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This paper presents a theoretical extension of the Decentralized Token Economy
Theory (DeTEcT) framework proposed by Sadykhov et al. (Front. Blockchain,
2023, 6, 1298330), where a formal analysis framework was introduced for
modelling wealth distribution in token economies. DeTEcT is a framework for
analysing economic activity, simulating macroeconomic scenarios, and
algorithmically setting policies in token economies. This paper proposes four
ways of parametrizing the framework, where dynamic vs. static parametrization is
considered along with the probabilistic vs. non-probabilistic parameters. Using
these parametrization techniques, we demonstrate that by adding restrictions to
the framework, it is possible to derive the existingwealth distributionmodels from
DeTEcT. In addition to exploring parametrization techniques, this paper explores
how money supply in the DeTEcT framework can be transformed to become
dynamic and how this change will affect the dynamics of wealth distribution. The
motivation for studying dynamic money supply is that it enables DeTEcT to be
applied to modelling token economies without maximum supply (i.e., Ethereum)
and it adds constraints to the framework in the form of symmetries.
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1 Introduction

Token economies are economies that have a medium for valuation, transaction, and
value storage in the form of tokens (i.e., currency native to the economy), and these tokens
can be minted (i.e., new tokens are created) and burned (i.e., existing tokens are destroyed).
The study of tokens and token economies is generally referred to as Tokenomics.

Acting under the assumption that tokens are a mechanism for storage of wealth and
representation of the value of scarce resources, we can define tokenomics as the study of the
efficient allocation of wealth in a token economy (ISO, 2024; Smith, 2012). Some of the
questions that tokenomics aims to address are as follows: how does an economic system
provide and allocate scarce resources? How does the economy interact with the external
economic systems and stimuli? What guides the behaviour of economic participants? What
is the “efficiency” of these processes?

In an attempt to answer these questions, we have previously defined a formal analysis
framework called Decentralized Token Economy Theory (DeTEcT) (Sadykhov et al., 2023),
which models interactions between groups of heterogeneous agents in token economies,
simulates wealth distribution, and can be used to propose policies to be implemented in a
token economy to achieve a desired wealth distribution. DeTEcT helps define an economic
system as a robust mathematical construction, facilitating theoretical study of the system
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while maintaining flexibility to be adjusted to analyse economies
with specific traits (e.g., economies with different rules of
interactions between agents).

However, despite an already wide range of applications, the
framework still has some limitations, such as a constant
maximum supply of tokens, exclusively static parameters, or
the limitations to the numerical solution method. In this
paper, we aim to address some of the limiting factors to make
DeTEcT a more flexible framework, without losing any
mathematical robustness.

1.1 Scope

The aim of this paper is to define different possible
configurations for the parametrization of the framework,
demonstrate how existing wealth distribution models can be
derived from DeTEcT, and define a method for modelling an
economy with a dynamic maximum supply (i.e., maximum
supply that varies in time). We address the first two questions in
Section 3 as these questions are interrelated, while we address the last
question in Section 4. It should be noted that these sections are not
arranged in a specific order as we believe each of these questions is
equally important.

We start Section 3 by demonstrating how to parametrize the
framework with parameters that change in time (i.e., dynamic
parameters) and with parameters that are defined using
probabilistic techniques (i.e., probabilistic parameters). The
section concludes with us deriving the existing wealth
distribution models from the DeTEcT framework. The
importance of this link is that the existing wealth distribution
models we refer to have the support of empirical data, in particular
the wealth distribution model with individual saving propensities
(Chatterjee et al., 2003), as it results in a Pareto tail distribution,
which is observed in real-world economies (United Nations
Human, 1992).

Section 4 expands the application of our framework to
economies where maximum supply changes in time [e.g.,
Ethereum economy (Buterin, 2014)] and explores time
translation symmetry in our framework.

2 Related work

This paper expands on the mathematics of DeTEcT presented in
Sadykhov et al. (2023), so the definitions used here are stated in that
paper. In this section, we briefly reacquaint ourselves with the key
concepts of DeTEcT and focus on some of the existing wealth
distribution models from the literature.

2.1 DeTEcT framework

DeTEcT is a formal analysis framework that models wealth
distribution in token economies. The fundamental building block
for DeTEcT is clustering of agents in the economy into agent
categories and categorizing possible interactions between different
agent categories.

For example, assume an economy has an agent that
manufactures a good (e.g., car) and sells it to other agents (e.g.,
retail customers). We can create two agent categories in such an
economy: Car Manufacturer and Household. We see that the Car
Manufacturer interacts with Household through the sale of cars. So
we can describe an interaction between these agent categories
as Car Sale.

Each agent is assumed to have some wealth and has a mapping
called individual wealth function, f(a, t) � w, where a ∈ Λ is the
label of the agent with Λ being the set of all agents in the economy, t
is the time step, and w is the wealth of the agent at time step t. Since
each agent category is a set of agents, we designate a wealth function
F(A, t) � W for each agent category A at time step t, and it is a sum
of all individual wealth functions of agents who are considered to be
of the agent category A (i.e., a ∈ A) at time t.

However, we may have an economy where agents do not have a
constant agent category and they can change between different agent
categories. Therefore, the wealth of an agent category A will change
if agent a now belongs to the agent category A′. We define this
wealth reallocation from one agent category to another without the
agent interacting with other agents as rotation.

Agent categories, interactions, and rotations, together, are
referred to as the tokenomic taxonomy as it defines the possible
routes for wealth movements. This allows us to create a complete set
of possible wealth movements and construct the model for possible
wealth reallocation between agent categories.

The motivation behind clustering agents into agent categories
consists of two points: it allows for quicker processing as we model
the macroeconomic state of the economy and, therefore, work with a
smaller parameter set and that in most economies the policies are
directed at groups of economic participants (e.g., corporate tax for
companies vs. income tax for households). Tokenomic taxonomy
enables DeTEcT to be used for finding policies to be implemented in
an economy, where the policies are directed at well-defined
categories of agents.

Before we review DeTEcT framework, wemust point out that we
will be referring to distribution of tokens between agents in the
economy as wealth distribution rather than token distribution. The
reason for this destinction is that DeTEcT can be applied to the
modelling financial systems with different architectures, and is not
limited to modelling only the token economies, despite the scope of
this paper mainly concerning with the token economies.
Additionally, in section 3 we discuss how DeTEcT links to
existing wealth distribution models, and to make a smooth
transition from our framework to existing works in this field, we
refer to the distribution of tokens as wealth distribution, subject to
the assumption that tokens in the closed economic systems act as a
measure of wealth.”

To summarize the review of DeTEcT, we define the
compartmental dynamical system at the core of our framework.
Assuming an economy has a well-definedmaximum supply, we state
that the sum of all wealth functions of all agent categories in the
economy always equals the maximum supply,

M � ∑
A∈Et

F A, t( ) ∀t ∈ T, (1)

whereM is the maximum supply, Et is the pseudo-partition of agent
categories (i.e., the set of all agent categories), and T is the set of all
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discrete time steps. Note that usually in token economies, there
exists a mechanism that issues (i.e., mints) new tokens to agents, and
a place where tokens are deposited when they are disposed of (i.e.,
burned). In the context of DeTEcT, we refer to these as separate
agent categories denoted as B ∈ Et (i.e., Control Mechanism) and
D ∈ Et (i.e., Token Dump) respectively. Control Mechanism is the
required agent category for a token economy in DeTEcT since it is
responsible for initial token distribution and it is assumed to hold all
unissued tokens (i.e., reserves). We refer to M as the maximum
supply as it is the total number of all tokens that could be issued
(including the tokens that haven’t been issued yet), while the concept
of current circulating supply can be expressed in DeTEcT terms as
S(t) � M − F(B, t), where S(t) is the circulating supply at some
time t ∈ T. From Equation 1, we derive the conservation of wealth
in time,

0 � ∑
A∈Et

ΔF A, t( )
Δt . (2)

Furthermore, as described in the “Decentralized Token Economy
Theory (DeTEcT)” (Sadykhov et al., 2023), we define interactions
between agent categories A,A′ ∈ Et through the parameters βAA′,
known as the interaction rates, while the rotations are defined by
γAA′, which are called the rotation rates. Combining all these
ingredients together, we obtain the generalized form of the
dynamical system with constant parameters that models the
dynamics of wealth distribution:

Δ
Δt

�F t( )[ ] � 1
M

�F t( ) ⊙ B · �F t( )[ ] + Γ · �F t( ) t ∈ T, (3)

where · is the matrix-vector product, ⊙ is point-wise vector
multiplication,

A ⊙ B( )ij � AiBij,

�F(t) is the vector of wealth functions at time t,

�F t( ) � F A1, t( ), . . . , F An, t( )( )T, A1, . . . , An ∈ Et,

B is an antisymmetric matrix of interaction rates β,

B �
0 βA1A2

. . . βA1An−βA1A2
0 . . . βA2An

..

