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The concept of smart contracts (SCs) is becoming more prevalent, and their
application is gaining traction across many diverse scenarios. However, producing
poorly constructed contracts carries significant risks, including the potential for
substantial financial loss, a lack of trust in the technology, and the risk of exposure
to cyber-attacks. Several tools exist to assist in developing SCs, but their limited
functionality increases development complexity. Expert knowledge is required to
ensure contract reliability, resilience, and scalability. To overcome these risks and
challenges, tools and services based on modeling and formal techniques are
required that offer a robust methodology for SC verification and life-cycle
management. This study proposes an engineering framework for the
generation of a robust and verifiable smart contract (GRV-SC) framework that
covers the entire SC life-cycle from design to deployment stages. It adopts SC
modeling and automated formal verification methodologies to detect security
vulnerabilities and improve resilience, extensibility, and code optimization to
mitigate risks associated with SC development. Initially, the framework includes
the implementation of a formal approach, using colored Petri nets (CPNs), to
model cross-platform Digital Asset Modeling Language (DAML) SCs. It also
incorporates a specialized type safety dynamic verifier, which is designed to
detect and address new vulnerabilities that can arise in DAML contracts, such
as access control and insecure direct object reference (Idor) vulnerabilities. The
proposed GRV-SC framework provides a holistic approach to SC life-cycle
management and aims to enhance the security, reliability, and adoption of SCs.
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1 Introduction

Blockchain, as a distributed platform, allows for the deployment of a software code called
smart contracts (SCs) that can be used to create next-generation decentralized applications
across different industrial sectors and stakeholders. SCs are executable pieces of code that
reside on a blockchain network to automate digital workflows by containing self-executing
business logic. Many currently deployed SCs handle a large amount of virtual currency worth
millions in fiat currency, making the monetary incentives easily high enough to attract
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adversaries and cyber-criminals. Therefore, SCs are subjected to
external threats and attacks, just like any other software program
(Luu et al., 2016a; Magazzeni et al., 2017).

A minor mistake in the definition and coding of the SC logic can
introduce security vulnerabilities that can be exploited and
potentially incur significant economic loss (millions $) or
penalties. For instance, arithmetic bugs, exceptions, re-entrancy,
and flash loan attacks are some examples of SC vulnerabilities (Kaur,
2023). To address this, numerous tools have been developed to
detect vulnerabilities. According to a study reported in Luu et al.
(2016b), in which Oyente, a symbolic execution tool ran on
19,366 SCs from the first 1,460,000 blocks in the Ethereum
network, resulted in 8,833 SCs, with at least one security
vulnerability. However, 340 SCs were found to have a re-
entrancy handling vulnerability. This vulnerability resulted in one
of the highest-profile hacks on SCs, the decentralized autonomous
organization (DAO) attack deployed on Ethereum. The hackers
exploited this vulnerability in which $70 million worth of ether
(ETH) was siphoned off from BC (Popper, 2016). Moreover, in 2017,
the Bithumb attack was deployed by breaching the South Korean
Bithumb cryptocurrency exchange system, and the attacker was able
to steal 32,000 users’ data and money. Cumulatively, all these attacks
happened due to poor programming practices.

Additionally, in designing and deploying secure and reliable
contracts, the SC language selection is, in fact, an integral step that
best addresses the individual specific business needs (Dwivedi et al.,
2021). Therefore, when choosing an SC language, programmers
should take into account the following aspects: security, usability,
accessibility to tools and libraries, community support, scalability,
and interoperability.

However, errors can still occur at any point across the following
three phases of a SC life-cycle: modeling, pre-deployment, and
network-deployment stages. Delmolino (2016) and Atzei et al.
(2017) have documented particular execution weaknesses
exploited by attacks described above in Solidity-based contracts
that utilize the Ethereum execution environment. However, these
methods are not automated, and a developer must manually check
their program against each of the identified vulnerabilities as part of
the creation process. As the reach of SCs expands to new application
domains such as the Internet of Things (IoT), enterprise, maritime,
cloud, artificial intelligence (AI), and medical field, the need for
reliability and confidence in contract execution is coming to the
forefront (Huynh-The et al., 2023; Kordestani et al., 2023; Wang
et al., 2023). This has prompted the research community to
investigate topics such as the analysis and reporting of SC
vulnerabilities and bugs, auditing standards, identification of
security strategies, model-driven engineering, and a need to verify
domain-specific properties.

One of the promising approaches to address these challenges is
the use of formal verification methods. Formal verification using
formal methods for specifying, designing, and verifying programs
has been a long-proven method to ensure the correctness of safety-
critical systems. SCs are ideally suited for comprehensive formal
verification as they are compact and time-bounded (Lin et al.,
2022). From an academic perspective, several tools and approaches
have, therefore, arisen to support the development of secure and
robust SCs and to assist in the analysis of already-deployed
contracts (Kaur, 2023; Silviu, 2023). This research includes

approaches that use non-formal methods (static and dynamic
analysis methods) to detect failures under specific execution
circumstances and other methods based on formal techniques
with the aim of automatic formal verification (FV) of SCs.
Since non-formal methods can only test a particular request
under specific scenarios, they cannot prove the correctness of
SCs in general, making detecting complex patterns challenging.

Likewise, machine learning (ML)-based technologies such as
sequence learning, minimum intermediate representation learning,
supervised ML, and deep learning models (Tann, 2018; Liao, 2019;
Momeni et al., 2019; Lesimple and Martin, 2020; Li et al., 2020;
Wang et al., 2020) have been applied to detect vulnerabilities in SCs.
These technologies leverage the power of ML algorithms to analyze
codes and identify potential security issues. However, these existing
tools and techniques target only a small percentage of vulnerabilities
compared to the number of reported vulnerabilities in Silviu (2023);
Dingman et al. (2019). In addition, some approaches significantly
rely on a set of expert-defined rules/patterns, which can be error-
prone and result in significant false-positive or false-negative errors.
For this reason, recent works have explored formal verification,
which has proven to be effective in achieving such correctness
objectives, although it is very costly and harder to automate
(Singh et al., 2020). Much of the research is focused on one
aspect, and currently, limited approaches incorporate verification
of SCs across the entire life cycle (specification, design, testing, and
deployment). This can be attributed to the complexity and broad
range of causes (e.g., poor coding and logical errors) for potential
vulnerabilities as such further research is required to integrate
automated modeling and formal verification techniques across
each step in the development of SCs.

The majority of existing verification solutions are platform-
dependent and language-specific; for example, Ethereum and
Hyperledger Fabric are two separate platforms with distinct
applications and security requirements1. As a result, the approach
used to solve Ethereum SC issues will not work on Fabric (Zheng
et al., 2020). Following a detailed review of the literature, it is our
view that “the potential risk associated with poorly performing and
insecure decentralized applications (dApps) will become a primary
barrier to their uptake, and the absence of a complete framework for
managing the entire contract life-cycle development only
exacerbates the existence of this barrier.”

SCs have unique properties that require a structured and
controlled approach to their development and deployment.
Hence, all stages of the contract creation and deployment
process, including design, coding, testing, verification,
deployment, and maintenance, should be incorporated by such a
framework. Furthermore, the framework needs to be adaptable
enough to support various SC applications and offer a single-stop
solution for managing the contract’s complete lifespan. Without a
holistic approach to life-cycle management, SCs may be designed
and deployed in an ad hoc manner, which can lead to security and
reliability issues.

Hence, this study proposes an initial step toward addressing
these challenges by developing an iterative verification mechanism

1 https://101blockchains.com/ethereum-vs-hyperledger-fabric/
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for enterprise SCs to increase trust in blockchain applications,
namely, the generation of robust and verifiable smart contract
(GRV-SC) framework. The GRV-SC framework consists of
several stages that cover the entire SC life cycle. These stages
include requirement specification, modeling, verification, pre-
deployment testing, network deployment testing, and execution
and completeness using SC modeling and automated formal
verification approaches. By following this comprehensive
framework, developers can ensure that their SCs are robust,
secure, and resilient throughout their entire life cycle. Based on
the aforementioned needs, this study provides the following
contributions:

• Exploring the motives and requirements to facilitate a formal
SC life-cycle approach and how their absence can restrict
contract security, reliability, robustness, and adoption.

• Conceptualizing a holistic life-cycle management approach for
the GRV-SC framework.

