.org/10.3390/a16080366
https://doi.org/10.1109/surv.2013.032213.00009
https://doi.org/10.1109/surv.2013.032213.00009
https://doi.org/10.1007/978-1-4842-5086-0_5
https://doi.org/10.1007/s11356-021-13094-3
https://doi.org/10.58346/jisis.2023.i4.001
https://phishtank.org/
https://doi.org/10.1108/scm-03-2018-0143
https://doi.org/10.1007/s12652-019-01311-4
https://doi.org/10.1007/s12652-019-01311-4
https://doi.org/10.1145/3465361
https://doi.org/10.3390/make3020020
https://arxiv.org/abs/2412.02301
https://doi.org/10.3390/make6010018
https://arxiv.org/abs/2412.00166
https://doi.org/10.1177/0256090919839897
https://doi.org/10.1002/sec.1674
https://doi.org/10.1049/iet-net.2020.0078
https://doi.org/10.1016/j.cosust.2017.04.011
https://doi.org/10.1109/access.2019.2892066
https://doi.org/10.1002/sres.2710
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1484894

	MLPhishChain: a machine learning-based blockchain framework for reducing phishing threats
	1 Introduction
	2 Background and preliminaries
	2.1 Blockchain technology
	2.1.1 Blockchain protocols
	2.1.2 Ganache and Truffle
	2.1.3 Wallets

	2.2 Machine learning
	2.3 Phishing detection

	3 Related work
	4 Methodology
	5 Simulation
	5.1 Experimental setup and design choices
	5.1.1 Selection of ML model for phishing detection
	5.1.2 External validation system
	5.1.3 URL Re-evaluation and external validation criteria
	5.1.4 Admin evaluation

	5.2 Smart contract design
	5.2.1 Data assets
	5.2.2 Modifiers
	5.2.3 Functions

	5.3 DApp
	5.4 Connection to CheckPhish and VirusTotal
	5.4.1 CheckPhish contract
	5.4.2 CheckPhish DApp

	5.5 Deployment
	5.6 Demo

	6 Validation
	6.1 Integrity and immutability
	6.2 Reliability
	6.3 Performance metrics
	6.3.1 Latency
	6.3.2 Scalability
	6.3.3 Resource consumption


	7 Limitations
	8 Conclusion
	9 Future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


