
Upgradeable diamond smart
contracts in decentralized
autonomous organizations

Paul van Vulpen1,2*, Hidde Heijnen1, Samuel Mens1, Thijn Kroon1

and Slinger Jansen1

1Department of Information and Computer Science, Utrecht University, Utrecht, Netherlands, 2Public
Sector Solutions Centric, Gouda, Netherlands

Upgradeable smart contracts allow decentralized autonomous organizations
(DAOs) to address bugs, enhance security, and expand functionality post-
deployment. The proxy pattern enables smart contract upgradeability but
introduces admin-centric governance, where power is concentrated in a
single or small number of addresses. This paper explores the potential of
decentralized smart contract governance to overcome admin centric
governance while achieving flexibility in governing smart contracts. We
investigate the Diamond Pattern as a flexible upgradeable contract framework
that allows for modular smart contracts. Using the SecureSECO DAO as a case
study, we examine how the diamond pattern can be configured for decentralized
governance. The used architecture allows DAOs to upgrade smart contracts
collectively through community consensus, and the implementation provides
proposals, votes, and execution without requiring technical knowledge. The
study highlights the benefits of this approach, namely, flexibility in smart
contract governance, enhanced modularity, and a single point of interaction
for governance. We also discuss limitations and challenges for upgradeable smart
contracts such as the decision-making delays and potential vulnerabilities. To
encourage adoption of consensus governance, we call for the creation of user-
friendly tooling and smart contract facets.

KEYWORDS

decentralized autonomous organization, smart contract, proxy pattern, decentralized
governance, upgradeability

1 Introduction

Decentralized infrastructure and blockchains have been hailed as a General Purpose
Technology. They could achieve “broad transformative application across many sectors of
the economy and contribute to multifactor productivity growth” (Ipert and Mauer, 2023).
Decentralized infrastructure, defined as a system that seeks to function independently of
any social institution, has the potential to lower transaction costs (Catalini and Gans, 2020).
It can introduce new ways of coordinating economic activity, and allow for the emergence of
decentralized governance models (Lumineau et al., 2021).

A DAO is a blockchain-based system whose governance is decentralised that enables
people to coordinate and govern themselves mediated by a set of self-executing rules
deployed on a public blockchain (Hassan and De Filippi, 2021). Organized through
decentralized infrastructure and governed by smart contracts, these communities have
the potential to serve as a method for enhancing crowdfunding (Bellavitis et al., 2022),

OPEN ACCESS

EDITED BY

Jean-Fabrice Lebraty,
Université de Lyon, France

REVIEWED BY

John Anthony Rose E. E.,
Ritsumeikan Asia Pacific University, Japan
Claudio Schifanella,
University of Turin, Italy

*CORRESPONDENCE

Paul van Vulpen,
p.n.vanvulpen@uu.nl

RECEIVED 16 August 2024
ACCEPTED 30 November 2024
PUBLISHED 17 December 2024

CITATION

van Vulpen P, Heijnen H, Mens S, Kroon T and
Jansen S (2024) Upgradeable diamond smart
contracts in decentralized
autonomous organizations.
Front. Blockchain 7:1481914.
doi: 10.3389/fbloc.2024.1481914

COPYRIGHT

© 2024 van Vulpen, Heijnen, Mens, Kroon and
Jansen. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Blockchain frontiersin.org01

TYPE Original Research
PUBLISHED 17 December 2024
DOI 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/articles/10.3389/fbloc.2024.1481914/full
https://www.frontiersin.org/articles/10.3389/fbloc.2024.1481914/full
https://www.frontiersin.org/articles/10.3389/fbloc.2024.1481914/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2024.1481914&domain=pdf&date_stamp=2024-12-17
mailto:p.n.vanvulpen@uu.nl
mailto:p.n.vanvulpen@uu.nl
https://doi.org/10.3389/fbloc.2024.1481914
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2024.1481914

increasing citizen participation (Rikken et al., 2022), and
empowering small communities to take collective action for the
common good (van Vulpen et al., 2023).

Both blockchains andDAOs require independence from individual
actors to maintain their decentralized state and provide their unique
benefits. Even the authentication server should be distributed to prevent
a single point-of-failure (Kim et al., 2023). Dependency avoidance at
every technical and social level is needed to sustain a decentralized
design, as one cannot speak of decentralization when the hosted
infrastructure is spread among nodes but all governance decisions
are made by a single party (van Vulpen et al., 2023).

Centralization appears whenever a select member group wields
substantial control over the DAO. We speak of admin-centric
governance in situations where only administrators have access
to the smart contract, which thereby forces the entire DAO to
rely on them for changing smart contracts. To solve admin-centric
governance, the community as a whole should be able to govern
smart contracts, modify their parameters, and deploy new ones. A
configuration that allows smart contract upgrades without developer
intervention allows DAOs to decentralize smart contracts upgrades.
This could facilitate the reuse of smart contracts across DAOs.

In this article, we sketch how smart contracts can be designed,
configured, and activated while avoiding admin-centric governance.
We show how the community canmaintain the contracts by employing
the Diamond Pattern, a type of upgradeable smart contract, within a
proposal and voting system. This architecture allows community
members of any community to make proposals on, vote for, and
execute smart contracts, and thereby govern themselves.

The research question of this article is: How can upgradeability
of smart contracts be decentralized by removing admin-centric
governance?

While decentralizing smart contract upgrades through
community governance brings greater democratization, reduces
admin centricity, and allows for better participation without
technical knowledge, the proposal is not without risks. When
voting rights are distributed across non-specialist members,
decisions may be made with insufficient technical understanding
and could bring vulnerabilities, introduce bugs, or negatively affect
the DAO’s performance. Understanding and finding ways to work
around these limitations is needed to find the sophisticated
application of decentralized governance. In this work, we address
the technical configuration for decentralized governance and we
reflect in the discussion on mitigating the accompanied risks.

While the Diamond Pattern, introduced by Mudge (2020), has
been presented in ERC-2535, it has rarely been adopted in practice
nor described in academia.1 This paper aims to elaborate the
potential of the Diamond Pattern by detailing its implementation
in the SecureSECO DAO (SecureSECO, 2024), and offering a
detailed exploration of its potential within DAOs. We argue that
the pattern may accelerate adoption of DAOs and support their
maturing. Therefore, we use this article to, in three increasingly
practical sections, describe the application of the Diamond Pattern
to decentralize smart contract ownership.

In the SecureSECO DAO, the case study subject of this article,
the smart contracts can be added, changed or removed without
intervention from developers or admins. If the community votes for
a technical change, they can effectuate this in the DAO. We provide
a structured description of how the DAO solves the centralization
risk that is central to this article.

We first contextualize upgradeable smart contracts and the
diamond contract in Section 2. The methodology for the case
study is in Section 3. Section 4 describes generic configuration of
the Diamond Pattern, while Section 5 addresses case study specific
configuration. We reflect on the Diamond pattern, the case study,
and this research in Section 6 and conclude this article in Section 7.

2 Background

A smart contract is tamper-proof program code on a blockchain
(Du et al., 2023), designed to execute its code exactly as it is written,
while the code can never be changed (Salehi, 2022). While the code is
immutable, the contract’s state can change through variable updates.
Smart contracts were first available on Ethereum (Bodell et al.,
2023). These contracts, essential for blockchain business logic, act as
bridges for the user to interact with the blockchain (Du et al., 2023).
However, smart contract security remains a concern; 45% exhibited
security issues (Dika and Nowostawski, 2018), and despite
improvements, vulnerabilities persist (Zhou et al., 2022).