. ..
.

1 ..
.

−βA1An
−βA2An

. . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

and Γ is the matrix of rotation rates where each column sums up
to zero,

Γ �
−γA1

γA2A1
. . . γAnA1

γA1A2
−γA2

. . . γAnA2

..

. ..
.

1 ..
.

γA1An
γA2An

. . . −γAn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

such that the diagonal elements of Γ are

γAm
� ∑n

j≠m
γAmAj

.

These are the fundamental blocks of our framework that we used
and generalized in the forthcoming sections in this paper.

2.2 Wealth distribution models

In order to emulate the wealth distribution dynamics in a
closed economic system, a family of kinetic theory models was
proposed (Patriarca et al., 2005). These models were originally
used to model random interactions between gas molecules in a
closed container, but in the context of wealth distribution
dynamics, they are used to simulate random transactions
between the participants (agents) of the economy to find the
equilibrium of wealth distribution.

The models from this family follow a transaction rule:

xi′ � xi − Δx,
xj′ � xj + Δx, (4)

where i, j ∈ N are the labels of the agents, xi and xj are the wealth
contributions of the agents, respectively, before the transaction, xi′
and xj′ are their wealth contributions after the transaction, and Δx is
the transaction quantity. Based on this transaction rule, different
models have been introduced, where the term Δx is used to model
different behaviours of agents in an economy.

2.2.1 Basic model without saving
The basic model, where agents do not preserve a portion of their

wealth, has been proposed by Dragulescu and Yakovenko (2000),
where the trading rule becomes

xi′ � ϵ xi + xj( ),
xj′ � ~ϵ xi + xj( ), (5)

with ϵ ~ U(0, 1) and ~ϵ its complementary fraction (i.e., ϵ + ~ϵ � 1).
The form of the trading rule from Equation 4 is recovered by setting

Δx � ~ϵxi − ϵxj.

In a closed economic system with random transactions taking place
according to the trading rule in Equation 5, the wealth distribution
becomes a Boltzmann distribution and leads to inequitable wealth
distribution, where a few agents hold majority of the wealth.

2.2.2 Model with constant global saving propensity
In most economic systems, the agents tend to preserve some

proportion of their wealth, which can be represented by a wealth
distribution model through the introduction of a saving propensity
parameter 0< λ< 1, which represents the proportion of wealth an
agent saves, therefore, not using it in the transaction. This model has
been introduced by Chakraborti and Chakrabarti (2000), where the
trading rule is defined as

xi′ � λxi + ϵ 1 − λ( ) xi + xj( ),
xj′ � λxj + ~ϵ 1 − λ( ) xi + xj( ), (6)

with ϵ and ~ϵ defined as before. To recover the general trading rule in
Equation 4, the reallocated wealth is defined by

Δx � 1 − λ( ) ~ϵxi − ϵxj[ ].
It should be noted that λ is the same, regardless of the agent who
undergoes transaction. Therefore, this model implicitly assumes that
every agent has the same preference for how much wealth they will
save before a transaction. The wealth distribution after simulating
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the random transactions with the rule in Equation 6 results in the
gamma distribution of wealth between the agents.

2.2.3 Model with individual saving propensities
Individual saving propensities {λi: 0< λi < 1} for agent i can be

introduced to add the individual preference of the agents to save a
specific portion of their wealth before transacting. The trading rule
with individual saving propensities proposed by Chatterjee et al.
(2003) is

xi′ � λixi + ϵ 1 − λi( )xi + 1 − λj( )xj[ ],
xj′ � λjxj + ~ϵ 1 − λi( )xi + 1 − λj( )xj[ ], (7)

where the general trading rule in Equation 4 is obtained by setting

Δt � ~ϵ 1 − λi( )xi − ϵ 1 − λj( )xj.

If multiple simulations are run using the trading rule in Equation 7
with different individual saving propensity settings each time, the
average of the equilibrium wealth distributions is the Pareto
distribution. Pareto distribution is commonly used in economics
to model the wealth distribution in a society as it describes the
disparity of wealth between the “wealthy” and “poor” agents in
the economy.

2.2.4 Summary
The wealth distribution models outlined here are well-

established in the academic literature and are commonly used for
modelling generic macroeconomic principles. For example, the
relaxation time for a wealth distribution to return to its
equilibrium can be measured (Patriarca et al., 2007), or in the
case of the model with individual saving propensities, it is used
to describe the Pareto principle (Pareto and Bousquet, 1964) that is
observed in real-world economies.

3 Parametrization extension and
derivation of existing wealth
distribution models

3.1 Parameter modification techniques

In our framework, one of the assumptions we used is that the
parameters (i.e., interaction and rotation rates) are constant. This is
useful either when we simulate wealth distribution based on some
“predefined trends” or when we are trying to find the parameters of
the dynamical system that allow the dynamical system to reach a
desired wealth distribution (i.e., a desired attractor). However, if we
drop this assumption and allow parameters to change at different
time steps, we will see that DeTEcT becomes a broad framework that
can be parametrized in a certain way to replicate existing wealth
distribution models.

However, before obtaining other wealth distribution models
from DeTEcT, we would like to introduce a taxonomy of
different parametrizations that we can use to modify our original
approach (Sadykhov et al., 2023).

We broadly categorize the interaction and rotation rates using
two features, namely, whether the parameters are static or dynamic
and whether the parameters are probabilistic or deterministic. These
two features allow us to cover all possible extensions that can be
introduced to the DeTEcT framework. Table 1 demonstrates some
of the applications of different parameter modifications, which we
will examine on a case-by-case basis.

Furthermore, we can categorize dynamic parameters by whether
they are proactive or reactive. By proactive dynamic parameters, we
mean that these parameters are either set in advance for every time
step in the simulation or are derived from an arbitrary function that
does not consider any history of economic activity (i.e., the function
is agnostic to the state of the economy). Reactive dynamic
parameters are the parameters that are obtained from some
arbitrary function that takes the state of the economy as an input
to produce parameters for the next time step (e.g., a change in the
sizes of incentives paid to all agent categories follows the review of an
inflation reading collected in the last time step).

Table 2 describes use cases for proactive and reactive dynamic
parameters. Whether dynamic parameters are proactive or reactive
depends on how B(t) and Γ(t) are defined, but this categorization
does not change the general form of the dynamical system for the
case of the dynamic parameters. We make this distinction between
dynamic parameters to demonstrate that there can be a more
detailed taxonomy of the parametrization methods, but we do
not expand on this further in this paper.

Since we focus on modifying the parameters of the dynamical
system, we reiterate the original definition of interaction rates, which
we have used before (Sadykhov et al., 2023), thereby obtaining

βAA′ �
M

Δt
∑iAA′∈IAA′

ι iAA′, t( )
F A, t( )F A′, t( ) ∀t ∈ T,

where Δt is the difference between two consequent time steps, iAA′ is
an interaction type defined between agent categoriesA,A′ ∈ Et, IAA′
is the set of all possible interaction types defined in the tokenomic
taxonomy between A and A′, and ι(iAA′, t) is all wealth redistributed
between A and A′ due to interactions of type iAA′ that took place in
the interval (t − Δt, t).

