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One of the most interesting applications of blockchain is given by the automated
market makers (AMMs). In the paper, we discuss how arbitrage activity between
the AMMs and the other exchange nodes can affect the volumes of assets in
liquidity pools of constant function AMMs. In particular, we argue that arbitrage
superimposes to the constant function in determining the liquidity volumes
within the same AMM and across different AMMs. Yet, despite representing an
additional condition in the model, equilibrium arbitrage is typically not unique
because it may depend on several elements, such as the amount of liquidity in the
system and the number of exchange nodes. Hence, the paper discusses how the
constant function and arbitrage jointly determine the relationship across the
assets’ liquidity volume in the pool but not a unique value for such volumes unless
further constraints are introduced. Therefore, a platform interested in predicting
the pool’s liquidity volumes may face indeterminacy as to which equilibrium
would prevail. Though arbitrage has been discussed in related literature,
equilibrium indeterminacy does not seem to have been pointed out.
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1 Introduction

One of the most interesting applications of blockchain is given by the automated market
makers (AMMs). These are platforms where tokens, typically cryptocurrencies, can be
deposited by liquidity providers, forming liquidity pools, to obtain an interest for such
service. The available assets can then be traded against each other through smart contracts at
a price that is determined by the amount of liquidity of such assets in the AMM, together
with a rule governing their exchange.

A widespread family of AMMs is the so-called constant function AMMs (CFAMMs),
whose properties have been extensively studied in the literature (Di and Guida, 2017; Cliff,
2018; Angeris and Chitra, 2020; Angeris et al., 2020; Angeris et al., 2021; Angeris et al., 2022;
Aoyagi, 2022; Bartoletti et al., 2022; Fabi et al., 2022; Mohan, 2022; Wang and
Krishnamachari, 2022; Fabi et al., 2023; Doe et al., 2023; Xu et al., 2023; Milionis et al.,
2024a; Milionis et al., 2024b; Tran et al., 2024). In pairwise liquidity pools with only two
assets, the price at which they swap with each other depends on the liquidity volumes
currently in the pool. In CFAMMs, the exchange price is characterized by the fact that, when
swapping one asset for another, a certain specified function of the assets’ liquidity volumes
must be kept at the same value (Fabi and Prat, 2023). That is, before and after the asset
exchange, some function must preserve the same value. This is, the function defines the
price at which one asset trades with the other. In particular, Uniswap has been the first
successful platform to use CFAMM, followed by several others, such as Balancer and Curve.

Therefore, choosing which constant function to adopt is a policy decision taken by the
platform because it is selected unilaterally by the AMM. However, the constant function can
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change its value whenever liquidity providers decide, for example, to
deposit units of assets in the pool. Analogous considerations hold
when providers decide to withdraw liquidity from the pool. In
addtion to constant functions, the arbitrage activity taking place
between the CFAMM and the other exchange nodes in the market
represents an important additional element to consider when
analyzing CFAMMs.

Indeed, arbitrage superimposes to the constant function in
determining the CFAMM prices and liquidity volumes. As a
matter of fact, it is intuitive to think that the price at which two
assets trade in a CFAMM should typically be related to the price
charged by other exchange nodes in the market. Looking for the
most convenient prices, investors will trade quantities and, in so
doing, tend to equalize such prices by exchanging assets in
different nodes.

