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In the long run, Bitcoin transaction fees are the only source of revenue for miners.
They compete broadly in two main ways: proof of work effort to win blocks; and
transaction processing to gather fee rewards into the blocks they win. This paper
contributes to existing literature by developing a dynamic model that separates
these two functions, and explores implications for aggregate efficiency outcomes.
Specifically, when set by free market forces (unrestricted by artificially imposed
block size caps), what happens to overall transaction prices and quantities relative
to total energy use? When is it worth Stackelberg-leading miners investing in
efficiency-improving R&D? What effect does this have on overall efficiency over
time? By explicitly separating specialised capital dedicated to SHA256 hashing (for
proof of work) from transaction processing capital (for transaction collection and
verification), this paper sheds light on these questions. One key conclusion is that
miner innovation lowers energy use per transaction over time for elastic enough
transaction demand schedules. The more competitors Bitcoin has (existing fiat
and data services, and other new Blockchain-based systems), the stronger is this
conclusion.
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1 Introduction

The fact that the transaction fee market is a critical determinant of real outcomes in the
long run has been analysed previously (Easley et al., 2019; Houy 2014). In Houy (2014),
partial equilibrium outcomes with fixed block sizes are shown to be equivalent to transaction
price fixing. Welfare implications in scenarios where these variables are centrally-planned,
subject to constraints including a minimum overall hash rate are explored in Houy (2014). In
their model, aggregate hash rates have to be above an all-or-nothing threshold, below which
the Blockchain totally fails due to lacking enough security. Although the relationship
between hash rates and security is not explicitly modelled in this paper, there is scope
for exploring this further. For example, it could be that competitive miners with larger
revenues and/or profits stemming from transactions fees offer more security by virtue of
being better resourced. Easley et al. (2019) assume that users gain less utility, the longer is the
delay between submitting their transaction to the network and observing it in a confirmed
block. They conclude that block size constraints limit overall growth of the network, andmay
cause instability. Again though, there is no further analysis of scenarios where transaction
volumes and prices are determined in a free market with no artificial constraints. Although
this institutional structure is consistent with the block size cap implemented on the BTC
Blockchain today (which effectively acts as a quota on ledger-auditable transaction volumes),
there are other systems more in line with Satoshi’s original proposals (like Bitcoin SV).
Furthermore, as touched on in Easley et al. (2019), it could be argued that versions of Bitcoin
that do not adapt over time (e.g., by relaxing block quotas or transaction price controls) may
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not even survive in the long run. This was presumably what Satoshi
Nakamoto meant when they suggested that in 2030 there would
‘either be very large transaction volume, or no volume at all’1. Bitcoin
as a system competes particularly intensively with any others that
use SHA256 hashing in proof of work, because the switching costs
involved in redirecting equipment are negligible (a miner with
equipment specialised in SHA256 hashing does not need to
physically relocate to mine on a different chain). Overall then,
dynamic competition unfolds on the supply side, between, as well
as within specific Blockchain systems. This paper therefore seeks to
better understand the nature of long term equilibria in the context of
unrestricted transaction fee markets.

The paper is organised as follows. Section two uses the same
basic framework as in Dimitri (2017), with explicit dynamic
structure as in Ma et al. (2018). This simple two-player Cournot-
type game provides the foundation for contributions in the later
sections. Strategic interactions known as Tullock contests (Tullock
et al., 1980; Fonseca, 2009) repeat and occur during 2-week time
horizons, via the channel of Bitcoin’s exogenously imposed difficulty
adjustment algorithm. Dynamic equilibrium outcomes are
presented in which each miner’s efforts spill over to others in the
form of negative externalities (one miner’s efforts increase difficulty,
which in turn lowers optimal effort responses overall). As expected,
when underlying cost structures are heterogeneous, relatively lower
unit energy costs, or higher mining equipment efficiency, result in
relatively high hash rates for individual miners.