Essentially, we can think of βAA′ as the net wealth redistributed
between A and A′ expressed as the proportion of wealth that these
agent categories have. Using the analogy from Section 2.1, let kAA′ be
a purchase of a car, and jAA′ be a purchase of a truck; both of these
are possible interaction types that can take place between the Car
Manufacturer andHousehold, while ι is the wealth that is reallocated
from Household to Car Manufacturer for purchasing these goods
such that

TABLE 1 Applications of parameter modification techniques.

Deterministic Probabilistic

Static Implied parameters for simulation, obtained from inverse propagation Averaged parameters from historical data

Dynamic Changing parameters based on incoming data Stochastically simulated parameters
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DiAA′ t( )PiAA′ t( ): � ι iAA′, t( ), (8)
where DiAA′(t) is the demand for the interaction of type iAA′
(i.e., how many cars or trucks were purchased since the last time
step) and PiAA′(t) is the price of each interaction (i.e., the price at
which these goods were purchased).

We now explore that by modifying the definitions above, we can
make DeTEcT more flexible.

3.1.1 Static deterministic parameters
Static deterministic parameters are those that we have defined in

the previous section. These are the basic building blocks upon which
we can implement our modifications.

The fundamental assumption we use here is that the
parameter values do not change in time, and in order for that
to happen, we must balance the net wealth redistributed (i.e., ι)
and the wealth functions of the agent categories (i.e., F(A, t) and
F(A′, t)). We assume that at every time step, the prices PiAA′(t) are
readjusted against the given demands DiAA′(t) and wealth
functions for that time period. These restrictions give rise to
the following effects:

• Forward propagation: Inaccuracies in modelling real
economies, as in real economy interactions and rotation
rates, change in time. The parameters themselves are
derived from arbitrary historical transaction data, which
limits the possible cases. However, the numerical
simulation with these “simple” parameters is very quick
and straightforward.

• Inverse propagation: If economy governors have control over
price setting mechanisms, maintaining constant parameters is
easy as it is done via setting appropriate prices. However, in
the case of a free market economy, the parameters would not
be maintained at a constant level as market participants are
free to set their own prices in response to changing demands.
The numerical solution employed to perform inverse
propagation must be run only once to obtain the desired
values of interaction and rotation rates.

The interaction rates are defined as

βAA′ �
M

Δt
∑iAA′∈IAA′

ι iAA′, t( )
F A, t( )F A′, t( ) ∀t ∈ T,

while the rotation rates are just constants, expressed as

γAA′ � c, c ∈ R.

3.1.2 Static probabilistic parameters
Static probabilistic parameters are an extension of the static

deterministic parameters, where we add a term that represents a
probability of success for each interaction type iAA′ and explains how

many interactions of this type we expect at each time step. The
effects of this parametrization technique are not much different to
those of static deterministic parameters. The notable difference is
that now, we can use historical data to create a probability
distribution for the demands DiAA′(t), and at each time step, we
aim to rebalance these “expected” demands with the prices.

The benefit of using static probabilistic parameters, as opposed
to static deterministic parameters, is that we simulate the wealth
distribution based on the historical data compared to some arbitrary
demands. We can use any probability distribution to simulate the
distribution of demands, but the only restriction we impose for now
is that the choice of probability distribution should match the data
format of the demand (i.e., demand cannot be 1.5 if the interaction is
Buying car, but it can be 1.5kg if the interaction is Buying rice
for 100per kg).

For example, assume that for each interaction type iAA′ ∈ IAA′,
there exists a probability piAA′ ∈ [0, 1] that the interaction of this type
takes place with the Bernoulli distribution I iAA′ ~ Bernoulli(piAA′).
Now, we can express interaction rates as

βAA′ �
M

Δt
∑iAA′∈IAA′

E I iAA′[ ]ι iAA′, t( )
F A, t( )F A′, t( )

� M

Δt
∑iAA′∈IAA′

piAA′ι iAA′, t( )
F A, t( )F A′, t( ) , t ∈ T,

where piAA′ acts as a weight for the summation over ι. If we substitute
Equation 8 into the equation above, we obtain

βAA′ �
M

Δt
∑iAA′∈IAA′

piAA′DiAA′ t( )PiAA′ t( )
F A, t( )F A′, t( )

� M

Δt
∑iAA′∈IAA′

E ~I iAA′[ ]PiAA′ t( )
F A, t( )F A′, t( ) ,

where ~I iAA′ ~ B(DiAA′(t), piAA′) is the binomial distribution for
multiple interactions of type iAA′.

We can generalize this notion by defining the static probabilistic
interaction rates as

βAA′ �
M

Δt
∑iAA′∈IAA′

E ~DiAA′[ ]PiAA′ t( )
F A, t( )F A′, t( ) ,

where ~DiAA′ is the probability distribution of demand for the
interaction type iAA′, assuming that the distribution of demands
is well-defined (i.e., no fractions of car being sold).

The rotation rates γAA′ can also be distributed according to a
probability distribution that is based on the historical data. Recall
that rotations describe the reallocation of wealth from one agent
category to another due to some individual agents changing their
agent categories between time steps. Given that we have a well-
defined tokenomic taxonomy, we observe the historical data to
examine which agents have changed their agent categories, and
therefore, we can estimate, on average, howmuch wealth is switched

TABLE 2 Applications of dynamic parameter modification techniques.

Deterministic Probabilistic

Proactive Predefined program of changing parameters Predefined program of changing stochastic parameters

Reactive Parameters generated in response to the state of economy Stochastic parameters generated in response to the state of economy
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between different agent categories per time step. In this case, the
rotation rates are defined as

γAA′ � μAA′, μAA′ ∈ R,

where μAA′ is the average gross wealth moved from agent category A
to A′ due to rotation of agents from A to A′.

3.1.3 Dynamic deterministic parameters
Now, we can add a further generalization to our framework by

defining the dynamic deterministic parameters. The dynamic
deterministic parameters are the interaction and rotation rates that
are time-dependent (i.e., βAA′(t) and γAA′(t)). The motivation for
introducing time dependence is that when we work with real-world
data, it is likely that the wealth redistribution rates will vary in time, in
particular as an economy goes through economic cycles. When using
the static parameters, we assume that economies balance demands
and prices to construct price hyperplanes, but in the case of real-world
economies, this is generally not the case.

The effect of introducing the dynamic deterministic parameters
on the simulation has major impacts:

• Forward propagation: Since the parameters can be arbitrary,
we could fit our dynamical system on any dynamics with the
same number of agent categories and, therefore, fit our model
into any economy. This might be useful when we change
parameters based on the incoming data to perform an analysis
of economic activity in an economy, but this is not helpful
when we attempt to simulate future results as the dynamic
parameters are too flexible.

• Backward Propagation: With the dynamic parameters we can
perfectly fit our model on the empirical data as at every time
step we can change the rates appropriately to link wealth
distributions at different time steps. However, this is
overfitting of the model, and the rates we obtain this way
are not useful for making any predictions. Overfitting can be
pre-vented using different techniques such as adding penalty
terms to the loss function of the nu-merical solver,
bootstrapping results of multiple simulations with random
initial positions, or even splitting the data into compartments
(e.g., split economy data by the timestamps of policy
implementations) and training the model on individual
compartments. We will leave the discussion of simulation
engine design, model fitting, and methods used for prevention
of overfitting to our future paper.

In order for the interaction rates to become dynamic, we must
lift the constraint that we imposed when defining static deterministic
interaction rates, which is the vector of demands and the vector of
prices will balance out the wealth functions of agent categoriesA and
A′. Dropping this assumption results in the dynamic interaction
rates defined as

βAA′ t( ) � M

Δt
∑iAA′∈IAA′

ι iAA′, t( )
F A, t( )F A′, t( ) ∀t ∈ T.