• Initial implementation of a formal approach for cross-
platform Digital Asset Modeling Language (DAML) SCs,
i.e., colored Petri nets (CPNs) for DAML to address new
vulnerabilities.

• Code generation engine that offers translation from the CPN
model to secure DAML templates.

• Implementation of a dedicated type safety dynamic verifier for
detecting DAML vulnerabilities.

The remainder of the paper is structured as follows: Section 2
provides a review of the current state-of-the-art with respect to SC
modeling and verification. Section 3 offers an overview of the
proposed GRV-SC framework. Section 4 covers the methodology
of the proposed framework. Section 5 provides experimental results
along with a case study. Section 6 draws conclusions with respect to
the proposed work and identifies the next stage in the continuation
of this work.

2 Research problem

In this section, we shed light on the existing research gap that
poses a challenge to the SC ecosystem in terms of enhancing its
security and robustness.

2.1 Requirements

The development life cycle for SC is typically divided into three
phases: creation, deployment, execution, and completeness (Jani,
2020):

1) Smart contract creation: Generally, after multi-party negotiation,
software developers define and convert the natural language
contract specification to a computer program using platform-
specific programming languages including but not limited to
Solidity, Go, Kotlin, Java, or C++.

2) Deployment: The developed contract is then deployed across the
blockchain network and is accessible to all parties involved. Any
change to the contract post-deployment will require the creation

of a new contract as a consequence of the immutable nature of
blockchain systems.

3) Execution and completeness: Contractual conditions have been
evaluated, following the deployment of SCs. Once these
predefined conditions are met, the functions will be executed
automatically. Following the execution of SC, all parties involved
are updated with new states (i.e., written to the ledger). As a
result, the blockchain keeps track of both the transactions and
modified states during the SC execution, for example, resulting in
digital assets being transferred from one party to another without
the need for any human intervention.

The three key characteristics of SCs, i.e., automation,
decentralization, and trustlessness, make the development
extremely challenging due to a high degree of variability (for
instance, the level of uncertainty associated with contractual
agreements can be quite high; additionally, the programming
language and platforms can also change frequently). Therefore,
creating a SC is often just confined to converting a natural
language agreement into a programming language. To address
this complexity, it is proposed to expand the creation stage to
create a formal design and validation process to minimize the
possibility of poorly constructed SCs, as shown in Figure 1. It is
proposed to introduce two essential steps in the SC life cycle
process:

• First, the need to formalize the definition of SC logic utilizing
model-based techniques.

• Second, formal verification and ML mechanisms are used to
auto-validate and verify the robustness of the SC code at the
pre-deployment and network-deployment phases.

By including these two steps, developers can embed more robust
controls and create SCs that are less error-prone, more secure, and
reliable.

SC design based on the use of a modeling mechanism is of
utmost importance in order to verify the correctness prior to
deployment, and the validation of the contract model aims to
avoid deploying vulnerable contracts on-chain. This can be done
using a variety of formal verification methods such as model-
checking (Nehai et al., 2018), theorem-proving (Sen et al., 2017;
Bhargavan, 2016; Amani, 2018), or Petri nets (Zupan, 2020; Liu and
Liu, 2019; Duo et al., 2020). These methods use mathematical
reasoning and logic to prove the functional correctness of the
underlying SC model. This phase ensures contract security and
privacy at the pre-deployment stage. The contract can then be
subsequently deployed on test networks to ensure that it
performs as expected on real ledger networks. Therefore, in SC
life-cycle management, design (contract modeling), validation, and
deployment should be an iterative process to ensure a high-quality
code. To support this process, it is essential to have access to
developer tools and frameworks that can automate and
streamline key process steps. By adopting this systematic
approach, developers can ensure that their SCs are secure,
reliable, and trustworthy. This can help promote the long-term
success of blockchain-based applications and transactions, which
enhances the overall stability and growth of the blockchain
ecosystem.
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2.2 Related work

This section will cover the current literature in these two key
areas, modeling and formal verification.

2.2.1 Smart contract modeling
Various engineering approaches have been developed and

utilized to ensure the reliability of software systems. These
include, for example, code only, code visualization, round-trip
engineering, model-driven, and model-centric approaches. SCs
that form part of a decentralized application (DApp) can be
complex and difficult to understand, especially for non-specialist
programmers. They embed business rules that are transparent when
programmed; however, understanding the flow and contract itself is
non-trivial due to the decentralized deployment pattern. To address
this challenge, SC engineering must shift focus from a code-centric
to a model-centric approach known as model-driven engineering
(MDE). MDE not only reduces the coding complexity but it also
promotes knowledge re-usability. The model-driven architecture
(MDA), an example of MDE, comprises three models:
computationally independent, platform-independent, and
platform-specific models. These models can abstract the contract
implementation process by offering different levels of behavioral,
functional, and technical details (Boogaard, 2018). Moreover, the
adoption of a model-centric or MDE approach aids in reducing the
number of errors, increases the quality of the code, and empowers
developers, particularly when working collaboratively to develop the
solution. A model-centric approach for SC development creates a
higher level of abstraction that allows practitioners to focus on the
business problems rather than the technology required to
implement the solution. This should lead to reusable platform-
independent models and improve the development efficiency across
blockchain ecosystems. Modeling also allows for more emphasis on
security and error mitigation prior to deployment on-chain.
Although the engineering approaches for SCs are still maturing, a
code-centric approach is most commonly used; however, there have
been several techniques developed to enable the transition toward a

model-centric approach. Boogaard (2018) provided an overview of
the common approaches utilized for SC modeling. This review can
be extended to include additional approaches that have also been
utilized including system modeling language (SysML) (Zupan,
2020), unified modeling language (UML) (Garamvölgyi, 2018),
and Digital Asset Modeling Language (DAML) (DigitalAsset, 2019).

Zupan (2020) presented a modular architecture that utilizes
SysML activity diagrams to facilitate an expert-friendly approach to
review SC workflows. This allows for a sophisticated security review
process within the framework before deploying SC on the BC
network. The authors aim to leverage Petri net (PN) to support
formal verification such that they implement a translation from
SysML to Petri net modeling language (PNML), which can be used
to verify the contract logic and auto-generate the SC code. The
outcome is the generation of a secure SC template, and this still
requires a developer to add codes manually, which, in turn, requires
expert review and a testing process.

The UML macro programming approach has been explored by
Peter et al. (Garamvölgyi, 2018) for generating SCs from UML state
charts, in the domain of cyber–physical systems (CPS). Model
elements and Solidity SC constructs generally have a direct
mapping. The proposed study is incomplete, and the mapping
does not follow a common operational semantics-based
technique and as such is only partially automated; therefore, the
development phase is still manually executed. Furthermore, it is
domain-centric and only provides an abstract view of functionality
(inner workings of code), which is a crucial demand for robust SC
design.

To reduce the need for manual coding, Mavridou and Laszka
(2017) have used a platform-independent model (PIM), namely, a
finite state machine (FSM) approach for designing SCs. In this
method, SCs act as state machines where a SC is in the initial state
and a particular temporal transaction or external input is responsible
for the SC transition from one state to the next state. This approach
reduces the semantic gap by providing a formal model with clear
semantics that offers capabilities to connect to formal analysis tools.
Ultimately, the code generator feature helps developers to

FIGURE 1
Extended smart contract development life cycle.
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implement a contract with minimal manual coding effort. However,
the FSM transformation to Solidity is only partially automated,
requiring manual coding to ensure the quality of the contract code.
In addition, the properties that cannot be modeled in FSM can be
added by plugins that aim to implement patterns and fix
vulnerabilities. The disadvantage is that FSM is a complex model
compared with other modeling approaches; in addition, objects and
roles are not explicitly defined in this method. Due to this, it is
difficult to manage the development of complex contracts without
any design ideas. However, by using patterns, known vulnerabilities
can be countered and these limitations can also be addressed.

Business Process Modeling Notation (BPMN) provides a
graphical representation model for the specification of a business
process. A number of works have utilized this approach as the basis
for defining the SC logic. Frans et al. (Panduwinata and
Yugopuspito, 2019) provided an example of mapped BPMN
using three Hyperledger Composer concepts, namely, assets,
participants, and transactions based on microservices for a
reservation-based parking system. Similarly, Weber et al. (2016)
have utilized BPMN as a PIM for supply chain use cases to address
trust in collaborative business processes (CBPs). In both approaches,
BPMN is translated into a Solidity code. The linear business process
makes this approach the best fit for supply chain use cases but does
not align well for recursive contracts.