Although the static results presented in Dimitri (2017) are
frequently extended into a dynamic setting (e.g., Alsabah and
Capponi 2020; Cong et al., 2020), this paper explores intra-
difficulty period competition in more detail. For example, in Fiat
et al. (2019), miners’ effort levels are fixed for the duration of
difficulty periods (referred to as ‘epochs’). Instead, this paper
allows observation and effort to vary within difficulty periods,
and includes original analysis and discussion of specific proposals
for how such equilibria are likely to emerge in practice. Again, in
contrast to the literature, an explicit parameter separation of
underlying energy (typically electricity) costs, distinct from
mining equipment efficiency (typically measured in Joules per
Gigahash) is included. This latter feature is then exploited in
section 3, where fixed investment costs are introduced, and a
speed of hash capital parameter is endogenised, leading to a
richer description of equilibria. A specific contribution to
understanding the nature of overall outcomes in Bitcoin over
these longer time horizons is provided by considering an
individual firm’s optimal spending on R&D designed to improve
the energy efficiency of its operation. The conditions under which it is
worth investing are formally derived, and equilibrium Stackelberg
outcomes presented. In cases where it is worth the leader investing, the
extent to which aggregate energy use falls is derived for the case where
the Stackelberg follower does not invest. In the calibrated example, the
leading miner’s optimal strategy lowers aggregate energy use by 30%.

The final section 4 provides an original analysis that builds
further on the previous sections by including transaction fee

revenues. Transactions have to be gathered, checked, and verified
before inclusion inside proposed blocks, a process that is very
different from the way blocks are won from hashing. As such,
transaction capital is introduced into the model, alongside fee
revenues determined by a demand function with an explicit
elasticity parameter. The framework outlined here also includes
the previous Stackelberg structure, with some novel results.
Adoption of more efficient hash equipment (or any change in
this) has no effect on aggregate energy use. This is interesting,
because it means that given the assumptions outlined here, mining
firms naturally incentivised to seek such improvements will increase
the aggregate security of the Bitcoin Blockchain without increasing
aggregate energy use. Another novel result is derived for transaction
processing efficiency improvements. In this analysis, the demand for
transactions is exogenous in the sense that the elasticity of demand is
fixed. In cases where the elasticity of demand for a typical
transaction is higher than one (demand is relatively elastic),
improvements in how efficiently miners process transactions
unambiguously reduce aggregate energy use per transaction over
time. The analysis on whether it is worth investing in R&D in this
paper assumes no spillovers of knowledge to competitors, which
contrasts with Alsabah and Capponi (2020). Neither does it
endogenise the positive externality that comes from proof of
work mining: a by-product of individual miner efforts is that
they enhance the overall Blockchain security for other users and
miners (Houy, 2014). To the extent that consumers of transaction
and data services benefit from this, inclusion of these utility benefits
would increase demand, presumably lowering aggregate energy use
per transaction more than the results presented here. Further work
could attempt to endogenise these other effects, and include welfare
analysis.

2 Short run competition

Two miners A and B compete to earn revenue from block
rewards from hashing, which is costly. They seek to maximise the
expected value of their profits, by choosing hash rates hA and hB.
With only two miners, the probability a specific miner wins a block
competition is only determined by their relative hash rate. Defining
the aggregate hash rate H = hA + hB, then:

P Miner Awins a particular block competition( ) � hA
H
. (1)

Costs for a particular block competition are γ × hA for miner A,
so their expected profit is:

E ΠA[ ] � ω
hA
H

− γhAτ, (2)

where ω is the block subsidy reward, and γ captures the average cost
of conducting one hash. Section 3 later describes a scenario where a
leading miner has the opportunity to invest in new hashing
equipment. This investment improves efficiency, as distinct from
any lowering of variable costs that mainly derive from having to
supply power to mining rigs. As such, this parameter is defined as:

γ � c

e
, (3)

1 Nakamoto, S. (2010, February 14). I’m sure that in 20 years there will either
be very large transaction volume or no volume. [Online forum post].
https://bitcointalk.org/index.php?topic=48.msg329#msg329.
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where c is the cost (normally of electricity, here denominated in
bitcoins) of 1 joule of energy, and e is the efficiency of the hashing
capital equipment (commonly referred to as ‘rigs’) deployed by the
miner. As an example calibration, Kristoufek (2020) includes a list of
different chip manufacturers specified by the number of Joules (J)
required to execute a gigahash (one Gh, or one billion hashes)
ranging from the least efficient 0.95 J/Gh down to the most efficient
0.09 J/Gh. If a miner has equipment capable of 0.1 J/Gh, this is
equivalent to a capability of running 10 billion hashes from 1 J of
energy (note that the way efficiency is expressed in this paper as the
inverse of this, a higher number means more efficient). If the cost of
1 J of electricity translates to 8.7 × 10−4 bitcoins then the overall
average cost per hash is γ = 8.7 × 10−14 bitcoins. Here is a complete
summary of this numerical example:

J/Gh � 0.1, soGh/J � 1
0.1

� 10

e � h/J � 10 × 1 billion � 10 × 19 � 1010

c � 8.7 × 10−4

γ � c

e
� 8.7 × 10−4

1010
� 8.7 × 10−14

Individual block rewards ω are denominated in bitcoin and
directly observable. They consist of two sources - a bitcoin subsidy
that started at 50 bitcoins, halving every 4 years, currently to
6.25 bitcoins per block. In the long run the only source
sustaining all miner activities are the transactions fees
accumulated within each block.