The rotation rates become dynamic by assuming that for a
rotation of wealth from A to A′, there exists a discrete function
gAA′: T → R well-defined ∀t ∈ T such that

γAA′ t( ) � gAA′ t( ).
Note that since we removed the rebalancing constraint, in the
forward propagation, we are free to change the function ι(iAA′, t)
inside our simulation. This means that both DiAA′(t) and PiAA′(t)
can be arbitrary deterministic functions, and therefore, we can
choose any deterministic models to simulate these in the forward
propagation with the dynamic deterministic
parameter extension.

3.1.4 Dynamic probabilistic parameters
The last case of parameter modification is the dynamic

probabilistic parameters, where the interaction and rotation rates
are time-dependent and are defined by stochastic processes. The
motivation for this procedure is that we can create stochastic
processes that satisfy the distribution of empirical data at
different time steps, and we can feed these processes inside the
simulation in order to gauge what an economy may look like.

Compared to the dynamic deterministic parameters, we now
have explainable parameters that are based on the distribution of
historical data. This allows for a good risk assessment tool, where the
economic dynamics is simulated multiple times so that we can
examine the possible “bad” cases for the economy, how they may
evolve, and what the impacts of these cases are on different agent
categories. However, this means that backward propagation is
fruitless in this case as the stochastic processes ensure that every
time we run the dynamical system, the dynamic of the simulated
wealth distribution is different.

The static probabilistic parameters were defined using the
probability distribution ~DiAA′ that simulates the demands at each
time step, and then, the interaction rates are kept constant by
rebalancing the varying demands with prices and wealth
functions. We again lift the rebalancing constraint so that the
interaction rates become

βAA′ t( ) � M

Δt
∑iAA′∈IAA′

~DiAA′ ,tPiAA′ t( )
F A, t( )F A′, t( ) ,

where { ~DiAA′ ,t}t∈T is the stochastic process that simulates the demand
for the interactions of interaction type iAA′, and ~DiAA′ ,t is the random
variable that follows this stochastic process.

However, lifting the rebalancing constraint also allows for price
to become a stochastic process { ~PiAA′ ,t}t∈T for some interaction type
iAA′, with ~PiAA′ ,t being the random variable following this process.
We classify the interaction rates to be dynamic and probabilistic if
either the price, demand, or both are described by stochastic
processes. Therefore, the following interaction rates are also
defined as dynamic probabilistic parameters:

βAA′ t( ) � M

Δt
∑iAA′∈IAA′

DiAA′ t( ) ~P iAA′ ,t

F A, t( )F A′, t( ) ,

where demand is a deterministic function and the price is described
by the stochastic process, and

βAA′ t( ) � M

Δt
∑iAA′∈IAA′

~DiAA′ ,t
~P iAA′ ,t

F A, t( )F A′, t( ) ,

where both the demand and price are defined by different stochastic
processes. It should be noted that this is applicable only to forward
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propagation as backward propagation will not work with the
dynamic probabilistic parameters.

Since all the stochastic processes used are not necessarily the
same, all of them have to be simulated and each must be |T| steps
long, which are then used inside of the dynamical system to simulate
the wealth distribution in an economy.

Similar to that with static probabilistic interaction rates, we need
to ensure that the values simulated by the stochastic processes “make
sense” so that we do not obtain infeasible demands (e.g., half a car
being sold).

The rotation rates themselves become stochastic processes and
are defined as

γAA′ t( ) � GAA′,t,

where {GAA′,t} is the stochastic process that simulates the gross
wealth redistributed from the agent category A to A′, and GAA′,t is
the random variable associated with it.

3.2 Relationship with existing wealth
distribution models

In this section, we demonstrate how our framework is related to
the existing wealth distribution models. To proceed, we must first
state that it is common for wealth distribution to be studied from the
perspective of agent-based models, where individual agents transact
with one another, resulting in wealth redistribution.

As seen in the previous section, we can redefine the dynamical
system so that it has dynamic parameters, which is expressed as

Δ
Δt

�F t( )[ ] � 1
M

�F t( ) ⊙ B t( ) · �F t( )[ ] + Γ t( ) · �F t( ), (9)

where the matrix of interaction rates B(t) is

B t( ) �
0 βA1A2

t( ) . . . βA1An
t( )

βA2A1
t( ) 0 . . . βA2An

t( )
..
. ..

.
1 ..

.

βAnA1
t( ) βAnA2

t( ) . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

and the matrix of rotation rates Γ(t) is

Γ t( ) �
−γA1

t( ) γA2A1
t( ) . . . γAnA1

t( )
γA1A2

t( ) −γA2
t( ) . . . βAnA2

t( )
..
. ..

.
1 ..

.

γA1An
t( ) βA2An

t( ) . . . −γAn
t( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

This new generalized definition of the dynamical system can
help us with the task of connecting DeTEcT to existing wealth
distribution models as they tend to use dynamic parameters.

Furthermore, in the context of our framework, let us assume that
the agent categories contain only one agent such that each individual
agent has its own agent type (i.e., ∀a ∈ Λ!∃A ∈ Et such that {a} � A,
and in general, |Et| � |Λ|). Having unique agent categories for every
individual agent also implies that rotations are not defined in this
scenario as agents cannot change agent categories, so the matrix of
rotation rates is a zero matrix (i.e., Γ(t) � 0n×n).

Remark. The assumption that there is only one agent per agent
category is not necessary for the wealth distribution models that are

yet to be described; what is necessary is the assumption that there are
no rotations defined between the agent categories. The reason we
assume that there is only one agent per agent category is the
demonstration of how our framework integrates with the existing
wealth distribution models, where the notion of the agent category is
not defined. In this section, we refer to Aj as an individual agent
since it is a set Aj � {aj} with the cardinality |Aj| � 1.

The notions of interaction types and interaction quantities are
also exclusive to DeTEcT; in the previous literature on wealth
distribution models, the net wealth redistributed between agents
is directly defined by one transaction at time step t. Without the loss
of generality, let the net wealth redistributed be defined as

ΔFAA′ t( ): � ∑
iAA′∈IAA′

ι iAA′, t( ),

where A and A′ are agent categories that contain one agent each.
ΔFAA′(t) is the net wealth that has been transacted between
individual agents a ∈ A and a′ ∈ A′ at time step t ∈ T.

With these limitations, we can rewrite Equation 9 so that the
dynamical system becomes

Δ
Δt

�F t( )[ ] � 1
M

�F t( ) ⊙ B t( ) · �F t( )[ ], (10)
with the individual interaction rates now being given by

βAA′ t( ) � M

Δt
ΔFAA′ t( )

F A, t( )F A′, t( ). (11)

We can further simplify Equation 10 by applying the finite difference
method. If there are n agents in the economy, we obtain
|Λ| � n � |Et|, implying that the vector �F(t) is an n-dimensional
vector of wealth functions for every agent. Switching from vector
notation to index notation and applying the finite difference
method, we obtain a system with n dynamical equations:

F Aj, t( ) � F Aj, t − Δt( )
+ Δt
M

F Aj, t − Δt( )∑n
k≠j

βAjAk
t − Δt( )F Ak, t − Δt( )⎡⎢⎢⎣ ⎤⎥⎥⎦.

Using Equation 11, we simplify the aforementioned equation to

F Aj, t( ) � F Aj, t − Δt( ) +∑n
k≠j

ΔFAjAk
t − Δt( ), (12)

which is a version of the dynamical system that is often considered in
the literature and studies on wealth distribution (Patriarca
et al., 2005).

Equation 12 describes the redistribution of wealth between
agents in the economy from the perspective of individual
transactions and is referred to as the transaction rule. The terms
ΔFAjAk(t − Δt) are the net transactions that take place between
agents such that the invariance of wealth assumption is satisfied,

M � ∑
A∈Et

F A, t( ).