Agent-based modeling (ABM) uses a structural natural language
approach. Frantz and Nowostawski (2016) used ABM to decompose
a SC model into rule-based statements that are then compiled into a
structured formalization, leveraging a grammar of institutions [as
introduced by CRAWFORD and Elinor (2005)].

In ABM, processes are modeled as dynamic systems that provide
insights into the interactions and behavior of agents modeled by a set
of statements (Van Dyke Parunak et al., 1998). In this methodology,
the statement is composed of five components, abbreviated as
ADICO. “A” stands for the “attribute” (properties of the agent),
“D” stands for “deontic” (statement nature as permission,
compulsion, and exclusion), “I” stands for “aim” (an action that
governs the proposition), “C” denotes “conditions” (which are
contextual conditions under which the proposition holds), and
“O” denotes “or else” (describes the meanings associated with
non-compliance with the statement). These five components can
be used to describe the execution of a SC, linking the institutional
functions using logical operators to generate rule sets. By modeling
the relationships between agents in a rule-based manner, the ABM
approach helps in detecting dependencies among the activities of
users/participants in a system. The set of prescriptions is then
transformed into a SC skeleton that can be completed manually
by the developer. A domain-specific language (DSL) was utilized
that allows the mapping of instructions to the SC skeleton. It has
been argued that the SC skeleton requirements separate the
specification task from implementation, thereby ensuring that no
critical functionality is overlooked. Furthermore, it was suggested
that institutional grammar facilitates the SC development process
for non-technical users. However, in comparison to an easily
readable structural natural language, this model holds high-level
programming language characteristics, and the outcome of the
conversion demands manual coding. The deontic ADICO
component makes the behavioral aspect of SC explicit as it
indicates what a participant should or should not do; however, it

does not explicitly state how this component needs to be monitored
or implemented.

For private-permissioned BCs, DAML goes beyond a SC
modeling language; it is a complete platform for building full-
stack applications. SCs can work with many distributed ledger
technologies (DLTs) and databases, such as VMware,
Hyperledger Sawtooth, Amazon Aurora, and Amazon QLDB. In
this context, the key difference between DAML and any other
platform is its sub-transaction privacy, which ensures that each
participant involved in a transaction only sees the parts of the
transaction that they are authorized to see. On the surface, the
DAML language allows users to specify which parties view which
parts of a transaction, and the Canton protocol allows the SC to plug
into the consensus layer of different distributed ledgers and
databases while preserving privacy guarantees. This is particularly
relevant for financial institutions and others who require transaction
confidentiality (DigitalAsset, 2019).

The language, in particular, adds a layer of security by including
privacy and authentication as language features. The following are
some of the characteristics of DAML:

1) It is an open-source functional language with Haskell-like syntax.
2) It provides a means to write contracts and automates some

functions so developers can focus on the business logic.
3) Usable in a private execution environment, the information in

contracts written in DAML is only accessible to authorized
parties.

4) Being human and machine-readable, it provides an opportunity
for non-experts to focus on business needs rather than coding
complexities.

In summary, each modeling technique serves a distinct purpose:
some are appropriate for specifying business workflows, such as
BPMN, while others are suitable for visualization or manual
inspection of SCs, and some are effective for formulating the
requirements of contracts. BPMN, UML, and SysML offer
modeling approaches that are generic in nature, but their
semantics may not be well-established. To validate these
modeling approaches, formal models such as PN/CPN and
Behavior, Interaction, and Priority (BIP) frameworks are
commonly used.

Hu et al. (2020) have discussed eight attributes that a SC should
satisfy, i.e., “legality, probativeness, consistency, customizability,
observability, verifiability, self-enforceability, and access-
controlling.” Legality refers to a code’s legitimacy in accordance
with the basic rules of a contractual agreement. This includes the
consideration of legal, technical, and business aspects, as well as the
ownership and control of assets involved in the contract.
Probativeness means the secure storage of input data and event
outcomes that can be used as evidence in court. Consistency means
that legitimate/legal authorities should analyze the contract before
publishing it to ensure that it does not conflict with existing rules
and regulations. Customizability is about a contract tailored to meet
the needs of the parties involved. A complex or intricate contract can
be made by combining multiple simple contracts. Observability
necessitates the use of interfaces to monitor the state of
contracts, including the contract itself, its performance, and
anything else related to it. Verifiability is about the verification of
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contract execution logic. Self-enforceability is to guard the contract
against breaches and third parties using cryptographic keys, and
access-controlling means that only authorized individuals have
access to contract information such as knowledge, control, and
performance.

All of the above-mentioned attributes discussed by the authors
are important considerations during the design of a SC. Each
attribute contributes to the overall quality and reliability of a SC,
and neglecting any of them can lead to problems and failures in
contract execution. However, it should be noted that addressing all
these aspects adds significant complexity. Therefore, the research
focuses on a subset of these attributes to provide a practical approach
to designing and verifying SCs that can be effectively implemented
in real-world scenarios. This includes legality, consistency,
customizability, and most importantly verifiability.

Enterprise-focused cross-platform languages like DAML inherit
some of the characteristics described above as part of contract
modeling, such as observability, self-enforceability, and access-
controlling, which, in turn, reduces the modeling complexity of
contract for formal verification (verifiability). However, the use of
other modeling approaches, such as SysML and BPMN, involves an
additional step of model transformation [e.g., convert to Solidity or
chaincode such as SysML→ PN→ SCtemplate (Zupan, 2020), UML
→ SCtemplate (Garamvölgyi, 2018), BPS→ FactoryContract (Weber
et al., 2016; Panduwinata and Yugopuspito, 2019), and nADICO-
statements→ SCskeleton (Frantz and Nowostawski, 2016)] to ensure
that the generated contract inherits the aforementioned attributes.
DAML is proposed to look beyond language-specific vulnerabilities,
reduce modeling complexity, and the risk of logical vulnerabilities to
make SC development easier, suggesting its advantage over other
techniques.

2.2.2 Smart contract verification
To minimize the risks associated with designing and deploying

SCs, it is critical to ensure that SC properties are verified against
design specifications and to identify any potential flaws that could
have a detrimental impact on the DApp once deployed on-chain.
For this reason, numerous works have focused on SC privacy and
security assurance using different techniques such as static and
dynamic analyses, ML, and formal methods, and these are briefly
discussed in the following sections.

(A) Static and dynamic analyses for verification: Static analysis
techniques are used to examine the SC code in a non-runtime
environment. SC tools based on static analysis techniques
identify vulnerability patterns, errors, and also assess the
code behavior that is expected at runtime. Static code
analysis is run on the i) source code or ii) bytecode. A static
code analyzer will check all the possible paths of execution for
specific (expected) vulnerabilities using a control flow graph
(CFG). Therefore, to run the static analyzer, the source code
must be parsed using lexer tools, which results in an abstract
syntax tree (AST). After a CFG is extracted from the AST, a
static analyzer runs different analyses based on different
vulnerability types, i.e., symbolic and taint analysis. Symbolic
execution includes reasoning in relation to code behavior for
different inputs. Taint analysis identifies the flow of user input
through a system to understand the security implications of the

system design. There is no general static analysis tool as each
code analyzer is dedicated to a particular set of vulnerability
types. As such, to generalize an approach, the typical approach
is used to combine multiple analyzers, which takes time and
resources due to the extensive pre-processing usually required.
Some commonly used static analysis tools include Zeus,
Oyente, Vandal, and Securify (Brent, 2018; Kalra, 2018; Luu
et al., 2018; Tsankov, 2018). Dynamic analysis techniques
examine the SC code in a runtime environment. Although
both approaches have their advantages and limitations, one
should not be considered being preferable to the other. Static
analysis will uncover vulnerabilities at the design phase and can
identify risks that would not be detected during runtime.
Dynamic analysis, on the other hand, is a functional
assessment during runtime that is used to expose security
risks but is restricted to the code that is executed during
runtime. The most widely used dynamic analysis tools in
relation to SCs are ContractFuzzer (Jiang et al., 2018) and
MAIAN (Nikolić, 2018).