Once flaws or security issues are identified, the immutability of
smart contracts prevents patching (Bodell et al., 2023), thereby
hindering feature updates or extensions crucial for DAOs (van
Vulpen et al., 2023). This necessitates exploring ways to upgrade
these contracts to address security threats and incorporate new
functionalities.

2.1 Upgradeable smart contracts mitigate
immutability drawbacks

Upgradeability in smart contracts allows for code modification
post-deployment while preserving contract state (Salehi, 2022). In
response to the shortcomings of non-upgradeable smart contracts,
there has been great demand for making smart contracts
upgradeable (Bodell et al., 2023). Upgradable smart contracts
offer two key advantages: improving security by rectifying post-
deployment bugs and enabling the addition of new features and
functionality (Qasse et al., 2023). Four methods allow this
upgrading: 1) Deployment at a new address, 2) Consensus
override, 3) smart contract metamorphosis, and 4) Proxy contracts.

2.1.1 Deploy upgraded smart contract at a
new address

The simplest upgrade method involves deploying a new smart
contract version at a different address and redirecting activities there.2

1 There are articles that mention ERC-2535, such as Perez et al. (2023), but

the pattern has not been the central object of study of an article.

2 This approach is used in the smart contract of Uniswap. Its third version is

in use, while previous versions 1 and two are still operational at their

original addresses.

Frontiers in Blockchain frontiersin.org02

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

While straightforward, this method has drawbacks: updating software
and website references, the complexity of transferring data storage, and
the new contract’s loss of previous rights (Salehi, 2022).

2.1.2 Consensus override
The second type of smart contract upgrading involves overriding

the network’s consensus on immutability. Nodes that agree on a
smart contract change can implement it on-chain, as demonstrated
by TheDAO incident.3 A security breach led to a departure from
immutability to solve the breach. This also caused the Ethereum
Classic fork (Mehar et al., 2019). Override is the only method that
truly alters a smart contract. Consensus override is unlikely on layer
1 blockchains but might become prevalent on layer 2 blockchains.
Reverting would not require a hard fork but an updated bridge
contract instead (Salehi, 2022).

2.1.3 Smart contract metamorphosis
The third approach is the metamorphic pattern, which employs

SELFDESTRUCT and CREATE2 commands to replace a contract with
upgraded code at the same address. It also adopts the contract’s state
(Fröwis and Böhme, 2022). However, this method is limited to
contracts with these specific commands. This method is extremely
rare, as observed by Fröwis and Böhme, with only 41 observations in
32million contracts. The scarcity is attributed to its obscurity and a lack
of required tooling. Additionally, this method poses security concerns,
as users may be unaware of this method for contract upgradeability.

2.1.4 Proxy contract
The final method of upgrading smart contracts is using a proxy

contract configuration. A proxy contract stores an upgradeable
pointer to the current logic contract and delegates requests to the
logic contract. When smart contract functionality requires an
upgrade, the pointer in the proxy can be upgraded to a new
version while the rest remains the same. The proxy pattern is the
most common method of upgrading smart contracts, and the only
one fitting to meet the research goal. The Diamond Pattern is an
instance of the proxy contract, and will be further explained below.

2.2 Determining who should administer
smart contract upgrades

If a contract can be upgraded, the upgrade is conducted from a
certain address. The owner of this address, called the admin, exerts
power over the contract. Breaching of the private key that gives
access to the admin address could lead to malicious upgrades, as
occurred in the case of Bent finance4. The threats are bigger when the

DAO can be altered using proxy contracts (Klinger et al., 2020)5.
Determining the admin is the challenge in upgrading smart
contracts. There are three ways to manage control over the
admin account.

2.2.1 Single admin
A single account controlled by one private key, sometimes

shared by multiple admins, can upgrade smart contracts. It is the
simplest form of upgrading smart contracts. The advantages are its
simplicity, the guarantee of appropriate expertise, knowledge, and
understanding regarding the underlying contracts, and its flexibility
in case of an incident. However, it is highly centralized and one
malicious admin or compromised private key is catastrophic (Salehi,
2022). Although an adminmay act on accord of consensus taken off-
chain, there is no guarantee that the admin will abide their decisions.
There is no on-chain safeguard for tyranny.

2.2.2 Multi-signature wallet
The admin rights for changing smart contracts can be assigned

to a multi-signature wallet. Upgrades require a certain number of
approvals out of the total number of prespecified admins, which
guarantees expertise in smart contract governance and
understanding of the underlying contracts. Furthermore, it limits
tyranny to some extent by distributing trust across multiple entities
and it tolerates some corruption of admins or loss of keys (Salehi,
2022). However, there is no prevention of a shared dictatorship by
the multi-sig owners, nor of a concentration of signing wallets in a
single entity.

In both single admins and multi-signature wallet setups, admins
acquire substantial power through their centralized access to smart
contracts, resulting in governance by a select few. This dependence
on individual approvals creates a scenario where user requests can be
ignored at the discretion of admins, introducing the risk of
despotism or, at the very least, a benevolent dictatorship.

More than half of the proxy contracts deployed on Ethereum put
the admin rights in a single or small number of keys (Salehi, 2022).
Smart contract exploitations have been frequent and are well
documented in the history of DAOs (Perez and Livshits, 2021).
These past vulnerabilities underscore the importance of improving
smart contract security. The traditional multi-sig approach, while
secure in many cases, still concentrates power and can become a
single point of failure. We therefore observe a third way to control
upgradeability of smart contracts.

2.2.3 On-chain consensus
Smart contract upgradeability can be put in the hands of the

community that votes on-chain. Community votes should be
conducted automatically and on-chain, and the smart contracts
should be upgraded without individual intervention. This requires
integration of the voting smart contract with the admin address of all
smart contracts. This setup allows for decentralized upgrades of
smart contracts. The main advantage of this ownership system is its
decentralization potential and transparency of votes, although it

3 The 2016 TheDAO breach saw the Ethereum Foundation propose and

implement a fix to reverse the attack’s impact. This led to a split in the

network, where the opposing nodes formed Ethereum Classic.

4 Bent Finance deployed a Transparent Upgradeable Proxy with a single

admin. A hostile attacker received access to the admin and updated the

logic contract to push tokens from transactions into his own account. The

tokens were valued at $12 M USD. Afterwards, he upgraded the logic

contract to a clean version to cover up the attack (Salehi, 2022).

5 This is also remarked by several authors on Blaize.tech, Hacken.io, and

Cryptoslate.

Frontiers in Blockchain frontiersin.org03

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

depends on the distribution of tokens. The downsides are a time
delay for every decision made and on-chain network fees for every
vote cast. We use the Diamond Pattern to create the required single
admin address for the DAO, as we now explain.

2.3 The diamond pattern for flexible
upgradeable smart contracts

Ethereum’s ERC-25356, known as the Diamond Pattern and
proposed by Nick Mudge, presents an architecture for smart
contract development which addresses inherent challenges such
as the 24 KB contract size limit (Mudge, 2020). Its modular
design also facilitates contract upgradeability, extensibility, and
improved data management. Finally, it provides the technical
pattern to use a community vote to upgrade smart contracts.