Without the loss of generality, we can pick a time interval Δt
such that an individual agent performs at most only one transaction
in this interval. This further reduces the problem, where the
transaction rule is simplified to become
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F Aj, t( ) � F Aj, t − Δt( ) + ΔFAjAk
t − Δt( ), (13)

and the change in wealth of the counterparty Ak is defined as

F Ak, t( ) � F Ak, t − Δt( ) + ΔF AkAj( ) t − Δt( ). (14)
Note that for the invariance of wealth to be satisfied, the net change
in wealth is antisymmetric, which is expressed as

ΔFAjAk
t − Δt( ) � −ΔFAkAj t − Δt( ).

With the reformulated transaction rule defined in Equations 13, 14,
along with the antisymmetric constraint on net change in wealth, we
can demonstrate how existing wealth distribution models are
derived from our framework.

3.2.1 Wealth distribution model with no saving
The first model we consider is the wealth distribution model

with no saving, introduced by Dragulescu and Yakovenko (2000).
This model assumes that an agent transacts a random portion of
their wealth at time step t.

Given the transaction rule defined in Equations 13, 14, the net
change in wealth in this model is defined to be

ΔF AjAk( ) t − Δt( ) � �ϵAjAk
F Ak, t − Δt( ) − ϵAjAk

F Aj, t − Δt( ),
where ϵ ~ U(0, 1) is a random proportion of the combined wealth of
Aj and Ak that the agent Aj will receive after the transaction. Given
this definition of net change of wealth, the transaction rule can be
rewritten as

F Aj, t( ) � ϵAjAk
F Aj, t − Δt( ) + F Ak, t − Δt( )( )

F Ak, t( ) � �ϵAjAk
F Aj, t − Δt( ) + F Ak, t − Δt( )( ), (15)

where �ϵAjAk is the complimentary fraction of
ϵAjAk (i.e., ϵAjAk + �ϵAjAk � 1).

This model describes the wealth distribution dynamics
through random interactions, similar to a kinetic model of gas
particles interacting inside a closed container. The simulation of
this model produces an equilibrium of wealth distribution (i.e., the
attractor of the dynamical system describing the wealth
distribution) and as shown by Dragulescu and Yakovenko
(2000) fits the Boltzmann distribution (else known as the Gibbs
distribution):

g Aj( ) � 1
〈F〉e

−F Aj( )
〈F〉 , (16)

with

〈F〉 � M

n
,

where M is the maximum supply and n is the number of agents in
the economy (i.e., n � |Λ|). In thermodynamic terms, the average
temperature of the system is the average wealth 〈F〉 of an agent in
the economy (Patriarca et al., 2005), and the energy of the state is the
wealth F(Aj) of an agent Aj. Note that we dropped the time
dependence of the wealth function F, given that the distribution
of wealth between agents reaches an equilibrium, and since the
system attained its attractor, the change of wealth over time is
negligible. Equation 16 is the probability density function that
defines the probability that an agent has wealth F(Aj).

An interesting feature of the Boltzmann distribution in Equation
16 is its “robustness” with respect to different factors such as initial
conditions or multi-agent interactions, which do not impact the
accuracy of the fit of the Boltzmann distribution over the
equilibrium of the wealth distribution obtained from the trading
rule in Equation 15.

In terms of economic modelling this result implies that if the
transactions in the economy are random and are more akin to
gambling, then the majority of wealth will belong to a small num-ber
of individuals and most agents in the economy will be poor. Also,
due to the robustness of Boltzmann distribution, we can expect that
no matter the initial state, the economy where agents act according
to the transaction rule 43 will always result in having small number
of “rich” and large number of “poor” agents.

The reason this model is said to have “no saving” is because ϵAjAk

can be 0 or 1, which leads to an agent obtaining all the wealth from
the counterparty. In this context, saving is defined as the proportion
of wealth that an agent is guaranteed not to transact, regardless of
the value of the parameter ϵAjAk. We further consider the
implementation of the “saving parameter” (i.e., saving propensity)
later in this section.

3.2.2 Wealth distribution model with minimum
investment and no saving

The model proposed by Chakraborti (2002) introduces a
concept of minimum transaction value, Fmin, as a means to
simulate a system where agents “invest” the same wealth with the
outcome of the investment being the wealth each agent receives from
this joint investment pool. As in the previous model, the outcome of
the investment (i.e., transaction) is random and agents do not save
any proportion of their wealth, risking it instead in a form of an
investment.

The net change in wealth is defined as

ΔFAjAk
t − Δt( ) � 2ϵAjAk

− 1( )Fmin,

where ϵAjAk ~ U(0, 1) as before, and
Fmin � min F Aj, t − Δt( ), F Ak, t − Δt( )( )

is the minimum investment that both agentsAj andAk make, which
is equivalent to the wealth of the agent with less wealth (e.g., if
F(Aj, t − Δt)<F(Ak, t − Δt), then the minimum investment
is Fmin � F(Aj, t − Δt)).

Applying this definition of net change in wealth to the general
transaction rule (Equations 13, 14), we obtain

F Aj, t( ) � F Aj, t − Δt( )
+ 2ϵAjAk

− 1( ) × min F Aj, t − Δt( ), F Ak, t − Δt( )( )
F Ak, t( ) � F Ak, t − Δt( )

+ 2ϵAjAk
− 1( ) × min F Aj, t − Δt( ), F Ak, t − Δt( )( ).

The dynamics of this system is unique in the sense that over the
course of the simulation, agents will lose their wealth such that
Fmin � 0, which means they cannot invest any more or participate in
the transactions. This implies that the agents are being “driven out of
the market” once they run out of wealth to transact.

This peculiarity of the model leads to the wealth distribution
equilibrium to be described by a power law
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(i.e., g(Aj, t − Δt) ~ F(Aj, t − Δt)−v with the exponent parameter v
for a given time step t − Δt) with an exponentially falling tail
(i.e., g(Aj, t − Δt) ~ e−αF(Aj,t−Δt) with the parameter α for a given
time step t − Δt), and as t → ∞, all agents apart from one are driven
out of the market, with that agent holding all maximum supply M
(i.e., limt→∞F(Aj, t) � M). From numerical simulations, it is
estimated that for t � 15, 000, 000, more than 99% of agents are
driven out of the market (Chakraborti, 2002).

It should be noted that here, we did not drop the time
dependence of the wealth function F since the probability density
function is defined at the time steps, leading to the equilibrium but
not at the equilibrium. At the equilibrium, only one agent retains all
the wealth.

3.2.3 Wealth distribution model with global saving
propensities

In this model, a global saving propensity λ ∈ (0, 1) is introduced
for the purpose of modelling the wealth distribution. The global
saving propensity is the proportion of wealth that each agent will
save before transaction. The range of saving propensity is considered
to be between 0 and 1, implying that an agent cannot save all wealth
(i.e., λ � 1) or invest all wealth (i.e., λ � 0). It is also assumed that the
saving propensity is independent of time or any other parameters.

For this model, the net change of wealth is

ΔFAjAk
t − Δt( ) � 1 − λ( ) �ϵAjAk

F Aj, t − Δt( ) − ϵAjAk
F Ak, t − Δt( )[ ],

where ϵAjAk ~ U(0, 1) with its complimentary fraction �ϵAjAk . Under
this definition, the transaction rule becomes

F Aj, t( ) � λF Aj, t − Δt( ) + ϵAjAk
1 − λ( )

× F Aj, t − Δt( ) + F Ak, t − Δt( )( )
F Ak, t( ) � λF Ak, t − Δt( ) + �ϵAjAk

1 − λ( )
× F Aj, t − Δt( ) + F Ak, t − Δt( )( ). (17)

The equilibrium of the wealth distribution dynamics in this system is
described by the gamma distribution, which is derived by
Chakraborti and Chakrabarti (2000). For an effective dimension
Dλ defined by

Dλ

2
� 1 + 2λ

1 − λ
,

and the temperature defined by the relation

Tλ � a〈F〉
Dλ

� 1 − λ

1 + 2λ
〈F〉 (18)

through the equipartition theorem, the probability density function
of “reduced” wealth ξ(Aj) � F(Aj)

Tλ
is

g ξ Aj( )( ) � 1
Γ Dλ/2( ) ξ Aj( )Dλ

2 −1e−ξ Aj( ) � γDλ
2
ξ Aj( )( ).