Many static and dynamic testing tools have been developed so
far, with the majority of these being built for Ethereum SC testing.
The usability of these testing tools and frameworks varies
considerably. Testing analysis tools such as the Oyente
framework2, which uses a Docker image to deploy SC as it
includes all the pre-requisite dependencies, can only detect
semantically related security errors but cannot detect the flaws
associated with logic. EThir is a framework designed for high-
level analysis of Ethereum bytecode3, and it leverages the Oyente
framework’s control flow graph (CFG) algorithm for EVM bytecode
analysis, but it makes little progress in terms of improving the CFG
algorithm’s recovery capability. Securify4 is an online scanning tool
that uses Datalog solvers to scan for SC security flaws before
deployment. Zeus uses a language interpretation methodology for
Ethereum SC verification and can be extended to support other BC
platforms for SC validation. Vandal5 employs the same language
interpretation methodology as EVM, but it analyzes the SC bytecode
created by EVM using the decompiler. To detect gas (Ethereum
transaction fee costs) expensive patterns, the Gasper tool has been
devised and is capable of catching seven costly gas patterns. Other
costly gas patterns may exist in more complicated SCs, but they have
yet to be discovered. Furthermore, programs such as Oyente,
Mythril6, and Securify rely heavily on symbolic execution or
symbolic analysis. As a result, the process becomes quite time-
consuming and computationally intensive as it requires a study of all
the executable paths in a SC or analysis of associated dependency
graphs. Hence, such amethodology may not be suitable for detecting
batch vulnerabilities.

Secure programming techniques and the use of common
patterns can undoubtedly help in reducing vulnerabilities, but the

2 https://github.com/enzymefinance/oyente

3 https://github.com/costa-group/EthIR

4 https://github.com/eth-sri/securify2

5 https://github.com/usyd-blockchain/vandal

6 https://github.com/ConsenSys/mythril
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tools and techniques discussed above have their limitations in terms
of effectiveness. The primary reason is that they are mostly
dependent on a developer understanding and applying them
correctly, which is open to being error-prone. Second, these
techniques are limited to identifying specific types of
vulnerabilities. Automated vulnerability detection tools, like
ContractFuzzer (Jiang et al., 2018) and MAIAN (Nikolić, 2018),
take into consideration generic qualities/specifications that cannot
capture contract-specific requirements; therefore, they are good at
discovering common flaws but may not be effective at detecting
unique/uncommon vulnerabilities. As a result, automated
vulnerability detection tools are not always accurate and can
result in false positives. Hence, both static and dynamic tools
normally require the involvement of security experts to specify
security properties and patterns at a low-level/byte-code level.

(B) Machine learning for verification: ML makes the vulnerability
detection process faster and more reliable. Currently, there is
significant research interest in utilizing ML for both SC
verification and vulnerability detection within the research
community.

To move beyond the limitations of static and dynamic methods,
recent years have witnessed a shift toward the adoption of ML for
detecting bugs and flaws in SCs. The problem here is that, until now,
the solutions available have used supervised ML algorithms that
need historical data for learning and detecting specific patterns (Sun
et al., 2023). For instance, two prominent frameworks, namely,
ContractWard (Wang et al., 2020) and SoliAudit (Liao, 2019), are
based on supervised ML. ContractWard is used to detect six types of
Ethereum SC security vulnerabilities using ML classification
methods, whereas SoliAudit uses ML to discover vulnerabilities
in Ethereum SCs by integrating static and dynamic analyzers.

This approach is reasonable for specific issues and offers
assistance in many circumstances to automate the classification
tasks. Other techniques, such as the long-short-term memory
model from Tann (2018), ensemble learning-based SC
vulnerability prediction (SCVDIE-ENSEMBLE) mechanism by
Zhang et al. (2022), the predictive model by Momeni et al.
(2019), and the deep learning-based approach from Lesimple and
Martin (2020), are capable only of detecting those vulnerabilities for
which they have been trained, and as such, they cannot identify
other potential vulnerabilities, which, in turn, limits their
applicability. ML algorithms are susceptible to the zero-shot
learning problem; if your ML model is not properly trained, you
cannot detect patterns and flaws accurately, and in the case of sparse
data sets, ML model training will be poor. Although these ML-based
approaches are great for finding bugs, they cannot guarantee their
absence.

To cope with the limitations of the existing ML-based SC
verification techniques, there is a need to leverage Semantic AI7

technology. This is based on combining AI methodologies such as
ML, natural language processing (NLP), text mining, knowledge
modeling, and Semantic Web. Semantic AI leverages the benefits of

both statistical and symbolic AI strategies, in particular, semantic
reasoning and neural networks (NNs). This combination requires
less training data in the learning process because a semantic
knowledge graph is used as the core element in a semantic-
enhanced AI architecture, which offers automated data quality
management. AmpliGraph8 is one technique that is based on the
Semantic AI concept and is based on knowledge graph embeddings
(KGEs), where entities and relationships are embedded in low-
dimensional vector spaces (called embeddings), which can be
utilized to uncover hidden knowledge. When compared to
standard deep learning (DL) representations, knowledge graph-
derived representations like AmpliGraph have the following
advantages: it does not inherit ambiguities because each entity
(subject) has a relationship with its originator (object), making it
useful for modeling reasoning and explainable systems. It offers a
semantic layer to help with reasoning (Q&A) tasks, information
retrieval, entity disambiguation, etc. KG representation can be used
as an input to DL algorithms to link two far-apart worlds.
Additionally, KGE is considered the best option for
recommender systems in terms of improving performance and
the explainability of the recommender system (PALMONARI
and Pasquale, 2020). Hence, representing knowledge in a vector
space serves three purposes if used in the context of contracts: 1)
addresses the explainability issue; 2) predicts potential
vulnerabilities; and 3) makes recommendations about existing
templates, scripts, and test data. Additionally, SC validation and
verification can be automated when Semantic AI techniques, such as
AmpliGraph, are used in conjunction with formal verification.

(C) Formal methods for verification: SC correctness verification
using theorem-proving and model-checking is particularly
compelling because of its mathematical properties. The use
of formal reasoning for SC development and the analysis of
formal models provide insight in terms of finding a wide range
of vulnerabilities. Alharby and VanMoorsel (2017) conducted a
systematic survey on SCs, in which they highlighted the current
SC open challenges and research gaps. They also classified the
challenges into four categories, namely, security, privacy,
codifying, and performance-related issues. Based on the
detailed survey, they have suggested that formal verification
is one of the most important solutions to address these issues.
Moreover, in recent years, many formal methods have been
used for SC quality assurance.

Formal verification tools are based on formal operational
semantics and offer strong security verification guarantees at pre-
and post-SC deployment stages. They allow for the formal
specification and verification of contract properties, as well as the
detection of both common and uncommon vulnerabilities that
could result in a security violation. Formal verification for SCs is
typically based on theorem provers like the F* framework
(Bhargavan, 2016), Event-B, SMT Solver (Alt and Reitwiessner,
2018), and proof assistants such as FEther (Yang and Lei, 2019),
Coq, and Isabelle/HOL (Amani, 2018). These approaches are

7 https://www.poolparty.biz/machine-learning-meets-semantics 8 https://github.com/Accenture/AmpliGraph/
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remarkably expressive, but they come at a high complexity cost,
which demands an extensive user interaction to guide the theorem
prover, making it difficult to verify complex systems. Other
techniques such as symbolic execution and model checking are
also frequently used. These methods are typically used to ensure that
SCs are functionally correct. One of the benefits of model-checking
methods is that they can be automated, and if a specification is
proved false, they offer counterexample paths (demonstrates a run of
SC that violates the specified properties). However, model checking
has the drawback of causing a state explosion problem if a system
has a high degree of concurrency (when the number of state
variables in the system increases the size of the system, state
space also increases exponentially). It cannot verify a system
having infinite states. Additionally, these methods have
shortcomings when it comes to validating a contract’s business
logic, i.e., if the contract logic has concurrency problems, the
vulnerability is most likely due to an irrational design (Duo et al.,
2020). In addition, each formal verification technique and tool
addresses a specific problem, for example, Le (2018) only verified
SC termination and non-termination conditions. Similarly, Nielsen
and Spitters (2020) searched for contract invocation verification.
With the exception of Alqahtani (2020); Zupan (2020), most
techniques are platform- and language-specific (i.e., EVM and
Solidity contract code). Despite their expressiveness, the
techniques are expensive and inadequate for sophisticated
contract verification. Furthermore, none of the existing
approaches are completely automated, and expert intervention is
still required.