In the article, we investigate how arbitrage activity affects, in
equilibrium, liquidity volumes in a CFAMM, where by “equilibrium,”
wemean that arbitrage activity has taken place and that trading prices
within a CFAMM are equal to the prices prevailing in the market
exchange nodes. Although the importance of arbitrage is well known
in the CFAMM literature (Aoyagi, 2020; Angeris et al., 2020; Angeris
et al., 2021; Mohan, 2022; Tran et al., 2024), to our knowledge, no
contribution has presented an articulated analysis of the implications
of arbitrage in a variety of contexts, which is the goal of this paper. We
think this is very important to envisage how the CFAMM and the
market exchange nodes will relate. Yet, as we shall see, although the
constant function and the arbitrage activity constrain liquidity pool
volumes, arbitrage equilibria are typically not unique unless additional
conditions are introduced. Such multiplicity depends on the amount
of liquidity in the market, the number of users, their preferences, etc.,
and it is difficult to obtain uniqueness unless more specific additional
conditions are introduced. Together with the equilibrium value
determination of liquidity deposits, the issue of indeterminacy is
our main contribution to the existing literature. In particular, the
analysis suggests that arbitrage activity in a CFAMM can determine
the relationship between the amount of assets’ liquidity deposited but
not their absolute value. The work is structured as follows. In Section
2, we introduce the basics of CFAMMs and discuss how arbitrage
affects price and liquidity volumes. Section 3 concludes the paper.

2 The model

In what follows, we shall begin by considering a CFAMM with
liquidity pools composed of two assets. Later, we shall extend the
pools to more than two assets. Such pools allow for swapping one
asset with the other as well as for depositing liquidity on the part of
liquidity providers who can obtain a fee from doing that. First, with
no major loss of generality, we assume no fees are paid to liquidity
providers or to the platform for swapping assets, etc. Transaction
fees will be discussed later.

Suppose M> 0 is the total liquidity value in the pool, expressed
in terms of a currency, say $, available in a two-asset pool X − Y,
where the assets X and Y can be swapped. If x and y are the
quantities deposited in the pool, respectively, of X and Y, then

f x, y( ) � k, (1)

where f(x, y) defines the function of the AMM that needs to take
the constant value k> 0. This means that if one asset is swapped with
the other when x and y are the initial liquidity volumes, and if the
liquidity volumes are x′ and y′ after the swap, then f(x′, y′) � k.

Indeed, while the function f is chosen by the platform, the
number k is determined by the amount of liquidity deposited,
consistent with f. For example, if f(x, y) � xy, and x � 10 � y,
then k � 100. Therefore, if the liquidity in the pool does not change,
any swap betweenX and Ymust keep the liquidity levels ofX and Y
in such a way that Equation 1 is satisfied. For this reason, the
constant k should be more properly written as kxy, to indicate that it
depends on the liquidity levels x, y and that for alternative liquidity
levels, the constant would be different. This amounts to observing
that k may vary with time, and that in general, it could also be
indicated k(t), where t is time. Indeed, as a follow up to the above
example, if now the liquidity is x′ � 100 � y′, that is scaled up by a
multiplicative factor of 10 in both assets, not to change their initial
ratio, then k′ � 10, 000. It is well known that higher liquidity
volumes will change the terms of trade. Indeed, suppose
x � 10 � y; then if 5 units of X are swapped against Y, the new
liquidity volumes will be x � 15, y � 6.67 which means that 5 units
of X traded against 3.33 units of Y. However, if instead the liquidity
was x′ � 100 � y′, then 5 additional units of X trade against 4.76
units of Y with the new pair being x′ � 105, y′ � 95.24. That is, the
same amount of traded X, 5 units, would swap against a larger
amount of Y due to the larger availability of Y.

Therefore, for small traded quantities, assuming f(x, y) to be
partially differentiable by defining fx � ∂f(x,y)

∂x and fy � ∂f(x,y)
∂y , and

equalizing the total differential of Equation 1 to 0, we obtain that in
the CFAMM, the price pxy of Y in terms of X, expressed according
to Y

X, can be found as follows:

fxdx + fydy � 0 0 pxy � −dy
dx

� fx

fy
(2)

when the quantity of the two assets is x and y. Assuming fx, fy > 0,
it follows that dydx< 0, that is, if X is deposited, then Y is obtained by
the liquidity provider and the contrary. Therefore, pxy � −dy

dx

represents the number of Y units that can be obtained with a
small amount of X, that is, the price of Y assets in terms of X in
the CFAMM.