〈F〉 is the average wealth of an agent in the economy, and γDλ
2
is the

gamma distribution of order Dλ

2 .
The saving propensity in the range λ ∈ (0, 1) constrains the

effective dimension to 2<Dλ. For integer and half-integer values of
the shape parameter Dλ

2 , the probability density g(ξ(Aj)) becomes
Maxwell–Boltzmann distribution at the temperature Tλ in a
Dλ-dimensional space (Patriarca et al., 2005).

The temperature Tλ in this model describes the fluctuation of
agent’s wealth around the average value 〈F〉. By the equipartition
theorem (i.e., Equation 18), if the saving propensity monotonically
increases, the temperature monotonically decreases, implying
agents’ wealth fluctuates less with higher λ, according to the
gamma distribution.

Therefore, for an economy where agents are transacting
randomly, but with only a predefined proportion of their wealth,
the wealth distribution will depend on the saving propensity, and the
shape of the wealth distribution density function will depend on the
shape parameter Dλ

2 of Gamma distribution. The shape parameter
defines the skewness (~μ3 � 2

�
2

√��
Dλ

√ ) and excess kurtosis (K � 12
Dλ
) of the

resulting wealth distribution; note that 1< Dλ

2 because of the choice
of the range for the saving propensities λ ∈ (0, 1), the wealth
distribution will always have a unimodal shape. As the shape
parameter Dλ

2 → ∞ (i.e., λ → 1), the final wealth distribution
converges to the normal distribution with mean Dλ

2 , which
implies that the wealth is equitably distributed between the
agents in the economy around the mean value, and this is
consistent with the fact that as the saving propensity goes up, the
agents in the economy risk less wealth in the random transactions
which leads to less wealth “redistribution”. On the other hand, for
relatively low values of the shape parameter Dλ

2 a0 (i.e., λa0) the
final wealth distribution will have positive skewness and kurtosis,
leading to a wealth distribution to be left-leaning and implying that
the majority of agents in the economy will be “poor” while there will
also be a few very “rich” agents. This is consistent with our
expectation that small saving propensity λ results in significant
wealth “redistribution” and creation of “rich” and “poor” agents in
the economy.

3.2.4 Wealth distribution model with individual
saving propensities

The shortcoming of the wealth distribution model with the
global saving propensity is the assumption that every agent’s saving
propensity is the same. In the real world, agents are likely to have a
different risk tolerance, which means their saving propensities will
differ. Therefore, a wealth distribution with individual saving
propensity is introduced, where every agent Aj has its own saving
propensity λj. Similar to that in the previous model, the saving
propensities λj are assumed to be constant.

The net change in wealth is defined as

ΔFAjAk
t − Δt( ) � �ϵAjAk

1 − λj( )F Aj, t − Δt( )
− ϵAjAk

1 − λk( )F Ak, t − Δt( ),
and the associated transaction rule is

F Aj, t( ) � λjF Aj, t − Δt( )
+ ϵAjAk

1 − λj( )F Aj, t − Δt( ) + 1 − λk( )F Ak, t − Δt( )[ ]
F Ak, t( ) � λkF Ak, t − Δt( )

+ �ϵAjAk
1 − λj( )F Aj, t − Δt( ) + 1 − λk( )F Ak, t − Δt( )[ ].

This transaction rule leads to the equilibrium being described by
different probability densities, and the choice of the probability
density depends on the configuration of the individual saving
propensities λj. However, if a system is simulated many times with
different individual saving propensity configurations, the average
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across the equilibrium that the system has attained is distributed
according to the Pareto distribution (Chatterjee et al., 2003)

g F Aj( )( ) �
α Fmin( )α
F Aj( )α+1 F Aj( )≥Fmin

0 F Aj( )<Fmin

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

where the parameter α (i.e., Pareto exponent) is set to 1, while Fmin is
the minimum wealth an agent in the economy can have (e.g., in an
economy where we cannot create credit/debit, we have no debt,
asserting that 0≤F(Aj), so the parameter Fmin can be set to zero
despite the assumption that wealth is always positive as the
probability that F(Aj) � 0 is negligible).

This is an interesting result since the Pareto exponent α �
log105
log104

≈ 1.161 leads to the Pareto principle, otherwise known as
the 80–20 law. This principle states that 80% of wealth belongs
to 20% of agents, which coincides with the empirical data in the real-
world economies (United Nations Human, 1992). For the purpose of
wealth distribution modelling, this result implies that given an
economywhere agents are free to choose what fraction of their
wealth they want to transact away randomly, we will find that after a
number of iterations the wealth in the economy will be distributed
according to the Pareto principle. However, this result is subject to
the uniform distribution of risk averseness (i.e., saving propensities)
between the agents, and is subject to the number of risk takers (i.e.,
agents with low individual saving propensity) in the economy.

4 Dynamic money supply extension

In Section 2.1, we mentioned that we assume the maximum
supply to be constant, and for some real-world token economies
[e.g., Bitcoin (Nakamoto, 2008)], this assumption is satisfied.
However, there are plenty of token economies that do not have a
capped maximum supply and can, in practice, mint infinite number
of tokens [e.g., Ethereum (Buterin, 2014)].

4.1 Dynamic money supply models

To model wealth distribution in token economies where
maximum supply is not constant, we must define an extension to
our framework. Maximum supply can increase or decrease, and in
the context of this paper, we refer to these processes as
incrementation and decrementation, respectively. We define some
of the possible models of dynamic maximum supply in Table 3 and
further elaborate on these below (note that the taxonomy is not
exhaustive as there can be an infinite number of functions that
model the change of maximum supply).

4.1.1 Deterministic maximum supply models
We start by looking at the simplest model from Table 3, which is

the simple incrementation and decrementation. This model linearly
changes the maximum supply such that at every time step t ∈ T, the
maximum supply increases or decreases by a constant value. This
maximum supply model causes the maximum supply to be in the
range (−∞,∞).

In our framework, we cannot have a zero maximum supply as
generalized Equation 3 will be undefined. Moreover, negative
maximum supply does not make sense in practice, so we must
introduce a constraint on the input rate of incrementation
(decrementation) we set in order to ensure the range of
maximum supply stays in the (0,∞) range. Below, we define
simple incrementation (decrementation model).

Definition 1: Simple incrementation (decrementation) is the
incrementation (decrementation) of maximum supply with the
same amount of wealth at every time step. At time t, maximum
supply with simple incrementation is the mapping M: T → (0,∞)
such that

M t( ) � 1 + rt( )Minitial,

where Minitial ∈ R>0 is the initial maximum supply at time tinitial,
and r ∈ (−1

t,∞) ⊆ R for all t ∈ T is the incrementation
(decrementation) rate.

The compound incrementation (decrementation) model
changes the maximum supply by adding (subtracting) a constant
percentage of the maximum supply from the previous time step
t − Δt. Over time, this results in the exponential rise (fall) in
maximum supply, with the its range being (−∞,∞). Yet again,
we must ensure that the range of maximum supply in this model
remains in the “reasonable” (0,∞) range by readjusting the rate
parameter of this model.

Definition 2: Compound incrementation (decrementation) is the
incrementation (decrementation) of maximum supply with the
exponentially growing (shrinking) amount of wealth at every
time step. At time t, maximum supply with compound
incrementation is mapping M: T → (0,∞) such that

M t( ) � 1 + r( )tMinitial,

whereMinitial ∈ R>0 is the initial maximum supply at time tinitial and
r ∈ (−1, 1) ⊆ R is the incrementation (decrementation) rate.

4.1.2 Stochastic maximum supply models
The stochastic incrementation and decrementation model

introduces a stochastic process {Rt}t∈T that changes the maximum
supply in time. These changes are notmonotonic, but we consider that
there exists a time series of expected values for this process.

TABLE 3 Taxonomy of dynamic maximum supply.