Contrary to this, PN is a lightweight and graphical-oriented
modeling approach to formal verification methods that is
economical and scalable. CPN is a hybrid of classical PNs and
high-level programming languages where the primitives for a
process interaction, the ability to model concurrency,
communication, and synchronization are facilitated by PNs, and
the programming language supports the definition of data types and
the manipulation of data values. CPN offers an intuitive graphical
interface with well-defined syntax and semantics that allows for
transparent conceptual modeling of complex and large systems by
introducing the new element “color.”

Conclusively, the majority of the theorem-proving and model-
checking approaches discussed here are only applicable to
Ethereum-based applications. Furthermore, they are complex to
learn, complicated to implement, and harder to automate.
Moreover, as SC business logic becomes more complicated, the
approaches outlined do not include the necessary extension to
address a range of high-level vulnerabilities associated with
business applications or alternatively low-level vulnerabilities
relating to properties such as re-entrancy, transaction-ordering
dependence, or mishandled exceptions. For example, CPN, on
the other hand, is one of the most advanced behavior modeling
techniques. It can support the SC life cycle from requirements to
implementation and has a better concurrency model (e.g., “true
concurrency”) (Duo et al., 2020). Defining distinct color sets can also
improve contract description and abstraction. Users can analyze the
state of each step of the contract execution using CPN, not just
through simulation but also on a formal basis, making it easier to
spot weaknesses in SCs and avoid excessive penalties that may be
incurred as a consequence of poorly performing SCs.

3 Contribution: GRV-SC framework

Based on the review of the studies presented in Section 2.1, six
critical challenges have been identified that developers face while
trying to ensure correctness when writing SCs: 1) language
dependency; 2) complexity of programming languages; 3)
verification of contract logic; 4) failure to change or terminate
SCs; 5) lack of provision to detect underperforming SCs (Zhang,
2016); and 6) data feed-derived characteristics (Zhang et al., 2019).
Although the concept is generalizable for other SC languages, the
proposed framework will focus on the DAML SC platform based on
the rationale presented in Section 2.2.1. It is worth noting that no
well-established modeling and formal verification frameworks or
tools are currently available for DAML SCs. Although there is a
static analysis tool available, namely, DAML-lf-verifier, according to
the pull request (PR), DAML-lf-verifier is no longer supported and is
discontinued. In addition, users can test DAML contracts using
DAML scripts9; however, this is a basic method that might not be
sufficient for extensive testing of the contracts. Hence, as a result, by
providing a modeling and verification framework, namely, the GRV-
SC framework, this study will explore ways to evaluate the security of
DAML contracts and ensure their resilience to vulnerabilities and
attacks at the pre-deployment phase.

Before delving into the methodology, the upcoming discussion
explores the DAML system model and the principles of data
modeling. This exploration aims to provide the reader with a
better understanding of DAML’s capabilities and limitations.
Such knowledge serves as a prerequisite for comprehending the
proposed study.

3.1 DAML system model

As shown in Figure 2, the DAML ledger serves as the foundation
for decentralized applications (dApps) built using the DAML
language. It maintains a shared state of information across
multiple parties and ensures data integrity and consistency
through a consensus mechanism. The DAML ledger system
model distinguishes between the shared rules governing dApp
and the individual strategies employed by its users (Bernauer,
2023; Mustafa, 2023). Shared rules, implemented exclusively in
DAML, define the legal and technical rules governing business
processes and transactions within dApp. These rules are
universally applicable and ensure consistent behavior across all
users. On the other hand, each user has the autonomy to define
and maintain their own approach for interacting with the ledger,
known as their user strategy. This strategy component,
encompassing the dApp frontend, is implemented using a
prevalent programming language like Java or TypeScript.

• User interaction with the DAML ledger: Users interact with
the DAML ledger by transmitting DAML commands to a
ledger client, referred to as a participant. The participant acts
as an intermediary between the user’s dApp and the DAML

9 https://docs.DAML.com/2.0.1/DAML/intro/12Testing.html
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ledger, interpreting DAML commands and translating them
into actions that can be executed on the ledger.

• Participant’s role: Upon receiving a DAML command
from a user, the participant deciphers the command by
executing the corresponding DAML SC code. This
execution results in a ledger update, which represents a
change to the shared state of information maintained by
the DAML ledger.

• Validation and notification: The DAML ledger plays a
crucial role in ensuring the integrity and consistency of the
shared state. It performs two critical functions:

1) Validation: The DAML ledger scrutinizes ledger updates to
ensure that they conform to the defined DAML semantics.
This validation process safeguards against invalid
transactions and maintains adherence to the shared rules
governing dApp.

2) Notification: Upon successful validation of a ledger update, the
DAML ledger informs the affected participants. These
participants, in turn, notify their respective user dApps,

ensuring that all users are made aware of the changes to the
shared state.
• Integration with user strategies: The DAML ledger’s
validation and notification mechanisms provide seamless
integration with user strategies. By receiving notifications
about ledger updates, users can adapt their strategies
accordingly, ensuring that their actions remain aligned
with the evolving state of dApp.

Table 1 outlines the terminology associated with DAML,
followed by a section that presents the DAML system model.
This aims to enhance the clarity of the proposed study.

3.2 DAML data modeling

An introduction to DAML begins with an exploration of
consensus modeling 1. The consensus model incorporates three
main templates: proposal, decision, and ballot.

FIGURE 2
DAML ledger system model.

TABLE 1 DAML contract terminologies.

Keyword Description

template template is akin to a class which offers the highest level of nesting. It contains

• contract data (e.g., date, description, parties involved, etc.)

• roles (signatory, controller, and observer)

• choices and their respective controllers (who gets to do what)

party Party data-type represents a legal entity. It has four sub-types: signatories, observer, controller, and maintainer

signatories Can view and initiate SC

observer Can only see the SC on the ledger but cannot create it

controller Can view the contract and is also responsible for executing the choices in the contract

choice Choices of a SC template specify the rules on how and by whom contract data can be changed. It can be consuming, non-consuming, pre-
consuming, and post-consuming

exercise Choice is exercised on a given SC by the contract id
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Listing 1. DAML consensus model.

module Main where

import DA.List (sortOn, head)

template Proposal

with

proposer : Party

acceptor : Party

proposal : Text

created : Time

where

signatory proposer

observer acceptor

key (acceptor, proposer) : (Party, Party)

maintainer key._1

template Decision

with

acceptor : Party

decision : Text

observers : [Party]

where

signatory acceptor

observer observers

template Ballot

with

acceptor : Party

proposers : [Party]

where

signatory acceptor

observer proposers

nonconsuming choice MakeProposal :

ContractId Proposal

with

proposal : Text

proposer : Party

controller proposer

do

now <- getTime

create Proposal with created = now, .

choice MakeDecision : ContractId Decision

controller acceptor

do

res <- sequence [fetchByKey @Proposal

(acceptor,p) | p <- proposers ]

assertMsg "At_least_one_proposer_has_to_

make_a_proposal"

$ not . null $ res

let sorted = sortOn (\(k,v) -> v.created) res

let (_, firstProposal) = head sorted

create Decision with decision =

firstProposal.proposal, observers

= proposers, .

1) Proposal template: It represents a proposal made by a party
proposer (i.e., Alice) to another party acceptor (i.e., Bob). It contains
details such as the proposal text, proposer, and the time it was
created. The proposer is the signatory, and the acceptor is the
observer. A key is defined based on the proposer and acceptor, with
the maintenance of the key’s first element. Notably, the DAML

Party data type signifies an entity with the capability to engage with
a ledger, performing actions such as signing contracts and
submitting transactions. The exact cryptographic procedures
employed to record, verify, and authenticate these actions differ
based on the implementation. Generally, all DAML ledgers
necessitate connecting each transaction to cryptographic
evidence for authorization and non-repudiation (Bernauer, 2023).

2) Decision template: This template embodies the decision made
by an acceptor in response to proposals, encapsulating the
decision text and a list of observers. The acceptor is the
signatory, and observers as observer are specified.