Similar reasoning could also be applied to the constant function
when the asset liquidity and the constant change with time
x(t), y(t) and k(t), where t is time, to investigate their
dynamics. Namely, if now Equation 1 is written as

f x t( ), y t( )( ) � k t( ), (3)
then, assuming the differentiability of all the relevant functions,

dk t( )
dt

� fx
dx t( )
dt

+ fy
dy t( )
dt

, (4)

that is, if x and y experience some small changes with time, then k
reacts by adjusting its value accordingly. From Equation 4, it follows
that dk(t)

dt � 0 whenever dx(t)
dt � 0 � dy(t)

dt but also if Equation 2 holds
when dx(t)

dt , dy(t)dt > 0.
For example, if f(x, y) � xayb, with a, b> 0, then pxy � ay

bx.
Hence, if a � b, then pxy � y

x, that is, the price is given by the simple
ratio of the two liquidity volumes, regardless of the values of a � b.
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2.1 Arbitrage condition

Suppose now the two assets are traded also in other exchange
nodes, and that qx$ � $

X and qy$ � $
Y are the prevailing market prices,

that is, how many $ can be bought with, respectively, one unit of X
and Y. Then, the following holds:

xqx$ + yqy$ � M, (5)

where, as above,M is the total liquidity available in the pool, expressed
in $. In analogy with Equation 4, considering also qx$, qy$,M as
functions of time, and assuming differentiability of the relevant
functions, the dynamics of Equation 5 are given by

dM t( )
dt

� dx t( )
dt

qx$ t( ) + x t( )dqx$ t( )
dt

+ dy t( )
dt

qy$ t( ) + y t( ) dqy$ t( )
dt

.

Therefore, Equation 5 can be re-written as

x
qx$
qy$

+ y � M

qy$
. (6)

It follows that

qxy � qx$
qy$

(7)

is the prevailing exchange rate in the market, which could also
represent a market price between the two assets whenever X and Y
are also directly traded against each other in exchange nodes.

Therefore, arbitrage activity between a CFAMM and the market
exchange nodes would imply

qxy � qx$
qy$

� pxy (8)

so that Equation 5 becomes

xpxy + y � M

qy$
0y � M

qy$
− x

fx

fy
( ). (9)

Finally, replacing Equation 9 in Equation 1 provides

f x,
M

qy$
− x

fx

fy
( )( ) � k. (10)

Equation 10 lays the ground for the following question. How
does arbitrage activity affect the liquidity volumes and the prices in a
CFAMM? That is, can the arbitrage condition and the constant
function be both satisfied, and how will the liquidity volumes in the
pool be influenced? We discuss the issue below.

2.2 Arbitrage equilibrium in CFAMMs

The above question can be rephrased as follows: is it possible to
find values for x,y, qy$, qx$ that solve the set of Equations 1–9? If yes,
we then define the solutions as an arbitrage equilibrium (AE). As said
above, our main contribution with respect to the received literature
will stand in pointing out the equilibrium multiplicity and its
implicationswithin the sameCFAMMand across different CFAMMs.

Because the system has three equations and four unknowns, it
would typically allow for multiple solutions.

To illustrate this point, take again f(x, y) � xayb. Then, fixing
qx$, qy$, and the total liquidity valueM, we can solve Equations 1–9
to obtain

x � Ma

a + b( )qx$ �
yaqy$
bqx$

, y � Mb

a + b( )qy$ �
xbqx$
aqy$

,

k � a

qx$
( )a

b

qy$
( )b

M

a + b
( ) a+b( )

. (11)

The above expressions represent one AE of the pool for a given
pair qx$ and qy$ and an overall liquidity level M.

For instance, if M � 100, a � 1 � b, qx$ � 1, qy$ � 2, then
x � 50, y � 25, and k � 1250.