Name Change in M Deterministic Monotonic

Simple incrementation (decrementation) Linear increase (decrease) Yes Yes

Compound incrementation (decrementation) Exponential increase (decrease) Yes Yes

Stochastic incrementation (decrementation) Average increase (decrease) No No
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Definition 3: Stochastic incrementation (decrementation) is the
average incrementation (decrementation) of maximum supply with
the discrete-time stochastic process {Rt}t∈T with the property that
0<Rt for every t ∈ T (e.g., geometric Brownian motion). At time t,
maximum supply with stochastic incrementation is the mapping
M: T → (0,∞) such that

M t( ) � RtMinitial,

whereMinitial ∈ R>0 is the initial maximum supply at time tinitial, and
Rt is the stochastic process with a range ∈ (0,∞) and the expected
value time series E(Rt) � μR(t) such that under a transformation
t → t′, the expected value transforms as μR(t) → μR(t′).

4.2 The time translation symmetry and the
discount factor

In physical systems, the concept of continuous symmetry, or
invariance, of the system is deeply associated with the conservation
laws, and in particular, the Noether’s theorem (Noether, 2018) states
that for every continuous symmetry that a physical system exhibits,
it must have a corresponding conservation law. This statement can
be reformulated to state that if a system has a symmetry, then there
will be a quantity, or quantities, that is conserved (e.g., in most
physical systems, energy is the conserved quantity with respect to
time translation symmetry).

The consequence of Noether’s theorem is that there must exist a
vector J (i.e., conserved current) associated with the conserved
quantity that satisfies ∂

∂t J + ∇J � 0 (i.e., continuity equation). The
conserved current becomes a property of the system, which can aid
in solving the system or verifying a proposed solution.

In finance and economics, we implicitly use time translation
symmetry to compare values within the time series. For example,
portfolio theory defines a concept of stochastic discounting factor
(SDF), which allows us to connect time series of returns. In
discounting models, we use a discounting rate to compare
nominal cashflows values that are separated in time. In general,
we often employ a discounting factor to provide us with a point of
reference that allows us to compare values of the time series, and
connect them from one time step to another.

In the context of our framework, we would like to explicitly
demonstrate that under certain con-ditions, the discounting factor
emerges as the property of the modelled system, rather than an
assumed definition.The objective of this section is to demonstrate
that an economic system whose maximum supply can be described
using the models above, has a time transla-tion symmetry and that
this symmetry gives rise to the conservation principle stated in the
Equations 1, 2.

By time translation symmetry we mean that there exists an
invariant quantity that will be conserved for any point t ∈ T. In
Equations 1, 2, the time translation symmetry is manifested through
having no discounting factor as the maximum supplyM is constant.
Given the maximum supply models defined in the section above we
can demonstrate that these maximum supply models satisfy the
conservation law, and we will also show that for a generic function
satisfying certain constraints, the economic system will also have a
time translation symmetry, and therefore, a discounting factor.

Theorem 4.1: Time translation symmetry: If maximum supply is
constant or has simple, compound, or stochastic incrementation
(decrementation), there exists a time translation symmetry in
the economy.

Proof. Let the set of n agent categories be

Et � A1, . . . , An{ }, n ∈ N.

Without loss of generality, assume that at tinitial, the wealth is
distributed between the agent categories such that

∑
Aj∈Et

F Aj, tinitial( ) � ∑n
j�1

F Aj, tinitial( ) � Minitial, Minitial ∈ R>0,

where in the first equality, it is assumed that |Et| � n, and t is a label
for a pseudo-partition and not the number of agent categories.

For every t ∈ T and an interval Δt, the next time iteration is
defined as t′ � t + Δt. Proceed for each of the cases.

Case 1: Constant maximum supply

Assume for arbitrary t ∈ T, the following holds:

∑n
j�1

F Aj, t( ) � Minitial. (19)

It is sufficient to prove that this holds for time t′.
By discrete differentiation, the differential form of Equation 19 is

∑n
j�1

F Aj, t( ) − F Aj, t − Δt( )
Δt � 0. (20)

By translating in time t → t′ and Taylor expanding up to
order O(Δt2),

∑n
j�1

F Aj, t′( ) � ∑n
j�1

F Aj, t( ) + Δt
F Aj, t( ) − F Aj, t − Δt( )

Δt
⎛⎝ ⎞⎠

� ∑n
j�1

F Aj, t( ) � Minitial,

where for the second equality, the property in Equation 20 was used.
Therefore, the statement in Equation 19 is proved by induction for
all t ∈ T.

Case 2: Maximum supply with simple incrementation
(decrementation)

According to Definition 1, assume for arbitrary t ∈ T and
r ∈ (−1

τ,∞) ⊆ R∀τ ∈ T, the following holds:

∑n
j�1

F Aj, t( ) � 1 + rt( )Minitial. (21)

It is sufficient to prove that this holds for time t′.
By discrete differentiation, the differential form of Equation 21 is

∑n
j�1

F Aj, t( ) − F Aj, t − Δt( )
Δt � rMinitial. (22)

By translating in time t → t′ and Taylor expanding up to
order O(Δt2),
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∑n
j�1

F Aj, t′( ) � ∑n
j�1

F Aj, t( ) + Δt
F Aj, t( ) − F Aj, t − Δt( )

Δt
⎛⎝ ⎞⎠

� ∑n
j�1

F Aj, t( ) + ΔtrMinitial

� 1 + rt( )Minitial + ΔtrMinitial

� 1 + rt′( )Minitial,

where for the second equality, the property in Equation 22 was used.
Therefore, the statement in Equation 21 is proved by induction for
all t ∈ T.

Case 3: Maximum supply with compound incrementation
(decrementation)

Given Definition 2, assume for arbitrary t ∈ T and
r ∈ (−1, 1) ⊆ R, the following holds:

∑n
j�1

F Aj, t( ) � 1 + r( )tMinitial. (23)

It is sufficient to prove that this holds for time t′.
By discrete differentiation, the differential form of Equation

23 is

∑n
j�1

F Aj, t( ) − F Aj, t − Δt( )
Δt � ln 1 + r( ) 1 + r( )tMinitial. (24)

By translating in time t → t′ and Taylor expanding up to
order O(Δt2),

∑n
j�1

F Aj, t′( ) � ∑n
j�1

F Aj, t( ) + Δt
F Aj, t( ) − F Aj, t − Δt( )

Δt
⎛⎝ ⎞⎠

� ∑n
j�1

F Aj, t( ) + Δtln 1 + r( ) 1 + r( )tMinitial

� 1 + r( )tMinitial + Δtln 1 + r( ) 1 + r( )tMinitial

� 1 + rt′( )Minitial,

where for the second equality, the property in Equation 24 was used.
For the last equality, the Taylor expansion of an exponential in
general form was used:

ax � eln a( )x � 1 + xln a( )
1!

+O xln a( )( )2( )
since r< 1, implying that ln(1 + r)< 1.

Therefore, the statement in Equation 23 is proved by induction
for all t ∈ T.

Case 4: Maximum supply with stochastic incrementation
(decrementation)

Assume for arbitrary t ∈ T and stochastic process {Rt}t∈T, the
following holds:

∑n
j�1

F Aj, t( ) � RtMinitial. (25)

The expected value is used to stochastically discount the wealth
function from one time step to the next,

E ∑n
j�1

F Aj, t( )⎡⎢⎢⎣ ⎤⎥⎥⎦ � ∑n
j�1

F Aj, t( ) � E RtMinitial[ ] � E Rt[ ]Minitial

� μR t( )Minitial.

Assuming that under time translations t → t′, the expected value of
time series transforms as μR(t) → μR(t′); it is sufficient to prove that
Equation 25 holds for time t′.

By discrete differentiation, the differential form of Equation 25 is

∑n
j�1

F Aj, t( ) − F Aj, t − Δt( )
Δt � ΔμR t( )

Δt Minitial. (26)

By translating in time t → t′ and Taylor expanding up to
order O(Δt2),

∑n
j�1

F Aj, t′( ) � ∑n
j�1

F Aj, t( ) + Δt
F Aj, t( ) − F Aj, t − Δt( )

Δt
⎛⎝ ⎞⎠

� ∑n
j�1

F Aj, t( ) + ΔtΔμR t( )
Δt Minitial

� μR t( )Minitial + ΔtΔμR t( )
Δt Minitial

� μR t′( )Minitial,

where for the second equality, the property in Equation 26 was used.
For the last equality, the Taylor expansion approximation of
μR(t) was used.