The Diamond Pattern extends the foundational proxy pattern,
allowing contracts to bypass Ethereum’s size constraint without
compromising decentralization. The Diamond Pattern consists of a
main contract (diamond) that delegates functionality to separate
contracts (facets). The Diamond can be rendered non-upgradeable
by disabling the cut function, either initially or at a later stage.

Diamonds provide more flexibility in smart contract
governance, which makes it more suitable for DAOs than other
proxies. The Diamond Pattern performs best of all smart contract
upgradability patterns in terms of cost, latency and modifiability, as
shown by Malik et al. (2024).

The pattern hands DAOs three features: 1) it provides unlimited
smart contract functionality at a single address; 2) it allows upgrades
and parameter changes of other contracts through the diamond; and
3) the diamond can reuse existing deployed contracts. These
together allow a DAO to have a single access point for smart
contract governance.

Using a diamond implies understanding the role of facets, the
diamond content itself, and the process of adding, replacing or
removing facets:

2.3.1 Facets
Facets are individual contracts that encapsulate distinct

functionalities. They are deployed as separate contracts. Facets
are stateless; they do not maintain their own state but access or
modify the state of the diamond they are associated with. The
diamond delegates function calls to these facets, and thereby offers a
mechanism for logical separation and facilitates easier upgrades or
modifications. Multiple diamonds can use the same facet, which
increases code reuse.

2.3.2 Diamond content
Diamond smart contracts consist of two elements: proxy and

storage. The proxy element takes the shape of a function-facet
mapping. A fallback function in the diamond determines which
facet to call based on the call data and executes that function from

the facet. While facets manage the specific functionalities, the data is
contained in the diamond, which ensures consistent state
management. Facets can have exclusive data sections or shared
access where collaboration between facets is required.

2.3.3 Adding, replacing, or removing facets
The diamond can be upgraded after deployment in a diamond

cut or cut event. The functions contained in facets can be added,
replaced, or removed entirely. To ensure transparency and to verify
contract alterations, diamonds have loupe functions. They allow for
the examination of the diamond’s current state, its facets, and their
functionalities.

The flexibility of Diamond contracts lies in their ability to unify
smart contract governance in an adaptable framework, with facets
independently upgradable. Coupled with an on-chain consensus
that holds administrative rights, a DAO can effectively govern its
smart contract set. This approach simplifies single address
upgradability issues and fosters broader participation in DAO
governance. This will be shown in the upcoming case study.

3 Case study methodology

To show how the Diamond Pattern answers the research
question, we conducted a descriptive case study. The objective of
the case study is to delineate a working example of a Diamond
Pattern implementation as basis for smart contract governance. It
consisted of a literature investigation followed by interview
validation. We observed the implementation of the Diamond
Pattern, its performance, the benefits and drawbacks for the
DAO, and consequences for the DAOs activity. We follow the
case study guidelines of Runeson and Höst (2009).

The case is the SecureSECO DAO. The governance structure of
this DAO has already been described in the work of Schot et al.
(2022). It was selected for two reasons. It has recently implemented
the Diamond Pattern to distribute contract governance rights across
the members of the DAO, and it was a known case of the rare
implementation.7

To investigate how the DAO realized decentralized smart
contract governance, we set up a case study protocol. The case
study protocol has three iterative steps: investigating, writing and
validating. First, we investigated the DAO documentation of which
most is available online. We investigated the DAO’s envisioned use
of the Diamond Pattern, its facets, smart contracts and voting
pattern. Second, the information would be written down in the
analysis document. Third, the document would be sent to the DAO
participants, who would give feedback in a Zoom call, thereby
realizing a semi-structured interview based on the analysis. After
the call, the researchers adapted the analysis document based on the
feedback. The new version was again validated in another call. After
several iterations, the DAO stated that the analysis document
contained all the information relevant to the Diamond.

6 The pattern code is displayed at: https://eips.ethereum.org/EIPS/eip-

2535. The diamond is also mentioned as the recommended pattern

when Upgrading smart contracts in Ethereum.

7 In the background section, we already mentioned the obscurity of the

Diamond Pattern.

Frontiers in Blockchain frontiersin.org04

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-2535
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

In this article, we present the case study results in two sections.
The first part describes how the Diamond and the voting system
work in general, or in other words, how any DAO could use it. The
second part concerns the specific implementation in the
SecureSECO DAO. We used this two-part case study to both
investigate the Diamond Pattern in its universal applicability and
to highlight the specifics of implementing and using it in a DAO.

4 Results: diamond configuration
for DAOs

A diamond-based DAO uses a single admin address for smart
contract governance, owned by the DAO and adapted by
community consensus. A single diamond, accompanied by core
facets, suffices to shape a decentralized and upgradeable
governance framework.

4.1 Diamond for consensus governance

In traditional DAO structures, as depicted in part A of Figure 1,
governance is centralized around a set of admins (3). Although the
community participates in the voting process (1), results of the vote do
not have automatic execution. Instead, the outcomes are mere
suggestions for the admin actions (2). These admins hold the power
because they control the admin address in one of the ways discussed in
Section 2.2. Furthermore, the admins possess the authority tomodify or
interact with the DAO’s assets, including the Treasury Multisig and
Token Contract (6), without requiring the DAO’s permission.

A diamond-based governance model (9), depicted in part B,
fosters a truly decentralized upgradeability process. In this model,

all smart contracts are owned by a single address, which is
governed by the DAO (7). Community members’ votes (8)
directly affect the facets (10), with the ability to add or modify
facets as the DAO evolves. Unlike the centralized approach, the
Diamond Pattern removes the need for individual admins with
overarching control. All changes are the direct result of
community consensus.

4.2 Core facets overview

The DAO functionality is contained in facets, which can be
integrated in the diamond. In this pattern, we can speak of core
facets, those that contain functions essential for running a DAO, and
optional facets, those that add particular functionality based on the
community’s needs. At least six facets are part of the core. The (1)
IDiamondLoupe facet provides functions to inspect the diamond. A
(2) voting facet is required to participate in the governance, as well as
(3) a mechanism to determine the weight of each vote. There has to
be a facet for (4) proposal creation, (5) executing the voting process,
and (6) execution of proposals. The DiamondCut facet can also be
part of the core, although it can be absent when the Diamond should
no longer be upgraded. A token facet may also be seen as a core facet,
although there may be DAOs that do not use tokens.

Optional facets depend on the goals of the DAO. The strength of
the Diamond Pattern lies in its extendability, allowing DAOs to add
new facets to expand its functionality. Functionalities that DAOs
often require include token manipulations, access restrictions, and
integration with other projects.

For DAOs that use tokens, tokenomics are of vital importance to
ensure a healthy token distribution. Facets should handle
manipulations of tokens, such as minting tokens to a specific wallet.

FIGURE 1
Left (A) centralized governance model puts power in the admin role. Right (B) decentralized diamond based governance model has a single admin
address which is governed by the entire DAO.

Frontiers in Blockchain frontiersin.org05

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

Some DAOs may want to restrict access to certain features of the
DAO to a particular group of users. A common use case would be to
restrict DAOmembership based on some criteria, possibly as ameasure
to prevent Sybil attacks. This requires an optional membership facet.
Tiered membership is also possible by categorizing users into different
groups, which are granted different rights or rewards.

Most DAOs are built with a specific use case in mind, often
related to existing projects. Therefore, optional facets can allow for
integrating external or off-chain projects. For instance, a DAO may
implement facets to decentralize repository maintenance by voting
on GitHub pull requests.