The interpretation of Equation 11 is immediate; there is a unique
AE with M � 100, a � 1 � b, qx$ � 1, qy$ � 2 given by
x � 50, y � 25, and k � 1250. However, if instead, everything else
is the same, and qx$ � 2, then the unique AE is as before, except that
now x � 25.

Thus, as M, qx$ and qy$ change, x, y, k would also change.
Indeed if M � 1000, rather than M � 100, then with qx$ � 1,
qy$ � 2, it follows that x � 500, y � 250 and k � 125, 000.
Therefore, there exists an infinity of AE, each defined by
Equation 11.

To summarize, x and y depend on the prevailing market prices,
qx$ and qy$, so they could not be kept under direct control by the
CFAMM. Indeed, the market prices are subject to volatility, and
their uncertainty would contribute to the equilibrium
indeterminacy. If the platform has preferred values for x and y,
it will have to intervene in the pool by depositing/withdrawing the
desired amount of liquidity in case the providers do not
spontaneously do so.

Moreover, Equation 11 implies that the market value, measured
in $, of the two assets deposited in the CFAMM must be the same
and equal to M

2 . This is because a � b, and it is immediate to verify
that if, for example, a> b, then yqy$ < xqx$. Additionally, it is worth
noting that, for instance, a> b is neither a necessary nor a sufficient
condition for x>y. Indeed, x>y requires a

b >
qx$
qy$
, which can be

satisfied even with a< b, as long as qx$
qy$

is sufficiently small.
Alternatively, if k, rather thanM, is fixed, it follows that x, y and

M in Equation 11 could be expressed as

x� k
aqy$
bqx$

( )b⎡⎣ ⎤⎦ 1
a+b( )

;y� k
bqx$
aqy$

( )a[ ] 1
a+b( )

;M � a + b( ) k
qx$
a

( )a qy$
b

( )b[ ] 1
a+b( )

,

(12a)
which shows that, at an AE, x, y,M are increasing functions of k,
concave for (a + b)> 1, linear if (a + b) � 1, and convex for
(a + b)< 1. It also shows that x and y are decreasing in their
own price and increasing in the other asset’s price. The intuition
is immediate and hinges on a substitution effect. If one asset
becomes too expensive, then it is convenient to deposit the
other asset.

Expression (Equation 12a) clarifies that once the triple k, qx$ and
qy$ are fixed, then x and y, henceM, are uniquely determined by the
constant product and the arbitrage activity.

Therefore, given the market conditions, by choosing k, the
CFAMM could, in principle, control the amount of liquidity in
the two asset pools, suggesting that the value of k might, again in
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principle, become a policy instrument to regulate the
system liquidity.

An additional perspective to determine the relationship between
k and the other quantities under arbitrage activity is the following.
Suppose again, for simplicity, that a � 1 � b. Then x � k

y, which,
when replaced into Equation 5, provides

kqx$
y

+ yqy$ � M. (12b)

Then, Equation 12b is a quadratic equation that leads to the
following two possible solutions when y is solved:

y1,2 � M ∓ ������������
M2 − 4kqx$qy$

√
2qy$

. (13)

Because xy � k, then M2 − 4kqx$qy$ � (xqx$ − yqy$)2 ≥ 0,
implying that Equation 13 always admits real number solutions.
If M2

4qx$qy$
> k then Equation 13 will have two positive roots.

Consider first

y � y1 � M + ������������
M2 − 4kqx$qy$

√
2qy$

� xqx$
qy$

, (14)

then from Equation 14 it follows y
x � qx$

qy$
, which would mean that

arbitrage is also satisfied. However, this is impossible because y
x � qx$

qy$

implies y � x qx$
qy$

and, therefore, that y � M
2qy$

, x � M
2qx$

, hence M2

4qx$qy$
�

k contradicts the initial assumption of M2

4qx$qy$
> k.

Instead, considering

y � y2 � M − ������������
M2 − 4kqx$qy$

√
2qy$

� 2qy$y

2qy$
� y,

the level of y is left undetermined so that x � k
y.