3) Ballot template: It represents a ballot conducted by an acceptor
involving multiple proposers.
• Lists the acceptor as the signatory and proposer as observers. It
includes two non-consuming choices:

• MakeProposal: Allows proposers to create a proposal. The
proposer specifies the proposal text and acts as the controller.

• MakeDecision: It enables the acceptor to make a decision
based on proposals received. The acceptor is the controller.

• Fetches proposals from proposers and ensures at least one
proposal exists.

• Sorts proposals based on creation time and selects the first
proposal.

• Creates a decision with the selected proposal’s text and the list
of proposers as observers.

This consensus model utilizes the observer and signatory
clauses to define notification and authorization rules for
contract instances. The key and maintainer clauses are used for
managing contract keys and their maintenance. The model reflects
a process of proposing, deciding, and balloting to achieve
consensus among participants.

4 Methodology

To address the six issues identified at the beginning of Section
3, a cross-platform SC life-cycle management approach known as
the GRV-SC framework is proposed. The GRV-SC framework is a
reference pattern that encapsulates a set of functional blocks to
support developers and designers in creating robust SCs. GRV-
SC leverages a model-driven approach to automate the SC
development workflow by incorporating the key life-cycle
phases (modeling, pre-deployment, and post-deployment
verification) through the implementation of three
interconnected modules, as shown in Figure 3; 1) a SC
designer to support the definition of a SC model and use case
specification; 2) validation tools to support automated formal
verification; and 3) a test execution environment to detect
vulnerabilities that may arise during network deployment.

The following section provides an overview of the three key
modules that encapsulate the SC development life cycle.

4.1 GRV-SC model designer module

A contract specification defines the rules that govern how a
contract will function in accordance with its design. The GRV-SC
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model designer is used by the developer to translate the SC
requirement specification to a contract model and associated
code. This is achieved by encapsulating the DAML
development tools and modeling language as part of a user
interface where the user can drag and drop the design controls
from a pre-configured toolbox that defines the structure and
business logic of SC. This designer also provides a mechanism to
import and parse existing DAML contracts to visualize the data
flow and interactions as a logical graph. The designer also offers
model-checking functions (based on rule sets) for describing and
evaluating the DAML SC model in a way that may be used to
identify logical and run-time vulnerabilities using basic
verification methods. This module is used to simplify the
complex structure of contract code and to formalize numerous
activities and tasks that encompass the software development life
cycle (SDLC) (e.g., requirement definition, quality checking, and
visual analysis of contract logic).

4.2 GRV-SC verification module

This module provides a library that allows for contract
modeling and verification of a SC using CPN. The library is
designed to allow the user to select a CPNmodel (.cpn file format)
and policy files for a specific use case scenario to jointly build a
DAML contract. Two classes of vulnerabilities have been

identified as open issues in DAML, and addressing these is the
focus of the verification module.

1) Access control: This DAML vulnerability arises when the
programmer mistakenly grants a specific party the authority
to exercise choices they are not permitted to. This vulnerability
can only be identified during the modeling step as it is related to
the DAML template structure. Hence, the CPN model can assist
in analyzing the behavior of the parties (i.e., identifying valid/
invalid access rights) in the context of the simulated dynamic
interaction of the user’s behavior.

2) Insecure direct object reference (idor): In DAML, every choice
on a template is controlled only by the choice controller and can,
in particular, be called publicly which causes an idor
vulnerability. To avoid this, the controllers do not depend on
the choice arguments but only on the template arguments. The
signatories should have already validated the controllers when
the contract was created. However, such checks are sometimes
omitted, which may lead to the presence of this vulnerability.
Hence, as part of the GRV-SC, a type safety dynamic verifier has
been developed to catch the idor vulnerability. The type safety
verifier checks whether a choice gets the contract ID and data on
an existing DAML contract as arguments. If so, then it is the
choice body’s responsibility to check whether the contract ID
indeed refers to given arguments, e.g., by fetching the contract
from the ledger again. This concept can be derived as follows:

FIGURE 3
GRV-SC framework functional modules.

Frontiers in Blockchain frontiersin.org11

Mustafa et al. 10.3389/fbloc.2023.1276233

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1276233


Lemma 4.1. Let T and T′ be two distinct templates, C be a controller
of the template T, x′ and y′ be T′ parameters, and ′s’ be a party to T. If
T exercises choice on T′ parameters, then C should depend on T′
parameters x′ and y′ instead of choice arguments of T. Therefore, ‘s′
should validate C at the time of the creation of T.

Proposition 4.2. By using the propositional logic:

(a) E(T, x′, y′): T exercises choice on T′ parameters x′ and y′.
(b) D(C, x′, y′): C depends upon T′ parameters x′ and y′.
(c) D(C, T): C depends upon the choice arguments of T.
(d) I(v): idor vulnerability arises.

Propositions that are assumed to be true:

(a) E(T, x′, y′)
(b) E(T, x′, y′)→ D(C, x′, y′) ∧ ¬ D(C, T): If T exercises choice on T′

parameters then C should depend on T′ parameters x′ and y′
instead of choice arguments of T

(c) ¬ D(C, T) → ¬ I(v): If C does not depend upon the choice
arguments of T, the idor vulnerability does not arise.

Proof.The proposition (b) can be re-written as ¬ E(T, x′, y′) ∨ (D(C,
x′, y′) ∧ ¬ D(C, T)) (using p → q ≡ ¬ p ∨ q)

which can further be written as follows:(¬ E(T, x′, y′) ∨ D(C, x′,
y′)) ∧ (¬ E(T, x′, y′) ∨ ¬ D(C, T)) is true using distributive law: p ∨
(q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

If the above statement is true, then
¬ E(T, x′, y′) ∨ D(C, x′, y′) is true and
¬ E(T, x′, y′) ∨ ¬ D(C, T) is also true. So this can be re-written as

follows:
≡ E(T, x′, y′) → ¬ D(C, T) (using p → q ≡ ¬ p ∨ q)
≡ E(T, x′, y′)→ ¬ I(v) is true using above statement and (c) i.e., p

→ q, q → r ≡ p → r.
The last statement says that if T exercises choice on T′

parameters x′ and y′, then the idor vulnerability does not arise.
Hence, the statement was proved.

These vulnerabilities can have a significant adverse impact and
can cause substantial financial, legal, and reputational losses to the
organization that is a DAML client. The exploitation of these
vulnerabilities can lead to several attacks, i.e., unauthorized data
access may result from idor vulnerability whereas access control
might result in privilege escalation, tampered transactions, and
denial-of-service (DoS) attacks. Some of the examples are
illustrated later in Section 5.3.

4.3 GRV-SC execution and testing module

The execution and testing module includes an auto-test
execution environment for SC vulnerability detection at the
functional level through test case generation based on existing
contracts and script recommendations for reusability and
optimization. This module consists of three steps: 1) feature
engineering performed on the data model obtained at the
transformation step to create a knowledge-based graph (KBG);
2) the use of ML models to uncover unidentified relations in
KBG, and 3) the use of the named-entity recognition (NER)

method for test script recommendations. Step 1 is dependent on
the designer module output, i.e., the contract-to-data model
transformation step (Section 5.3), where the obtained data
model from the defined SC is subjected to feature engineering
in order to extract the relevant features of DAML SC. With the
use of these extracted features, neural embedding models,
i.e., TransE and ComplEx for training, can be used to
generate knowledge graph embeddings (KGEs), which reflect
the syntactic and semantic structures of the SC function in
metric space (by encoding concepts and links of a graph into
low-dimensional vectors). The resulting embedding is then
combined with model-specific scoring algorithms to anticipate
unseen novel links and assist in the detection of possible SC
security vulnerabilities that have been overlooked or for which
the model has not yet been trained. The generated contract KBG
along with the detected security vulnerability list will be stored as
part of the conformance checking process and reused for future
developed contracts.

4.3.1 NER for test script recommendation
To support the script recommendation, a NER feature is added.

For instance, a DAML contract is an item that outlines the contract
requirements (functions that distinguish one contract from
another), i.e., [SC_A = item_A]. On the other hand, there may
already be a number of relevant DAML scripts (test cases) stored
from previous developments against each item index (SC), along
with a list of vulnerabilities already identified. These scripts are
known as test items, i.e., at Index0 → [Item_A] = [testitem_1,
testitem_2][Vulnerabilities_list].