4.3 Upgrading the diamond

The Diamond Pattern allows collective upgrading of
functionality. The process of implementing changes to the DAO
involves several steps as depicted in Figure 2. First, (1) the
community must collectively determine the desired changes,
which could include adjustments to specific variable values
within facets or the addition and removal of facets from the
diamond. At (2) least one member of the DAO creates a
proposal in the DAO, attaching actions corresponding to the
desired changes, either via a command line interface or a user-
friendly interface.

If a proposal is accepted by the community, anyone can deploy it
(3), which requires gas, because the deployment of the proposal is
recorded on the blockchain. When the proposal is executed (4),
actions linked to it are performed by automatically calling the
corresponding functions in the diamond. For instance, if the
proposal contained an action to perform a diamond cut, the
diamondCut function, as defined in the IDiamondCut

interface will be called with the arguments defined in the proposal.
The upgradeability of the Diamond Pattern facilitates the reuse

of existing facets, even after their initial deployment. This capability
allows developers to integrate previously deployed facets into the
diamond. By incorporating these facets, developers can benefit from
modularization without being constrained by the dependencies of

initial deployment. Importantly, the reuse of facets concerns only
sharing the logic of these contracts rather than the underlying data.
The setup for the reusable contracts is exemplified in the case study.

5 Results: SecureSECO DAO

The SecureSECO DAO possesses an advanced implementation
of the Diamond Pattern.8 The mission of SecureSECO is to provide
trustworthiness, safety, and security to the worldwide Software
Ecosystem (SecureSECO, 2024). TrustSECO, the biggest
component, aggregates data from various software ecosystems to
offer insights into the trustworthiness of packages and package
configurations. The participants of the SecureSECO project are
software engineers, open source enthusiasts, security
professionals, and researchers. There are currently nine
tokenholders in the DAO9.

The ambition of the secureSECO is too important to remain
dependent on individual actors.10 Therefore, the members decided
to use a DAO infrastructure to enable governance by the community
of participating software engineers. There is nobody who owns the
DAO, except the community itself.

The DAO is governed by a diamond and its facets, which are
deployed on the Polygon blockchain. Polygon allows the community
to vote without large gas costs. The community can make decisions

FIGURE 2
A flowchart depicting the process of altering the Diamond through a DAO.

8 By advanced, we mean that the implementation of the Diamond Pattern

has more features than in other Diamond Pattern implementations. More

information on the DAO is available here. The source code for the

diamond plugin can be found here.

9 As can be seen in the SecureSECO Reputation Token Holders overview at

https://polygonscan.com//token/tokenholderchart/0x8AAbEaD849825e

eefB2D67c529Bee1b4Cd656D7c.

10 As explained in the DAO description https://docs.secureseco.org/

about/dao.

Frontiers in Blockchain frontiersin.org06

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://polygonscan.com//token/tokenholderchart/0x8AAbEaD849825eeefB2D67c529Bee1b4Cd656D7c
https://polygonscan.com//token/tokenholderchart/0x8AAbEaD849825eeefB2D67c529Bee1b4Cd656D7c
https://docs.secureseco.org/about/dao
https://docs.secureseco.org/about/dao
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

to configure the DAO by creating proposals that members vote on.
Smart contracts can be configured by interacting with the diamond
smart contract.11

The DAO contains two sets of smart contracts: those that form
the governance system, and those that make the internal economy.
In total there are 32 smart contracts that instantiate the governance
and economy. The governance domain of the DAO contains all
smart contracts needed to govern the DAO. The members can verify
themselves using the verification smart contract, receive periodic
governance tokens, make proposals using smart contracts, vote on
those proposals, while inflation periodically lowers the governance
tokens of tokenholders.

The internal economy of the DAO covers the creation of a
currency and its trading. This set is divided in three parts. First,
members can pay for a trustworthiness assessment of a software
package and exchange payment for the report. Second, the DAO
rewards those who provide method fragments to the repository and
those who work for the DAO. Finally, the Augmented bonding curve
(ABC) maintains a stable liquidity by enabling users to enter (by
exchanging DAI for SECOIN) and exit (by exchanging SECOIN for
DAI). The exchange rate, exchange curve and liquidity can be
changed by modifying variables in the smart contract (van
Vulpen et al., 2023).

The original setup had the administrative rights of the smart
contracts in single admins. This gave the address owners power over
the DAO and they could become a chokehold of power. To
overcome this, the DAO decided to decentralize governance of
the smart contracts and let the members decide collaboratively

which smart contracts are implemented. This was achieved in
three steps. First, the smart contracts were converted into facets
by removing data and only deploying the stateless logic. Second, the
diamond was deployed which contained the data storage for the
facets and is a proxy contract to all other smart contracts. This
created a single address from which all smart contracts could be
adapted and maintained. Third, the DAO adopted a consensus
based governance model for the diamond contract. In these three
steps, the DAO created a decentralized governance structure for the
smart contracts. In the next section, we detail the diamond
configuration, the smart contracts, and the smart contract
governance.

A schematic overview of the SecureSECO Diamond
implementation is given in Figure 3. It shows how interaction
with the Diamond is possible, and how facets are connected
through the Diamond. Several smart contracts are outside the
diamond. Although not visualized in the graph, facets can call
functions on the diamond. For example, a facet can call the
createProposal function on the Diamond. It contains a lookup
table to delegate it to the correct facet.

5.1 Diamond configuration

The diamond smart contract is the central smart contract that
the SecureSECO DAO uses for deployment, configuration, and
interaction with the blockchain.12

FIGURE 3
Overview of the Diamond Pattern implementation in the SecureSECO DAO, with the most important integrations.

11 Theoretically all smart contracts can be configured. For practical reasons,

the DAO decided to not integrate several contracts into the diamond.

12 TheDiamondcanbe inspectedusing its louper functionwhichcanbeaccessed

here: https://louper.dev/diamond/0x8AAbEaD849825eeefB2D67

c529Bee1b4Cd656D7c?network=polygon.

Frontiers in Blockchain frontiersin.org07

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://louper.dev/diamond/0x8AAbEaD849825eeefB2D67c529Bee1b4Cd656D7c?network=polygon
https://louper.dev/diamond/0x8AAbEaD849825eeefB2D67c529Bee1b4Cd656D7c?network=polygon
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

The DAO chose the diamond smart contract pattern for three
main reasons: First, it creates a single address from where the smart
contract can be interacted with. This generates the possibility to use
governance systems to upgrade smart contracts. Second,
SecureSECO wishes to upgrade its smart contracts in the future,
and thereby expand its functionality. The diamond facilitates this
because the facets can be made upgradeable. Bugs and security
problems that have been recognized in the contracts can be fixed.
Third, the DAO wishes to reuse the created logic in other projects.
The diamond contract helps by creating stateless facets that can be
integrated in other projects. A new project can use facets from the
SecureSECO DAO without having to deploy a new contract.

Deploying the diamond in the DAO required a change of the
protocol. The DAO added facet-specific initialization functions.
ERC-2535 requires only a single initialization contract for all
facets (and its parameters), which limits the modularity of facets
and separates the initialization parameters of a facet from its
implementation. To remedy this, two functions are added to the
DiamondCut facet, AddWithInit and RemoveWithDeinit.
To ensure backwards compatibility, the original functions, Add,
Replace and Remove are also included. This allows the diamond
to interact with the facets, which are now discussed.