In this case, any pair x, y such that xy � k and M2

4qx$qy$
> k would

satisfy constant product but could not satisfy arbitrage. Therefore,
with two roots, arbitrage would not be obtained.

Finally, the only way for arbitrage to be guaranteed is to have
M2

4qx$qy$
� k, that is, when Equation 12 has a unique root, which is a

modality to characterize the value of k, hence of x, y,M, and obtain
both constant product and arbitrage.

More in general, from f(x, y) � k, one can find x � g(y, k),
which, when substituted into Equation 5, gives
g(y, k)qx$ + yqy$ � M. If this is solvable in y, it provides the
level of the two assets’ liquidity that satisfies constant sum but
not necessarily arbitrage.

As an additional example, suppose f(x, y) � x + y � k. Then,
x � k − y � g(k, y) and (k − y)qx$ + yqy$ � M so that y �
Max(0, M−kqx$

qy$−qx$) for qy$ ≠ qx$, in which case AE will not be

achieved. However, if qy$ � q � qx$, then any 0≤y≤ k − x
satisfies constant sum as well as arbitrage.

Finally, but no less important, AE could also be obtained as the
solution to the following minimization problem (Milionis et al.,
2024a), with f(x, y) � xy � k:

min x,y xqx$ + yqy$ such that xy � k,

then

min y
kqx$
y

+ yqy$. (15)

Differentiating Equation 15 with respect to y, we obtain

− kqx$
y2

+ qy$ � 0,

which, when solved, provides

y �
����
kqx$
qy$

√
,

as in Equation 12, for a � 1 � b. That is, AE obtains when the value
of the pool subject to the constant function constraint is minimized
for given k, qx$ and qy$.

Likewise, solving the following maximization problem:

max x,y xy such that xqx$ + yqy$ � M,

for given M, qx$ and qy$ would provide

y � M

2qy$
,

which is the same solution. To summarize, arbitrage would either
minimize M for given k or maximize k for given M.

2.3 Arbitrage equilibrium, within CFAMMs,
with several liquidity pools

A CFAMM typically contains several liquidity pools, where one
asset could be traded against different assets. When this is the case,
arbitrage implies that the asset quantities in the liquidity pairwise
pools must be related in a specific way.

Consider, for example, the following three assets:X,Y,Z, which are
traded in pairs in the pools X − Y;X − Z; Y − Z within the same
CFAMM. Furthermore, suppose xy, xz, yx, yz, zx, zy are the quantities
of the three assets in the three liquidity pools. Then, assuming

f xy, yx( ) � xyyx � kxy, f xz, zx( ) � xzzx � kxz, f zy, yz( ) � yzzy

� kzy,

it follows that, at an AE,

qy$
qx$

� xy

yx
,
qz$
qx$

� xz

zx
,
qy$
qz$

� zy
yz
. (16)

From Equation 16, we also obtain

qy$
qz$

� zy
yz

�
qy$
qx$
qz$
qx$

�
xy
yx
xz
zx

, (17)

and Equation 17 implies that

zyyxxz( )
zxyzxy( ) � 1, (18)

with Equation 18 also exhibiting multiple solutions. Hence, the asset
quantities in the three liquidity poolsmust stand in a specific relationship
when arbitrage takes place, and so kxy, kxz, and kyz, too. Indeed, ifMxy,
Mxz, and Myz are the values, in $, of the three liquidity pools, then

kxy � Mxy
2

4qx$qy$
; kxz � Mxz

2

4qx$qz$
,
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and therefore,

Mxy � Mxz

������
kxy
kxz

qy$
qz$

√
, (19)

which means that if kxy and kxz characterize the pools X − Y and
X − Z, then Mxy and Mxz in the two liquidity pools need to satisfy
Equation 19. In particular, Equation 19 suggests that the liquidity
value in the pool X − Y increases linearly with the value in the pool
X − Z, while it is a concave function of kxy

kxz

qy$
qz$
.