Therefore, the statement in Equation 25 is proved by induction
for all t ∈ T.

General Case: General form of the incrementation function.

Assume for arbitrary t ∈ T, the following holds:

∑n
j�1

F Aj, t( ) � g t( ), (27)

where g(t) is an infinitely differentiable maximum supply function
such that g(tinitial) � Minitial � g(t0), and g(t) has a Taylor series
approximation. It is sufficient to prove that the equality above holds
for time t′.

By discrete differentiation, the differential form of Equation 27 is

∑n
j�1

F Aj, t( ) − F Aj, t − Δt( )
Δt � Δ

Δt g t( )[ ] � g t( ) − g t − Δt( )
Δt .

By translating in time t → t′ and Taylor expanding up to
order O(Δt2),

∑n
j�1

F Aj, t′( ) � ∑n
j�1

F Aj, t( ) + Δt
F Aj, t( ) − F Aj, t − Δt( )

Δt
⎛⎝ ⎞⎠

� ∑n
j�1

F Aj, t( ) + Δt g t( ) − g t − Δt( )
Δt

� g t( ) + Δt ΔΔt g t( )[ ]
� g t′( ),

where we used the infinitely differentiable property of g(t), where its
Taylor approximation around t′ is
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g t′( ) � g t( ) + Δt ΔΔt g t′( )[ ].
Therefore, the statement in Equation 27 is proved by induction for
all t ∈ T.

This theorem demonstrates that an economy where maximum
supply function is infinitely differentiable, the economy will have a
time translation symmetry. This result allows us to make a couple of
interesting statements about economies modelled with DeTEcT.

First, the time translation symmetry allows us to connect the
values in the time series of wealth distribution by discounting
changes in the maximum supply. By proving the theorem above,
we have demonstrated that an economy whose maximum supply is
described by the given supply models, the notion of the discounting
factor is promoted from the definition to the property of the system.
For example, if we assume that an economy has a simple
incrementation (decrementation), then the sum of wealth
functions at a given time step t ∈ T is

1
1 + rt

∑n
j�1

F Aj, t( ) � Minitial,

where 1
1+rt is just the discounting factor at this time step. Therefore,

in our framework, the timevalue of money is the phenomenon
caused by the symmetry associated with the maximum supply
evolution, and is derived from the properties of the economy
being modelled.

Second, we note that we can now add the incrementation term to
the general equation of the dynamical system in Equation 3 such that
it reflects the dynamic money supply.

For us to add the general maximum supply function, g(t), we must
assume that g(t) satisfies g(tinitial) � Minitial � g(t0), and we also must
define incrementation on an “agent category”-basis as the incrementation
mechanism tells us howmuch newwealth has been created. However, in
order to add incrementation to the dynamical system, we must specify
which agent categories gain (lose) wealth (in most cases, we can assume
that the controlmechanismwill be the only agent category to gain or lose
wealth due to the dynamic maximum supply).

Let G(Aj, t) be the amount by which the wealth of agent
category Aj has been changed at time step t. It is required that
the sum of changes in wealth of all agent categories at time step t is
the difference between the maximum supply of the economy
between the last and the current time steps,

∑n
j�0

G Aj, t( ) � g t( ) − g t − Δt( ).

We can define a vector of wealth changes, �G(t), where every entry is
the incrementation (decrementation) of wealth of the respective
agent category at the given time step,

�G t( ) � G A1, t( ), . . . , G An, t( )( )T, A1, . . . , An ∈ Et.

Now, we add the incrementation (decrementation) mechanism to
the dynamical system in Equation 3 to obtain its modified version,

Δ
Δt

�F t( )[ ] � 1
g t( )

�F t( ) ⊙ B · �F t( )[ ] + Γ · �F t( ) + �G t( ) t ∈ T. (28)

We can prove that by induction, Equation 28 holds for future time
steps. First, assume that the equation holds for t0 and for some

arbitrary t ∈ T. Then, for the next time step t′ � t + δt, the Taylor
expansion of �F(t′) is

�F t′( ) � �F t( ) + δt
Δ
Δt

�F t( )[ ] +O δt2( )
≈ �F t( ) + δt

1
g t( ) �F t( ) ⊙ B · �F t( )[ ] + Γ · �F t( ) + �G t( )[ ],

where we used Equation 28 and ignored all terms of O(δt2) and
higher as we consider the interval δt to be very small.

The finite difference of �F around t′ is
Δt
Δt

�F t′( )[ ] � Δ
Δt

�F t( )[ ] + Δ
Δt δt

Δ
Δt

�F t( )[ ][ ]
� 1
g t( ) �F t( ) ⊙ B · �F t( )[ ] + Γ · �F t( ) + �G t( )

+ δt ΔΔt
1

g t( )
�F t( ) ⊙ B · �F t( )[ ] + Γ · �F t( ) + �G t( )[ ]

� 1
g t( )

�F t( ) ⊙ B · �F t( )[ ] + δt
Δ
Δt

1
g t( )

�F t( ) ⊙ B · �F t( )[ ][ ]
+ Γ · �F t( ) + δt

Δ
Δt Γ · �F t( )[ ] + �G t( ) + δt

Δ
Δt

�G t( )[ ]
� 1
g t′( ) �F t′( ) ⊙ B · �F t′( )[ ] + Γ · �F t′( ) + �G t′( ),

which proves that Equation 28 holds by induction for all time steps.
This equation is the general form of the dynamical system with static
parameters and dynamic money supply.

4.3 Dynamic money supply and
parametrization techniques

At last, we address the case where dynamic money supply and
different parametrization techniques are applied simultaneously.
The dynamical system with dynamic maximum supply and
dynamic parameters will have the same form as the system in
the section above, but with the explicit time dependence of B(t)
and Γ(t),

Δ
Δt

�F t( )[ ] � 1
g t( ) �F t( ) ⊙ B t( ) · �F t( )[ ] + Γ t( ) · �F t( ) + �G t( ) t ∈ T.

It can be proven that this form of the dynamical system stands for
the future time step using the same methodology, as described in the
previous section, but we will alleviate the calculation for the purpose
of the paper.

5 Conclusion

The aim of this paper was to demonstrate how our proposed
framework, DeTEcT (Sadykhov et al., 2023), fits into theoretical
research on wealth distribution models and how it can be improved
to be more flexible for modelling a wider range of real-world token
economies with different features.

In this paper, we described multiple ways that our framework
can be parametrized to remain very flexible. Static probabilistic
parametrization enables us to model the wealth distribution
dynamics based on the real-world data, and dynamic
deterministic parametrization can be used to simulate the
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dynamically changing set of policies in the economy, while static
deterministic and dynamic probabilistic parametrizations are
convenient for simulating different economic scenarios with the
static or variable set of policies. In forward propagation, the dynamic
parametrization techniques can be customized further with the
choice of deterministic functions or stochastic processes that
define demands and prices for individual goods.

Additionally, we introduced a dynamic money supply extension
that covers token economies with time-dependent money supply (e.g.,
Ethereum (Buterin, 2014)). This extension works harmoniously with
the parametrization techniques and expands the use cases for DeTEcT.

In summary, we have added improvements to our framework,
which will help us with building the simulation engine that performs
an analysis and runs simulations of wealth distribution in real-world
token economies and will allow us to study the interactions between
different agents and agent categories. Despite these improvements,
this paper does not present an exhaustive list of modifications and
features that can be added to DeTEcT (e.g., tokens with expiration
mechanism), but we believe that the extensions we have presented
here are those that carry the most significance for the framework and
demonstrate the approaches in which researchers can modify the
framework to use it in a different context.
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