5.2 Diamond facets

The SecureSECO diamond has 32 facets that can be interacted
with using the diamond.13 The facets can be divided in three sets: six
facets are in the technical setup (they are needed to keep the DAO
running), 24 facets are part of the governance of the DAO, and the
final four constitute the economic facets of the DAO. The facets have
been designed for modularity. A single facet groups all functions that
logically belong together and excludes unrelated functions. For
example, the voting facet contains all functions needed to process
voting.14 This modular design allows another DAO to easily
implement voting by cutting this facet into its diamond.

The facets use variables that have been stored in the diamond.
The variables determine the effect of facets, for example, the growth
rate variable is stored in the diamond, while it is used by the inflation
function contained in the reward multiplier facet. These variables
receive an initial value when the facet is cut into the diamond. The
DAO adapts its governance or economy by approving proposals to
change the variable values. This process will be discussed next.

5.3 Governance of the contracts

The governance model of the SecureSECO DAO contains the
promise to enable the DAO community to govern the smart
contracts collectively. Once smart contract upgrading has been
united in one smart contract (the diamond), the control of that
address can be given to a consensus vote. The DAO carried this out

and designed a governance model that enables all members to
collaboratively upgrade the DAO’s smart contracts. Governance
of the DAO relies on a non-transferable ERC-20 reputation token.

There are two methods for altering the smart contract
configuration that have a different impact: changing variable
values and cutting the diamond. The first only changes the state
of smart contracts. The second method changes the code in use in
the DAO. Changing variable values represents the least impactful
change that members can collectively vote on. An example is when a
member has completed work deserving of reputation tokens,
another member can propose allocating the appropriate
reputation to them. Upon approval by the members, the
individual’s reputation is increased. This method uses the
Diamond Pattern and consensus voting to change the DAO and
can be applied to any variable accessible through the diamond.

If members seek more substantial modifications to the DAO, a
Diamond cut is required. A diamond cut proposal contains the
addition, modification, or removal of smart contract facets. This
enables addition of new code into the DAO and thereby the
integration of new functionalities into the existing framework,
such as additional tokens or alternative voting procedures.
Proposing a diamond cut carries the potential to eliminate
critical smart contracts, which can severely disrupt the DAO.
Therefore, safeguards are set in place to prevent wrong proposals.
In the DAO, diamond cuts cannot be initiated through the frontend
and instead require a proposal generator script executed via the
command line. The interviewees remark that this acts as a safeguard
against misconfigured diamond cuts. They also stated that the
diamond cut has not been used since the DAO has been
deployed to Polygon mainnet.

Users can make proposals and vote using the front end. The
DAO front end is made using a kit from NPM typescript packages.
Smart contract upgrades are processed using the commands of the
development kit. The development kit is open source, which allows
potential other websites to also become a wrapper for the same
diamond. After the proposal is made, the voting procedure is the
same for both types of alterations. The members have to vote in a
7 day window, although this can be changed by user vote. As a
security measure to protect against 51% attacks, the voting power
that any one member can use to influence a proposal has been
limited to 10% of the total available voting power, but this can be
collectively changed as well. To mitigate the risks of seniority bias,
where new members are unable to compete with long-standing
members of the DAO, the reputation awarded to members
increases over time.

5.4 Smart contracts outside of the diamond

Four smart contracts have not been included in the diamond.
They are the base DAO contract, the proof of humanity contract, the
contract for the monetary token (SECOIN) and the Augmented
Bonding Curve (ABC).

The base DAO contract is an Aragon OSx DAO contract, which
provides permission management and stores the contents of the
DAO treasury. The reason to refrain from adding this contract to the
Diamond as a facet is to enable the installation of Aragon OSx
plugins. The latter would not be possible if the contract was a facet.

13 The facets are listed at https://data.mendeley.com/datasets/cr3wvfsb38.

14 Documentation of the facets: https://docs.secureseco.org/

diamond/facets.

Frontiers in Blockchain frontiersin.org08

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://data.mendeley.com/datasets/cr3wvfsb38
https://docs.secureseco.org/diamond/facets
https://docs.secureseco.org/diamond/facets
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

The SECOIN contract is also not integrated in the diamond. If
SECOIN were a part of the Diamond, the SecureSECO DAO would
have the power to transfer SECOIN from any wallet that holds it to
wherever it wishes. Since SECOIN is not limited to the DAO as the
reputation token is, and third parties can invest in it, adding it to the
Diamond would pose a serious security risk. The same argument
applies to the separation of the ABC contract and the proof of
humanity contract. Keeping some smart contracts out of the
Diamond ensures that the upgrading of smart contracts can
really be handed to the community. In the next section, we
reflect on this potential.

6 Discussion

In this research, we described a solution to admin-centric
governance in DAOs. We did so by answering the research
question: How can upgradeability of smart contracts be
decentralized by removing admin-centric governance? The
proposed solution consists of the Diamond Pattern governed
by community consensus. The Diamond Pattern presents an
opportunity for enhancing smart contracts through
upgradeability. However, this upgradeability introduces the
potential risk of exploitation by the contract owner. DAOs
can overcome this drawback by transferring authority from
the individual smart contract owner to the broader
community, as exemplified in the case study. In this
discussion, we first interpret the value of the case study and
this proposition. Next, we discuss the implications and
limitations. Finally, we list future work.

6.1 Case study observations

In the case study we observed how the Diamond Pattern realizes
decentralized governance of smart contracts. The SecureSECODAO
has a setup that does not need individuals to update smart contracts.
However, this pattern requires a fitting context to be able to work.
Together with the lead developers, we reflected on the degree to
which the Diamond Pattern removed centralization in the
administrator role. Their remarks can be summarized in three
case study observations.

6.1.1 The diamond pattern is an efficient method to
overcome immutability drawbacks

The current industry standard of creating immutable smart
contracts comes with risks, as described in Section 2. Existing
methods to overcome these risks, such as the self-destruct
method or deployment at a new address, have their own negative
consequences. The Diamond Pattern appears to be the most efficient
solution, both in terms of technical and social means, to create
decentralized upgradeable smart contracts. The pattern provided the
DAO with a set of upgradeable smart contracts that can be validated
by and shared with others. Other users can integrate the facets as
they are stateless and therefore immutable. Consequently,
subsequent facet adopters do not run the risk of corrupting the
DAO’s state by implementing the facets, but are now able to upgrade
their smart contracts.

6.1.2 The diamond pattern has to be integrated
with distributed governance rights

The Diamond Pattern as displayed in the case study moves
administrative rights from a centralized administrator towards the
consensus of voting rights. In this new situation, the degree of
centralization remains the same when all administrative voting
rights remain centralized in a single tokenholder. To overcome
this centralization, the Diamond Pattern should come with a
distribution of voting rights among those deemed fit for
governing the smart contracts. Only then can the administrative
decentralization be realized. This does not have to include the entire
community, but can also be limited to experts.

What form of distribution of voting rights among members
works best is not yet concretized in the case of the SecureSECO
DAO. Initial measures against centralization are in place, as a single
token holder can have a maximum of 10% voting rights in a single
vote. Nevertheless, the entire decentralized technology field is still
exploring the best distribution of voting rights (Fan et al., 2023).

6.1.3 The importance of decentralized governance
of technology increases

SecureSECO uses a DAO to prevent individual actors from
maliciously governing the underlying technology. Decentralized
technology governance might become more important when
technologies have a more profound public impact. For example,
artificial intelligence may become so important that its autonomy
should be encoded in its technological infrastructure.15 The
Diamond Pattern can aid in setting up a governance system that
prevents centralization in any actor, and thereby create public
ownership and governance for these crucial systems.