For instance, if a user imports a new SC named “B” to reuse
the existing scripts, the initial step is to transform SC_B into a
partial KG, which is then matched to existing SC knowledge base
graph (KBG) NER, which extracts the features (data points) with
a high information gain for a recommendation. This kind of
linkage would inherently contain more information, and it would
also allow graph traversal to be used during the matching phase
(to discover related SCs in the shortest amount of time). Later, for
new contracts, the user can reuse the proposed test workflow
KBGs. These KBGs produce a template that a user may use to test
their contracts against previously developed and verified use
cases with minimal effort, which makes the overall quality of
SC creation better. In addition, if the user does not have initial
test data for CPN simulation, the stored scripts (and associated
test data) can be used in the verification step.

5 Experimental evaluation and results

The discontinuation of DAML-lf-verifier, as indicated in Section 3,
means that it is no longer supported or actively maintained.
Consequently, it is not possible to verify results using the latest
version of DAML, making it difficult to perform cross-verification
or conduct a comparative analysis with the proposed work. To
overcome this challenge, two approaches were undertaken; first, a
qualitative analysis was performed involving active members of the
DAML community; in addition, a case study scenario was defined and
used to evaluate the proposed study’s methodology, workflow, and
findings.
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5.1 SWOT analysis

To perform a strength, weakness, opportunity, and threat
(SWOT) analysis of the GRV-SC framework, an exploratory
qualitative study involving semi-structured interviews was
undertaken. The objective of the interviews was to gain insights
into the practices currently employed by industry professionals
with significant experience in developing SCs. The analysis focused
on the management of SC developed, deployed, and managed on a
blockchain network. The primary objective of this analysis is to
uncover the methods, tools, and strategies currently employed by
developers to ensure the security and resilience of SCs, thus
complementing the analysis carried out in Section 2.2. This also
included an understanding of the importance of education,
awareness, and the utilization of advanced tools in guaranteeing
the security of SCs. Finally, this analysis facilitates the exploration
of the potential benefits of the proposed GRV-SC framework and
its alignment with requirements and current industry practices.
The SWOT analysis included 8–12 participant interviews with
various roles, including language engineers, developers, and
enterprise users. Table 2 provides a summary of the interviews
conducted in the form of a SWOT analysis. This covered the
approach and tools proposed as part of GRV-SC. Generally, having
such a framework was viewed positively; however, further
validation in real-world scenarios is required to minimize
resistance and promote its integration into the development life
cycle. Further exploration of these outcomes will be carried out in
further work.

5.2 Experimental environment

The experimental settings for evaluating the proposed GRV-SC
framework are listed in Table 3: 1) DAML Parser; 2) DAML HUB for
deployment and testing of the DAML contract. It is a cloud platform
that enables DAML users to build simpler and more scalable serverless
backends for their applications by allowing an interaction with live
ledgers; 3) NET 6 used to develop the dynamic test verifier and CPN-
DAML translator (code generation engine). To implement the
experiment, the Windows 10 operating system with Visual Studio
Code, Visual Studio 2022, CPN 4.0.1, and DAML v 2.2.0 has been used.

5.3 Case study for GRV-SC framework
evaluation

To expand on the modules as described above, the following
steps (from a developer’s perspective) are depicted in Figure 5. So, to
explore the effectiveness of each module, an auto-service center
contract has been taken to illustrate the analytical process, as shown
in Figure 4. The contract is designed to provide a secure and reliable
car maintenance service to the car owner in exchange for a monetary
sum. In this use case, three parties are involved:

1) The Bank: issues cash as contracts
2) CarOwner: who holds account in bank
3) CarShop: auto-service center, who offers repair service in

exchange of cash

TABLE 2 SWOT analysis of the GRV-SC approach and methodology.

Strength (S) Weakness (W)

• Aligned with well-established development practices for S/W testing • Real-world validation limited to date

• Additional focus on security for smart contract development • There are some limitations to static analysis tools

• Challenges exist relating to contract modification and versioning in DAML not captured by
the GRV-SC framework

Opportunities (O) Threats (T)

• Extending existing practices with new tools for the verification of smart
contracts

• The complexity of smart contracts makes it challenging to capture all facets of vulnerabilities

• Improved security tools for smart contract developers and testers

• Enhancing static analysis of contracts and logic

• Increased adoption and integration of DAML contracts through availability
of support tools

• Resistance to change from developers with new tools and methodologies

• Awareness and education of the importance of securing smart contracts

TABLE 3 Experimental environment for testing the GRV-SC framework.

Name Tool and version

Programming Language DAML v2.2.0; .NET 6.0

Network Environment and Testing DAML HUB; CPN simulation

Editor Visual Studio Code; Visual Studio 2022; CPN 4.0.1

Operating System Windows 10
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SCs must satisfy the following use case properties and attribute
constraints:

• Create a template for the Bank and instruct the Bank to give
cash to an account holder, the CarOwner.

• Add a choice/function to the Bank template to make this
money transferable.

• Consider a bilateral service agreement, which calls for the
CarOwner and CarShop to agree on a service and a fee.
Without the other party’s consent, neither party may enforce
this agreement against the other.

• Utilize the propose–accept model to construct this bilateral
agreement.

• Add a choice to CarOwner’s payment to indicate their
satisfaction with the service.

• Add constraints to guarantee that the money received satisfies
the terms of the service contract.

1) Design: In order to construct a Contract Model of 4, the
framework uses the designer module to construct a DAML
template along with a logical graph, with relevant data
structures defined for each of the control points. This model-
driven approach aims to limit compile-time errors and syntax
errors (i.e., if a contract has incorrect inputs, or any repeating
transaction (due to coding errors), under-optimization, reduce
the associated learning time for a new language). However, a user
can also directly import the DAML contract code to the
framework in order to generate a contract graph, which
represents the contract flow.

2) Transformation: A DAML Parser is then used to transform a
defined contract model/imported contract model into a Data
Model to extract data points (see Figure 5, transformation block).
These data points are distinguishing characteristics of SC that
help to uniquely identify it from other contracts. These can be
any of the DAML entities (controllers, signatories, and so on), as
well as calculated data points such as relations from an observer
or signatory. This transition accomplishes two goals: first, the
retrieved data points are utilized to build a contract graph.

Second, they were subjected to feature engineering before
being fed into the ML model (see Figure 5, conformance
testing and recommendation block). This transformation is
needed to convert the DAML contract into a common data
structure for data exchange and interoperability (e.g., list and
dict) because the proposed framework modules (such as
designer, verification, and execution) must be synchronized.

3) Modeling and verification: In order to generate a secure DAML
SC template for the auto-service center, the above-mentioned
contract properties (i.e., authorization, control flow, and
functional/choice correctness) are verified by the CPN model.
This CPN model (defined as an .cpn file) is then automatically
transformed into a secure DAML template using the GRV-SC
framework. The generated DAML template is executable on both
Hyperledger Fabric and the DAML ledger platform.

Furthermore, in this study, we are focusing on two interesting
classes of vulnerabilities:

1) Access control: The vulnerability occurs when the controller of
the template is chosen incorrectly and authorized it to conduct
certain actions, i.e., in the CarServiceCenter template when the
CarShop will be the controller of the Pay choice, instead of
CarOwner. So, at the modeling stage, party authorization
(i.e., signatories, observers, and controllers) and their behavior
concurrency are chosen to be the target states. The backward
reachability approach (Bouali et al., 2009) has been applied to
carry out control flow and data flow analysis in order to
determine the position of the transition guard and the
number of tokens at each place. It can also be used to verify
the behavior of the parties or legal entities, i.e., who is authorized
to do what (who creates a contract or exercises choices) at the
pre-deployment stage. Finally, we obtained a place data structure,
i.e., STRING*REAL*CURRENCY*BOOL = (signatory, amount,
currency, state), which represents the information regarding the
party, balance, currency, and the state of the transaction,
respectively.

FIGURE 4
Auto-service center use case.
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As shown in Figure 6, modeling notations according to the
DAML structure are defined as follows:

• Places: Places represent the variable and party’s name.
• Color set: Color set represents the datatype of variable,
i.e., compound color set: colset currency = with USD|EUR|
CAD, string color set: colset observer = string. Initialize the
color set with “owner name,” i.e., assign the variable proposer
a value. Here, currency as a record type has been created.