2.4 Arbitrage equilibrium across
multiple CFAMMs

Suppose now thatX and Y are traded in two different CFAMMs
with different types of constant functions. In one of them, the
liquidity pool satisfies f(xf, yf) � xfyf � kf, while the liquidity
pool in the other CFAMM satisfies g(xg, yg) � xg + yg � kg. As

above, arbitrage leads to xf � Mf

2qx$
, yf � Mf

2qy$
and kf � Mf

2

4qx$qy$
, and it is

immediate to verify that arbitrage activity would lead to qx$
qy$

� 1, xg +
yg � Mg

qy$�q�qx$ and, hence, to kg � Mg

q . Therefore, it follows that for

both CFAMMs to satisfy arbitrage, it must be that qx$qy$
� 1, whichmay

take place only with specific assets, such as, for example, stablecoins.

In this case, kf � (Mf

2q )2
with xf � Mf

2q � yf.

Arbitrage equilibrium in different markets for the same pair of
assets introduces additional constraints. This suggests that, in
general, different CFAMMs trading the same pair of assets could
all achieve an AE in their liquidity pool only under very specific
conditions on the market prices. In particular, if any CFAMM
adopts the g constant function, arbitrage would impose equal
asset market prices to all the other CFAMMs trading the same
assets. Therefore, with the constant product function, this would
imply that xf� yf in equilibrium, which, however, would not be a
necessary condition for the constant sum function.

2.5 CFAMMs with multiple assets

We will now consider what happens when more than two assets
are traded within the same CFAMM. To see our main point,
consider again the simplest case of three assets, X,Y, Z. As we
saw above, the three assets could be traded in three different pools,
each composed of a pair of assets. In general, with n assets, if all of

them are traded against each other, there would be ( n
2
) � n n−1( )

2

pairs which, for large n, is a large number.
A distinguishing feature of trading pairs of assets is that,

typically, the trading price in each pool is independent of the
trading price in another pool. For example, suppose the
quantities of the two assets in the X − Y pool are, respectively, xy �
100 and yx � 100, while in the pool X − Z, the prices are xz � 50
and zx � 100. Then, assuming both pools adopt the constant
product function, kxy � 10, 000 and kxz � 5, 000, so that the price
of X in terms of Y is xy

yx
� 1 in the first pool, and the price of X in

terms of Z is xz
zx
� 0.5 in the second pool. Suppose now that the

available amount of X asset in the X − Y pool becomes xy � 110 so

that, because the 10 additional units are traded againstY, the volume
of the other asset reduces to yx � 90.9, keeping their product equal
to 10, 000. Therefore, a trade in theX − Ywill only affect the price in
that pool but not in another pool.

That is, in the X − Z pool, the price would still be xz
zx
� 0.5.

Suppose instead that the three assets are part of the same pool,
X − Y − Z, where any subset could be traded against the remaining
assets. Assume the current liquidity level is xyz � 100, yxz � 100 and
zxy � 100. Furthermore, suppose we still have a constant
product function

f x, y, z( ) � xyz � 100 p 100 p 100 � 1.000.000 � kxyz (20)

and that now in Equation 20 the liquidity ofX goes up to xyz � 110,
where the additional 10 units are traded against Y, which then
decreases to yxz � 90.9 to keep the product constant at 1, 000, 000.
Therefore, now the updated liquidity volumes become xyz � 110,
yxz � 90.9, and zxy � 100.

However, compared to trading in pairwise separate and
independent pools, now the trade between X and Y not only
affects the price between them but also their prices with respect
toZ. Indeed, while before the exchange, they were xyz

zxy
� 1 � yxz

zxy
; after

the trade, they are xyz
zxy

� 1.1 and yxz

zxy
� 0.91. That is, the exchange

between X and Y would induce an externality on the trading
conditions between Z and the other two assets. In particular,
now with 1 unit of Z, a user could obtain 1.1 units of X, that is
0.1 more than before, and 0.9 units of Y, namely, 0.1 units less than
before, and the opposite for X and Y holders.