6.2 Challenges and solutions in the current
state of upgradeable smart contracts

The Diamond Pattern and its implementation highlight
solutions for creating upgradeable smart contracts. However,
merely employing the Diamond Pattern does not ensure
sustainable governance of these contracts. In Table 1, we listed
eight challenges to upgradeable smart contracts that we observed in
this research. Challenges #1 and #2 are the primary focus of this
article and are not addressed in a specific section. Challenges #3, #5,
and #6 are briefly discussed in this section. The other challenges
require more in-depth exploration: Challenge #4 is addressed below
in Section 6.4, and Challenge #7 and #8 are addressed in Section 6.5.

Voting power on smart contract governance can become
centralized in a single or few actors (#3). Using a diamond does
not prevent centralization of power over smart contracts. It merely
pushes the administrative rights to the community consensus. If the
community’s voting power is concentrated in the hands of a single
member, the smart contract governance becomes just as centralized

15 OpenAI is already experimenting with democratic governance of its AI

model: https://openai.com/blog/democratic-inputs-to-ai-grant-

program-update. They investigate systems to collect and encode

public input on model behavior.

Frontiers in Blockchain frontiersin.org09

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://openai.com/blog/democratic-inputs-to-ai-grant-program-update
https://openai.com/blog/democratic-inputs-to-ai-grant-program-update
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

as it would be without utilizing the Diamond Pattern. A voting
power cap, where actors are limited in their total power exertion, is
an initial solution to this challenge.

The decentralized decision making introduces gas costs and a
delay in decision making (#5). Voting, proposal submission, and
facet upgrades are conducted on-chain, and require gas.
SecureSECO limited this by deploying on the Polygon network,
with a gas price of 60 GWei (less than 0.01$ per vote). If the price of
votes ever becomes financially challenging, it may be offset by
conducting the votes on layer two or layer three blockchain
voting (Sudharsan et al., 2019), or by introducing voting pools,
where multiple votes are cast together in a single transaction
(Maurya and Dwivedi, 2024).

The delay introduced by community voting can be significant
(#6). For example, in the SecureSECO DAO, changing one of the
facets could require 7 days. This is, in our opinion, the most difficult
challenge of decentralization of governance. Solving it would require
an emergency mode, which centralizes power in several individuals
who can then take decisions. Core developers or trusted stakeholders
could be given power to enact immediate changes, or a rapid change in
the decision making process could be envisioned. This would
however, once again introduce centralized power into the governance.

6.3 Mitigating centralization threats with
upgradeable smart contracts

The proposed solution mitigates the threat of admin-centric
governance to decentralization. However, single points of power may
still arise in other organizational or technical levels. For instance, despite

the case study DAO’s steps to decentralize its governance structure, a
lingering issue is apparent: the frontend is hosted by a sole developer.
One of the developers remarked that this could be resolved by hosting
the frontend on IPFS, which offers decentralized file hosting. However,
this requires static hosting, thereby limiting features of the website.
Within the proposed solution, the smart contract governance can remain
independent as long as the consensus of members is distributed and no
centralization in voting rights takes place. Both the voting power cap and
inflation to combat seniority bias are instruments to achieve distributed
voting rights. Nevertheless, any distribution of voting rights is imperfect,
and a bias cannot be solved by mechanisms alone (Fan et al., 2023).

In the case study DAO, certain smart contracts are not integrated
into the diamond as facets. Reasons to refrain from integrating smart
contracts as facets include: 1) the desire to maintain the immutability
of certain contracts, such as the base contract, 2) the potential
destabilization of the DAO resulting from variable changes via
community voting, as seen in the token contract, and 3) the need
to give specific functions to a designated group instead of the entire
community, exemplified by the emergency switch contract. While,
from a technical perspective, it’s feasible to convert any smart contract
into a facet, this decision depends on the specific circumstances, needs,
and requirements of the contract.

6.4 Balancing non-technical member
participation with technical
quality assurance

Should non-technical members even be allowed to vote on smart
contracts? Or is it better that they just join without knowing much

TABLE 1 Challenges and Proposed Solutions for smart contract upgradeability.

Challenge Description Potential solutions SecureSECO DAO
solution

1 Immutable Smart
Contracts

Immutable smart contracts cannot be patched or
extended, which hinders the development of
DAOs

Smart contracts become upgradeable by
redeployment, consensus override,
metamorphosis, or proxy contracts

Apply the Diamond Proxy Pattern
to make smart contracts
upgradeable

2 Power centralization in
administrator

Once smart contracts are upgradeable, power is
given to the administrative address to that
contract, which should be limited

Force admin to adhere to off-chain decisions,
Multi-sig wallets, On-chain consensus

On-chain consensus

3 Voting Power
Centralization

Voting power may concentrate among a few
members, who then dominate the DAO

Cap voting power, use reputation-based voting or
add review layers

Voting power cap

4 Achieving shared
technical
understanding

Non-technical members may struggle to
understand what they vote for

Use visual tools, advisory committees, or pre-vote
code audits

X

5 Gas Costs Voting and upgrades incur gas fees and delays Use layer 2 blockchains or voting pools to reduce
costs

SecureSECO is deployed at Polygon

6 Emergency Decisions
delay

In case of an emergency, having to vote may
hinder urgent actions

Implement an emergency protocol, where a small,
trusted group can make time-sensitive changes,
with a mandatory post-emergency community
review to prevent misuse

X

7 Facet Repository
Absence

Building custom facets for each DAO is time-
consuming and complex. Moreover, without
standards, there is a risk of inconsistent facet
quality

Create an open-source “facet library” that
provides high-quality, reusable facets audited by
the community or a dedicated foundation

X

8 Security in Facet
Modularity

The modularity of facets introduces risks when
new facets are poorly integrated or contain
security flaws

Establish a standardized facet audit process and
repository to vet facet quality and security before
integration

X

Frontiers in Blockchain frontiersin.org10

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

about the underlying technical infrastructure, like passengers on
an airplane?

For DAOs that aim at collaborative participation and collective
action, a nuanced answer is required. Within DAOs, the technical
complexity and the organizational process are deeply intertwined,
and giving users access to the process without providing a means to
change the infrastructure, hinders the overall development of the
DAO. A hard separation between overall governance and the
technical development cannot be maintained, and visions of
bringing user participation in technical development should be
explored. That is why this article investigates the diamond
pattern to create user participation in the smart contracts of DAOs.

In providing decentralized governance to smart contracts, the
challenge is balancing the opportunity for non-technical member
voting on highly technical matters with ensuring sufficient
understanding of those voters on the subject. In the SecureSECO
DAO, the current setup can result in votes cast without a full
understanding of the underlying code or its implications. When
members lack the expertise to evaluate the security, efficiency, or
alignment of proposed code changes, especially in the case of a
diamond cut, there is a risk of introducing major vulnerabilities.

To address this issue, several approaches could be considered.
First, a pre-vote code audit by trusted technical members could
ensure that only high-quality and secure code is presented for a vote.
Second, summarizing code changes in simple documentation or
visual aids would help non-technical members to grasp the impact of
the proposal without requiring technical expertise. Finally, DAOs
willing to decentralize contract governance can consider the
formation of a technical advisory committee that could review
and offer recommendations on complex proposals. The members
of this committee can be elected by voting. These strategies would do
justice to democratic participation in the governance of the smart
contracts but also ensure technical quality in the proposals.