• Transition: Template name (class name) and choices
(functions) are represented as transitions, i.e., blue color
transition represents the DAML template name, and all
places pointing toward this transition are members/
parameters of that template in DAML, whereas green color
transition represents Choices, i.e., as shown in Figure 6,
CarRepairProposal, Bank, and CarServiceCenter represent
the template, and each template has associated transitions
such as Accept is the CarRepairProposal transition; the Bank
has Transfer whereas the CarServiceCenter has the Pay
transition. These green box transitions, i.e., Accept, Pay,
and Transfer are the choices of these templates, while
create_proposal is the event that occurs on the acceptance
of the proposal by both parties marked as a red color
transition. In addition, a place can be added to connect the
transition, but naming the place is not required.

• Arc: CPN Arc inscription represents token flow and guard
conditions.

Table 4 provides a summary of transitions in Figure 6. As shown
in Figure 6, the Bank contract represents an amount of cash issued by
a party named bank and owned by a party, i.e., the car owner in this
case. Additionally, a bank must be a signatory in order to construct a
contract in DAML. It is also observed that the Bank contract is
independent of other contracts. However, the CarServiceCenter
contract is bilateral, which requires authorization of the car owner
and car shop before a contract is made. A single party, i.e., either the
car owner or the car shop alone cannot create a CarServiceCenter, and
it would result in a failed execution. For this reason, a propose–accept
model is employed to build a CarServiceCenter contract with two
signatories, where the car shop initiates the proposal step by creating a
CarRepairProposal contract. The car owner then executes the choice
Accept in the CarRepairProposal contract to accept the proposal.
Additionally, once the job is finished by the CarServiceCenter, the
agreed-upon amount is transferred to the car shop; however, if the
owner attempts to exercise choice transfer before the job is actually
finished, the execution will fail.

Vulnerability impact: For instance, changing the owner as a
signatory in the Bank template could lead to several vulnerabilities,
including the following:

1) Malicious owner: If an attacker gains control of the owner party,
they could effectively take control of all Bank contracts associated
with that owner. This could allow them to transfer funds out of
the contracts or even archive them, preventing the rightful owner
from accessing their funds.

FIGURE 5
GRV-SC framework workflow.
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2) Unauthorized transfers: By being able to sign transactions on
behalf of the Bank, the owner could potentially initiate
unauthorized transfers, moving funds to their own accounts
or those of other unauthorized parties.

3) Denial of service: An attacker with control of the owner party
could simply archive all Bank contracts associated with that
owner, effectively denying the rightful owner access to their
funds.

FIGURE 6
CPN model of the auto-service contract.

TABLE 4 Summary of model transitions.

Model transition Importance

Cash Cash issued by a bank to the car owner

CarRepairProposal Based on the propose–accept model, this contract will create another contract name CarServiceCenter

CarServiceCenter Offers the maintenance service by the authorization of both parties, the car owner and car shop

Transfer Action through which the car owner transfers money to the car shop

Pay Car owner accepts service with the satisfaction which triggers the cash transfer from the car owner to carshop by exercising the choice Pay

Accept Car owner accepts the proposal by exercising the Accept choice

create_proposal CarShop initiates the proposal step by creating a CarServiceProposal contract. The car owner then accepts the proposal by executing the
choice Accept in this CarServiceProposal contract

Constraints/guard conditions Price required in the CarServiceCenter contract and the amount specified in the Cash contract should be the same
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Leaving these vulnerabilities unaddressed could have significant
impacts, including the following:

• Financial losses: Unauthorized transfers or the loss of access
to funds could result in substantial financial losses for the
rightful owner.

• Reputational damage: If customers become aware of security
vulnerabilities in the Bank template, it could damage the
reputation of the organization and erode customer trust.

Thus, to mitigate these risks, it is crucial to implement robust
security measures, such as employing strong access control
mechanisms.

2) Insecure direct object reference (idor): The implementation of
the Pay choice in Figure 7A introduces a logical error (idor). In
DAML, the contract ID and the contract payload are not
interchangeable. Thus, by doing bank = Bank creates a new
template on the ledger that did not exist previously and, as such,
requests the user to re-enter all the template arguments again. As
the field, bank in the Pay choice has no relation to the field
bankCid. The values in these two fields can represent two
completely different contracts. The value of the bank field can
be a DAML record of type Bank, which does not exist on the
ledger. Suppose the contract ID the user passes to the bankCid
field refers to a Bank contract representing 20 EUR. Then,
according to the business logic of the implemented contract,
the exercise of the Pay choice should fail because the currency
and the amount of the Bank contract do not match the currency
and the price of the CarServiceCenter contract, which is, for
instance, 200 USD.

Vulnerability impact: Due to this error in the Pay choice, a
user enters an amount and currency into the bank field of the
Pay choice that does not match those that were agreed upon.
This could allow the user to pay for the car repair with a
different amount or currency than was originally agreed
upon or even to pay for the car repair with a different bank
account altogether.

• Untrusted payment processing: This vulnerability could have
a significant impact on the business logic of the
CarServiceCenter contract. For example, if the user pays for
the car repair with a different amount than was originally
agreed upon, the CarServiceCenter may not be able to
complete the repair. Or, if the user pays for the car repair
with a different bank account, the CarServiceCenter may not
be able to verify that the payment is valid.

• Risk of incorrect fund allocation: The vulnerability could
enable unauthorized parties to manipulate payment amounts
or currencies, leading to erroneous payments and
misallocation of funds. This could result in financial losses
for the CarServiceCenter or the car owner, and it could also
disrupt business operations and erode customer trust.

The dynamic type safety verifier is used to detect such types
of vulnerabilities by employing input validation and
authorization checks. It ensures the contract ID must be
passed to the choice in order to use a contract in a choice
(such as to archive the contract or exercise a choice on it).
Furthermore, if the contract data are used in the choice, the
contract must be fetched using the contract ID, and the
controller of that choice validates whether the contract ID
indeed refers to the given arguments. Figure 7B represents the
resilient approach. In this example, the carOwner is the
controller of the Pay choice of the CarServiceCenter contract
and will validate that it has indeed given their authority to
exercise the choice, either by directly submitting the
command that exercises the choice or by delegating this to a
third party using another DAML contract.

For instance, if the verifier detects that a consuming choice has
been exercised multiple times without appropriate authorization, it
may identify this as a possible idor vulnerability. The initial
implementation of the dynamic type safety verifier includes data-
type checks, idor, and access control. It aids in detecting potential
vulnerabilities in DAML contracts that may have been overlooked
during static analysis or manual testing.

Overall, the framework offers a single-stop solution to generate
secure DAML contracts that are executable on all DAML-supported
platforms, which increase its adoption among new developers.

6 Conclusion and future direction

This study discusses the challenges programmers have with SC
security and how security measures and tactics can be integrated
within the SC development life cycle. The work aims to underline
that SC security cannot be guaranteed by following a single-step
process such as the root cause analysis of a contract’s design, which
is merely one step of a multi-step process that cannot ensure SC

FIGURE 7
CarServiceCenter contract. (A) Vulnerable contract. (B) Resilient
contract code.
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security; user behaviors during contract execution must also be
taken into account. As such, to minimize the associated risk and
obtain a level of assurance of contract security, an iterative SC life-
cycle management mechanism (Figure 1) is required. As a result, the
GRV-SC framework is proposed, which provides a mechanism to
incorporate MDE and formal verification into SC life-cycle
management in order to make it easier for the developer to
specify, code, test, and generate a reliable SC code. Following this
methodology within the development process targets a reduction in
the designing and verification overhead at later stages and aims to
minimize the risk of poorly constructed code being deployed on a
ledger. The framework comprises three components, namely,
designer, verification, and execution. This study covers the
implementation results for the first two components respectively
and focuses on finding and fixing two significant classes of DAML
vulnerabilities, i.e., access control and idor.

As future work, further development, and integration of the
tools are ongoing, they will be evaluated in detail, considering a set of
common vulnerabilities and coding issues observed in SC
development. The process of formal verification will be improved
by utilizing the “PIPE + VERIFIER” approach, which was
introduced by Liu and He (2015). This approach allows for the
analysis of high-level PNs using a state-of-the-art SMT solver Z3 as
the backend engine. It enables the analysis of high-level CPNs (HL-
CPNs) by translating HL-CPN models to SMT formulae.
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