In principle, with n> 1 different assets, the number of pools for
trading assets that could be formed is 2n − (n + 1), which is a
potentially large number for large n. In the case that all, or
many, of such pools would be formed, then arbitrage within the
CFAMM would take place such that trading prices in each pool
would equalize.

For example, suppose a CFAMM contains the pairwise pools
X − Y,X − Z,Y − Z and the poolX − Y − Z, with the three of them.
Moreover, suppose the four pools adopt the constant product
function, with constants kxy, kxz, kyz, kxyz. Then, arbitrage
would imply

xyz

yxz
� qy
qx

� xy

yx
;
xyz

zxy
� qz
qx

� xz

zx
;
yxz

zxy
� qz
qy

� yz

zy
. (21)

Therefore, it follows that the value $ of the three assets in the
four pools expressed in $ would be the same. Equation 21 has
multiple solutions, one of which would be given by the same
quantity for each asset in the four pools; that is,
xyz � xy � xz � x, yxz � yx � yz � y, zxy � zy � zx � z, which
would imply that

x � kxyz
kyz

, y � kxyz
kxz

, z � kxyz
kxy

. (22)

Based on the above considerations, it is natural to ask if it would
make sense for a platform to have separate pools with two assets,
three assets, etc. For example, in case the solution is given by
Equation 22, having a single pool with three assets and liquidity
3x, 3y, 3z would generate a pool that could perfectly scale up the
four individual pools with liquidity x, y, z into a single pool three
times as large.
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We now extend the above considerations to CFAMMs with
multiple assets. Suppose X1, .., Xn are n assets traded in a CFAMM
and assume that

f x1, .., xn( ) � k (23)
Equation 23 is the generic constant value function with fi � ∂f(x1 ,..,xn)

∂xi
being the partial derivative with respect to xi, which we assume to exist.
Therefore, if qi$ is the price of $ in terms of xi, then arbitrage implies

qi$
qj$

� fi

fj
for all i ≠ j. (24)

For example, taking

f x1, .., xf( ) � ∏n

i�1xi � k, (25)

then fi � ∏n
s ≠ ixs and

fi

fj
� xj

xi
. Finally,

M � ∑n
i�1
qi$xi. (26)

Considering Equations 24–26 and proceeding in analogy with
the case of two assets, we obtain that

xi � M

nqi$
(27)

and also that

∏n

i�1
M

nqi$
� M

n
( )n 1∏n

i�1qi$
( ) � k 28( ), (28)

which, for the benchmark case of qi$ � q for all i � 1, .., n, would
lead to

k � M

qn
( )n

� x( )n, (29)

where x � xi, for all i.
In analogy to Equations 27–29, it is immediate to verify that if

f x1, .., xf( ) � ∑n
i�1
xi � k, (30)

then qi$ � q for all i and any non-negative profile x1 � . . . � xn � x
such that Equation 30 is satisfied as an AE and

x � M

nq
� k

n
0k � M

q
. (31)

where Equation 31 represents a simple linear relationship between k
and M.

2.6 Some additional examples of CFAMMs

In the above examples with f(x,y) � xayb and f(x,y) � x + y,
we saw that there exists a liquidity pool such that the arbitrage
condition is satisfied. In what follows, we discuss some additional
constant functions. Consider, for example, the following function:

f x, y( ) � xa + yb � k with 0< a< b< 1. (32)

Then, the arbitrage condition will lead to

qy$
qx$

� axa−1

byb−1 0qy$by
b−1 � qx$ax

a−1, (33)

which implies

x + byb−1

axa−1( )y � M

qx$
(34)

and so

axa + byb � M

qx$
axa−1. (35)

In the simple case of a � b,

a xa + ya( ) � ak � M

qx$
axa−1 (36)

then

x � M

kqx$
( ) 1

1−a( )
, (37)

while

y � M

kqy$
( ) 1

1−a( )
. (38)

Hence, based on Equations 33–38, Equation 32 becomes
Equation 39 below.