6.5 Call for a facet base

The facets that the SecureSECO DAO has built are openly
available. They are designed to be reusable, and any DAO that
wishes to use them can cut them into their diamond. The DAO
provides a list of core facets that any DAO needs to run and a list of
optional facets. Other DAOs can also adopt the Diamond Pattern
and turn their smart contracts into facets.

To ease the creation and extension of DAOs, we call for the
establishment of a facet base. The facet base lists available facets that
a DAO can easily integrate into their diamond. This makes the use of
decentralized technology easier for communities. There are two
requisites to scale the adoption of diamond based DAOs. The first
one is audit of facets. A foundation could serve this purpose. The
foundation should audit the quality and use of facets that are added
to the base. To optimize reuse, the facets should have standardized
documentation. Finally, the facets may become scattered around the
blockchain. The foundation should bring them together in a
single place.

The second requisite is tooling that easily makes diamonds
available for non-technical users. The SecureSECO DAO
developed the frontend themselves, and also had to implement
the Diamond Pattern themselves. To encourage the spread of

DAOs, we call for the development of a low-code-like platform
for building and deploying diamond DAOs. Tooling should make
adding facets intuitive and user-friendly.

6.6 Implications for DAO development and
contract governance

The Diamond Pattern has the potential to accelerate the creation
and extension of DAOs. If the above-mentioned facet base is in
place, a DAO could select its facets from the base, deploy a diamond
contract with those facets, and start running the DAO. Furthermore,
its facets remain upgradeable, because a diamond cut can upgrade
the reference to a different facet.

The Diamond Pattern makes the administration of all smart
contracts possible from a single address. In the SecureSECO DAO,
all token holders are allowed to vote on proposals that alter any of
the smart contracts. In other scenarios, it may be preferable to enable
only part of the community to vote on certain proposals. For
example, only people with a reputation higher than a certain
level may be able to take part in the governance, or those that
followed a training.

In the SecureSECO DAO, all decisions were taken by the same
group of members. However, in some DAOs polycentricity may be
preferred, where some decisions are taken on higher levels and
others on lower levels (van Vulpen and Jansen, 2023). For instance,
certain delicate decisions, such as a diamond cut, can be handed to
an expert group within the DAO. This second layer of governance
can be enabled by altering the diamond.

Multiple governance layers within a diamond solve another
problem of blockchain governance. Community decisions require
time for the community to participate, while emergency decisions
must be taken within a short time span. With a single governance
model, either the community participation or the ability to rapidly
respond in case of an emergency is sacrificed. A diamond that is
governed by multiple governance layers may use the best of both
approaches.

Finally, upgrading the current generation of smart contracts
requires expertise in two areas: 1) proficiency in Solidity, and 2)
subject matter knowledge. With advanced DAO tooling and an
extensive and well-documented facet base, the need for to the first
type of knowledge may be removed. DAOs may be able to click and
select the facets they need, thereby allowing members to focus only
on selecting the appropriate facets for their situation. This may
spread the adoption of DAOs throughout society.

Within this research, we detailed how the Diamond Pattern brings
upgradability to smart contracts without centralizing power in a single
(or a few) admins. The displayed pattern is flexible and can
accommodate DAOs with various purposes, organizations, and
architectures. This technical achievement entails a large increase in
flexibility for DAOs, but introduces risks to overly democratic
decision making, contract complexity, and voting delays.
Overcoming these challenges requires a sophisticated governance
model, bespoke for each particular DAO, configuration, and
community. In this work, we detailed the Diamond Pattern
implementation within the SecureSECO DAO as one realization of
the potential of this upgradeability. We also showed its shortcomings,
and highlighted approaches for other designs that may make better

Frontiers in Blockchain frontiersin.org11

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

use of upgradeable smart contracts. The full potential of upgradeable
smart contracts can only be achieved by integrating the diamond
pattern into suitable multi-level governance models with effective
delegation and proposal flows. This integration is crucial for the next-
generation of decentralized systems.

7 Conclusion and future work

In this article, we investigated smart contract patterns that
mitigate governance centralization in distributed organizations.
The combination of the diamond with consensus governance
realizes smart contract upgrades without centralizing power in an
admin address. It allows non-technical member participation in
governance and user-friendly upgradeable DAO implementation
using a graphical interface. The SecureSECO DAO case study
showed how decentralized upgradeability can be practically
implemented and managed.

The Diamond Pattern facilitates more flexible or more
democratic control over smart contracts, but it comes with
several challenges that are not yet resolved. Therefore, we call for
the creation of a smart contract facet repository of core and non-core
facets, which can accelerate the development and deployment of
DAOs. Such a repository would permit auditing and standardized
documentation to ensure consistent and secure implementation.

This research’s outcome eliminates one of the ways DAO
governance remains centralized and it may contribute to an
increased adoption of DAOs. However, widespread adoption
depends on addressing the observed challenges. The Diamond
Pattern combined with consensus governance solves the
challenge of immutability and power centralization. Yet, future
research should also explore optimal voting models, ways to
prevent voting power concentration, and strategies for emergency
decision governance.

The Diamond Pattern combined with consensus governance
brings flexibility in administrating contracts. To further develop
scholarly understanding of DAOs, we make three proposals for
further research. First, longitudinal studies on the evolution and
scalability of DAOs would help to measure their longevity over time.
We call for research on how decentralization is preserved in DAOs,
and which token model or voting model minimizes centralization of
power. Second, DAOs usually have few members, and their voting
powers often remain centralized. To scale DAOs, we require better
understanding regarding the adoption process and reasons for DAO
participation. Finally, removing the technical barrier for
participation requires user experience research. Understanding
how DAOs can be adopted by citizens and integrated in society
may open the door to wide-scale societal adoption.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical review and approval were not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent was not
required to participate in this study in accordance with the
national legislation and the institutional requirements.

Author contributions

PV: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization, Writing–original draft, Writing–review and editing.
HH: Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. SM:
Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. TK:
Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing. SJ:
Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was funded in part by Centric’s PhD program.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Blockchain frontiersin.org12

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

References

Bellavitis, C., Cumming, D., and Vanacker, T. (2022). Ban, boom, and echo!
entrepreneurship and initial coin offerings. Entr. Theory Pract. 46, 1136–1169.
doi:10.1177/1042258720940114

Bodell, W. E., Meisami, S., and Duan, Y. (2023). “Proxy hunting: understanding and
characterizing proxy-based upgradeable smart contracts in blockchains,” in 32nd
USENIX security symposium, 1829–1846.

Catalini, C., and Gans, J. S. (2020). Some simple economics of the blockchain.
Commun. ACM 63, 80–90. doi:10.1145/3359552

Dika, A., and Nowostawski, M. (2018). “Security vulnerabilities in ethereum smart
contracts,” in IEEE international conference on Internet of Things (iThings) and IEEE
green computing and communications (GreenCom) and IEEE cyber, physical and social
computing (CPSCom) and IEEE Smart Data (SmartData) (IEEE), 955–962.

Du, Z., Cheng, H., Fu, Y., Huang, M., Liu, L., Ma, Y., et al. (2023). A four-tier smart
contract model with on-chain upgrade. Sec. Comm. Netw. 2023, 1–12. doi:10.1155/
2023/8455894

Fan, Y., Zhang, L., Wang, R., and Imran, M. A. (2023). Insight into voting in daos:
conceptual analysis and a proposal for evaluation framework. IEEE Netw. 38, 92–99.
doi:10.1109/mnet.137.2200561

Fröwis, M., and Böhme, R. (2022). “Not all code are create2 equal,” in International
conference on financial cryptography and data security (Springer), 516–538.

Hassan, S., and De Filippi, P. (2021). Decentralized autonomous organization.
Internet Policy Rev. 10, 1–10. doi:10.14763/2021.2.1556

Ipert, C., and Mauer, R. (2023). Infrastructural or organizational decentralization?
Developing a typology of blockchain ventures. Tech. Forec. Soc. Change 197, 122848.
doi:10.1016/j.techfore.2023.122848

Kim, K., Ryu, J., Lee, H., Lee, Y., and Won, D. (2023). Distributed and federated
authentication schemes based on updatable smart contracts. Electronics 12, 1217. doi:10.
3390/electronics12051217

Klinger, P., Nguyen, L., and Bodendorf, F. (2020). “Upgradeability concept for
collaborative blockchain-based business process execution framework,” in Third
international blockchain conference (Springer), 127–141.

Lumineau, F., Wang, W., and Schilke, O. (2021). Blockchain governance—a new way
of organizing collaborations? Organ. Sci. 32, 500–521. doi:10.1287/orsc.2020.1379

Malik, S., Bandara, D., Van Beest, N., and Xu, S. (2024). “Smart contracts’
upgradability for flexible business processes,” in 22nd business process management
conference 2024.

Maurya, A., and Dwivedi, R. K. (2024). “Designing a secure large scale e-voting system
leveraging sharding blockchain with interoperability protocol and consensus
mechanism,” in 2024 international conference on intelligent and innovative
technologies in computing, electrical and electronics (IITCEE) (IEEE), 1–7.

Mehar, M. I., Shier, C. L., Giambattista, A., Gong, E., Fletcher, G., Sanayhie, R., et al.
(2019). Understanding a revolutionary and flawed grand experiment in blockchain: the
dao attack. J. Cases Inf. Technol. (JCIT) 21, 19–32. doi:10.4018/jcit.2019010102

Mudge, N. (2020). ERC-2535: diamonds, multi-facet proxy Ethereum improvement
proposals, 2535.

Perez, A., Gallo, P., and Sanseverino, E. R. (2023). “Blockchain and nested tokens for
tracking, reusing, and recycling batteries,” in 2023 Asia Meeting on Environment and
Electrical Engineering (EEE-AM), Hanoi, Vietnam, 13-15 November 2023 (IEEE),
01–08.

Perez, D., and Livshits, B. (2021). “Smart contract vulnerabilities: vulnerable does not
imply exploited,” in 30th USENIX security symposium, 1325–1341.

Qasse, I., Hamdaqa, M., and Jónsson, B. (2023). Smart contract upgradeability on the
ethereum blockchain platform: an exploratory study. arXiv:2304. doi:10.48550/arXiv.
2304.06568

Rikken, O., Janssen, M., and Kwee, Z. (2022). “Creating trust in citizen participation
through decentralized autonomous citizen participation organizations,” in The 23rd
annual international conference on digital government research, 440–442.

Runeson, P., and Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14, 131–164. doi:10.1007/s10664-
008-9102-8

Salehi, M. (2022). An analysis of upgradeability, oracles, and stablecoins in the
Ethereum blockchain. Quebec, Canada: Concordia University. Ph.D. thesis.

Schot, J., Jansen, S., and Espana, S. (2022). Setting up a decentralized autonomous
organization. J. Internet Serv. Appl.

SecureSECO (2024). Secureseco dao documentation. Available at: https://www.
secureseco.org/docs (Accessed November 15, 2024).

Sudharsan, B., Nidhish Krishna, M. P., Surya Arvindh, M., Rishi Tharun, V., Boopathi
Raj, J., and Alagappan, M. (2019). “Secured electronic voting system using the concepts
of blockchain,” in 2019 IEEE 10th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 17-
19 October 2019 (IEEE), 0675–0681.

van Vulpen, P., and Jansen, S. (2023). Decentralized autonomous organization design
for the commons and the common good. Front. Blockchain 6, 1287249. doi:10.3389/
fbloc.2023.1287249

van Vulpen, P., Siu, J., and Jansen, S. (2023). Governance of decentralized
autonomous organizations that produce open source software. Blockchain Res. Appl.
5, 100166. doi:10.1016/j.bcra.2023.100166

Zhou, H., Milani Fard, A., and Makanju, A. (2022). The state of ethereum smart
contracts security: vulnerabilities, countermeasures, and tool support. J. Cybersecurity
Priv. 2, 358–378. doi:10.3390/jcp2020019

Frontiers in Blockchain frontiersin.org13

van Vulpen et al. 10.3389/fbloc.2024.1481914

https://doi.org/10.1177/1042258720940114
https://doi.org/10.1145/3359552
https://doi.org/10.1155/2023/8455894
https://doi.org/10.1155/2023/8455894
https://doi.org/10.1109/mnet.137.2200561
https://doi.org/10.14763/2021.2.1556
https://doi.org/10.1016/j.techfore.2023.122848
https://doi.org/10.3390/electronics12051217
https://doi.org/10.3390/electronics12051217
https://doi.org/10.1287/orsc.2020.1379
https://doi.org/10.4018/jcit.2019010102
https://doi.org/10.48550/arXiv.2304.06568
https://doi.org/10.48550/arXiv.2304.06568
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://www.secureseco.org/docs
https://www.secureseco.org/docs
https://doi.org/10.3389/fbloc.2023.1287249
https://doi.org/10.3389/fbloc.2023.1287249
https://doi.org/10.1016/j.bcra.2023.100166
https://doi.org/10.3390/jcp2020019
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2024.1481914

	Upgradeable diamond smart contracts in decentralized autonomous organizations
	1 Introduction
	2 Background
	2.1 Upgradeable smart contracts mitigate immutability drawbacks
	2.1.1 Deploy upgraded smart contract at a new address
	2.1.2 Consensus override
	2.1.3 Smart contract metamorphosis
	2.1.4 Proxy contract

	2.2 Determining who should administer smart contract upgrades
	2.2.1 Single admin
	2.2.2 Multi-signature wallet
	2.2.3 On-chain consensus

	2.3 The diamond pattern for flexible upgradeable smart contracts
	2.3.1 Facets
	2.3.2 Diamond content
	2.3.3 Adding, replacing, or removing facets

	3 Case study methodology
	4 Results: diamond configuration for DAOs
	4.1 Diamond for consensus governance
	4.2 Core facets overview
	4.3 Upgrading the diamond

	5 Results: SecureSECO DAO
	5.1 Diamond configuration
	5.2 Diamond facets
	5.3 Governance of the contracts
	5.4 Smart contracts outside of the diamond

	6 Discussion
	6.1 Case study observations
	6.1.1 The diamond pattern is an efficient method to overcome immutability drawbacks
	6.1.2 The diamond pattern has to be integrated with distributed governance rights
	6.1.3 The importance of decentralized governance of technology increases

	6.2 Challenges and solutions in the current state of upgradeable smart contracts
	6.3 Mitigating centralization threats with upgradeable smart contracts
	6.4 Balancing non-technical member participation with technical quality assurance
	6.5 Call for a facet base
	6.6 Implications for DAO development and contract governance

	7 Conclusion and future work
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