M

kqx$
( ) a

1−a( )
+ M

kqy$
( ) a

1−a( )⎛⎝ ⎞⎠ � k. (39)

Moreover, consider a convex combination, with 0<a<1, of the
two expressions used individually as constant functions:

f x, y( ) � axy + 1 − a( ) x + y( ) � k. 40( )
A version of Equation 40 is used by the Curve platform. The
discussion shows how finding the equilibrium arbitrage may not
always be so immediate. Indeed,

fx � ay + 1 − a( ), fy � ax + 1 − a( ), (41)
so that arbitrage implies

x + ax + 1 − a( )[ ]
ay + 1 − a( )[ ]y � M

qx$
and

ay + 1 − a( )[ ]
ax + 1 − a( )[ ] x + y � M

qy$
, (42)

Equations 40–42 lead to

x � Max 0,
M

2qx$
− 1 − a( ) qx$ − qy$( )

2aqx$
⎛⎝ ⎞⎠;

y � Max 0,
M

2qy$
+ 1 − a( ) qx$ − qy$( )

2aqy$
⎛⎝ ⎞⎠. (43)

Equation 43 suggests that qx$ > qy$ implies x<y, while
qx$ < qy$ implies x>y. Finally, for qx$ � q � qy$, then
x � M

2q � y; that is, not only the values but also the two assets’
quantities should be the same.
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2.7 Transaction fees

As anticipated above, to conclude the paper, we introduce
transaction fees to see how they may affect the AE. A simple way
to do so in a two-asset liquidity pool is to define M as follows:

xqx$ 1 − τx( ) + yqy$ 1 − τy( ) � M, (44)

where 0< (1 − τx), (1 − τy)< 1 are, respectively, the share of
deposits x and y available after having paid transaction fees.
That is, if liquidity providers deposit x, y, then what remains
available in the pool is a share of them. Considering again the
function f(x, y) � xayb: with transaction fees, it would become
f(x, y) � (x(1 − τx))a(y(1 − τy))b, and the AE solutions are
given by

x � Ma

a + b( )qx$ 1 − τx( ) �
yaqy$ 1 − τy( )
bqx$ 1 − τx( ) ;

y � Mb

a + b( )qy$ 1 − τy( ) � xbqx$ 1 − τx( )
aqy$ 1 − τy( ) , (45)

namely, now the deposits at an AE increase with the fees because
part of the deposited sums will not be available in the pool.

Finally, the constant parameter k is given by

k � a

qx$ 1 − τx( )( )a
b

qy$ 1 − τy( )⎛⎝ ⎞⎠b
M

a + b
( ) a+b( )

. (46)

To summarise, Equations 44–46 suggest that the fees on the two
assets will affect the absolute, and relative size, of their
liquidity volumes.

3 Conclusion

In this paper, we discussed how arbitrage activity can affect the
liquidity volumes and swap prices in a CFAMM. Indeed, CFAMMs
do not typically operate in isolation but within a market where other
exchange nodes can trade the same assets. Therefore, arbitrage
activity superimposes to the constant function property,
establishing the asset trading prices. In the analysis, we argued
how the arbitrage equilibrium is not unique for a given CFAMM, as
it can be obtained for different levels of liquidity available in the
economy as well as with different numbers of exchange nodes
trading the same assets.

We considered arbitrage in a variety of circumstances, within the
same CFAMM but also across different CFAMMs and exchange
nodes. The main intuitive message of the article is that arbitrage

represents an additional important constraint to the relevant
constant function in determining the trading prices and the
deposit volumes in CFAMM liquidity pools.
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