It is important to note that while γ costs are typically borne in
fiat currencies, ω revenues are received directly in bitcoins, so real
miner profits are directly affected by Bitcoin’s famously volatile
exchange rate. However, to the extent that miners are able to
exchange recently won bitcoin rewards into fiat and/or other
more stable assets quickly, and able to forecast average bitcoin
exchange rates in the short and medium run, profit maximising
decisions are underpinned by the fundamental analysis set out in
this paper. In practice, this means two things: treating speculative
trading activity as a separate function, even though this may
naturally occur; and assuming rational expectations so that
exchange rate forecast errors are not systematically biased in any
way. Whilst these are heavy assumptions, they are argued to provide
a useful benchmark from which to develop more complex theory.
Miners will have to decide when to trade their accumulated bitcoins
for fiat (after the approximate 17 h time window when they cannot,
as defined by Bitcoin’s 100 block ‘cooling off period’). The model
presented here does not include the exchange rate, and generally
abstracts away from risk by assuming risk neutrality. Instead, it turns
this issue around on its head, by focusing on economic
fundamentals, towards future scenarios where speculative hype is
no longer a factor, offering logical reasoning behind potential
stability and forecastability of the bitcoin/fiat exchange rate. In
terms of economic costs, for now this analysis also ignores
overheads and assumes constant marginal costs - other cost
function types and features, including capital investment, can be
added without altering the main conclusions set out here (Section 3
develops this further).

Approximately every 2 weeks, Bitcoin difficulty adjusts
according to a formula. In the following analysis, each discrete
time period corresponds to the 2016 block competitions that make

up a difficulty period. Each block competition lasts approximately
10 min, and hence a difficulty period is 10 × 2016 = 20, 160 min, or
2 weeks on average. As already noted, transaction fee revenue is the
only source that sustains miners in the long term, and this is
absolutely fundamental to sustainable economic behaviour, but
the focus here is on the intra-difficulty-period game theoretic
forces steering competitive miners towards equilibrium
behaviour. Hence, expected revenue derives directly from the
expected proportion hA

H of fixed block subsidies won by miner A
instead of miner B. Costs rise and fall in proportion to τ, the time
duration during which the miners apply their hash rates. In practice
the duration of each block competition, and hence the 2016-block
difficulty-period, is a stochastic variable drawn from a geometric or
exponential distribution, depending on how this is expressed
mathematically. With the assumption that miners are profit
maximisers with risk-neutral preferences, they only care about
difficulty-period time duration expected values (not variances or
higher moments). The time duration τ increases and decreases in
expectation, inversely to the aggregate hash rate relative to a
benchmark �H0 that is defined by the current difficulty.
Conventionally, difficulty is expressed as a number that defines
how much harder it is to find a valid block solution compared to the
genesis block (the first ever block created), but depending on the
type of analysis, it can be specified relative to any chosen benchmark.

τt �
�Ht−1
Ht

(4)

In the following, hash rates are defined as the number of hashes
during a 2 week difficulty period, and the benchmark �Ht−1 as the
expected number of hashes required to find a valid solution. In
practice, each single hash is a random integer draw from 0 to M =
2256–1, and difficulty is a target range from 0 to a target number T0.
For example, if the current target is T0 = 2200, the probability that one
particular hash will land in the success region is p � 2200

2256 � 2−56 and
the benchmark hash rate is �H0 � 1

p � 256 for a particular block. With
256 hashes required on average to find a valid block, 2016 × 256

hashes will be required on average to complete a difficulty period.
Bitcoin’s difficulty adjustment algorithm aims to ensure that
difficulty periods last �τ � 2 weeks, so if a particular duration τt
turns out to be shorter (longer) than 2 weeks, the target for the next
difficulty period is reduced (increased) in proportion, according to2:

Tt+1 � Tt
τt
�τ

(5)

The corresponding benchmark hash rate updates according to:

�Ht+1 � �Ht
�τ

τt

In the example, if τ1 turned out to be 1 week, block solutions
would have been found twice as fast as they should have been, so the
target in the next period would have been halved:

2 In practice, due to a bug, Bitcoin’s difficulty adjustment protocol bases
new targets on activity during the previous 2015, not 2016 blocks. This
analysis ignores the negligable difference this makes for simplicity, and
without loss of generality, but empirical and other work can adjust this as
needed.
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T1 � T0
1 week
2weeks

� 2200 ×
1
2
� 2199

Accordingly, with the difficulty now doubled, the benchmark
number of hashes required would double:

�H1 � �H0( ) 2weeks
1week

� 2016 × 256( ) × 2 � 2016 × 257

In summary then, given an initial condition specified for the
benchmark target value T0, and hence �H0 � M

T0
, and defining the total

block subsidy available during the 2 week difficulty periodΩ = 2016 × ω,
at the beginning of difficulty period 1 the expected profits forminerA are:

E1 ΠA[ ] � E1 ΠA1 + ΠA2[ ] � Ω hA1
H1

− γhA1τ1 +Ω hA2
H2

− γhA2τ2

Where expected durations are E1[τ1] � �H0
H1

and E1[τ2] � �H1
H2
, hence

(dropping the bar notation for expected values, except for �H0 which
is given at the beginning of time t = 1):

E1 ΠA[ ] � Ω hA1
H1

− γhA1
�H0

H1
+Ω hA2

H2
− γhA2

H1

H2
(6)

Collecting revenue and cost terms together, and defining the cost
of a hash denominated in bitcoins relative to the difficulty period
block reward as κ � γ

Ω, this can be rearranged as:

E1 ΠA[ ] � Ω hA1
H1

+ hA2
H2

( ) − κ hA1
�H0

H1
+ hA2

H1

H2
( )[ ]

This shows explicitly that given miner B’s chosen hash rate path
�hB1 and �hB2, as miner A’s chosen hash rates rise, on the one hand
they expect to win a larger proportion of the block subsidiesΩ, while
on the other their costs rise in proportion to the relative cost of a
single hash κ � γ

Ω, and the benchmark difficulty contained inside �H0.
Crucially though, if A chooses to increase hA1, not only do their
expected costs rise in period 1, as defined by the first cost term
κ �H0

hA1
hA1+�hB1, their period 1 choice also increases expected costs in

period 2 as defined by the second cost term hA2
H1
H2

that contains
κhA2

hA2+�hB2hA1. The expected revenue part of the profit function varies
with hA1 according to δE[RevenueA]

δhA1
� Ω δE[hA1H−1

1 ]
δhA1

, while the cost part
varies according to:

δE CostA[ ]
δhA1

� −γ �H0

H1
− hA1

�H0

H2
1

+ hA2
H2

[ ]
Symmetric Nash equilibrium implies hA1 � hB1 � h1 � H1

2 and
hA2 � hB2 � h2 � H2

2 , so

δE CostA[ ]
δhA1

� −γ �H0

2H1
+ 1
2

[ ].
Assuming expected outcomes will be close enough to the Nash
equilibria, and that being close enough to a steady state implies
H1 ≈ �H0, this means:

δE CostA[ ]
δhA1

≈ − γ,

So when miner A is considering their choice of period 1 hash
rate hA1, every extra hash conducted in period 1 has an

approximate overall extra expected linear cost of γ

accumulated across the two periods, whereas the effect on
total expected revenue is clearly non-linear and strategically
dependent on miner B’s choice:

δE RevenueA[ ]
δhA1

� Ω 1
hA + hB

− hA1
hA + hB( )2[ ]

2.1 Short run profit maximisation

The miner A profit Equation 6 from earlier can be re-written as:

E1 ΠA[ ] � Ω − γ �H0( ) hA1
H1

+ Ω − γH1( ) hA2
H2

,

or, using the average cost of a hash relative to the rewards defined
earlier (κ � γ

Ω):

E1 ΠA[ ] � Ω 1 − κ �H0( ) hA1
H1

+ 1 − κH1( ) hA2
H2

( )
The profit maximisation problem can therefore be determined

from the following objective function, Ω removed,

max
hA1

1 − κ �H0( ) hA1
H1

+ 1 − κH1( ) hA2
H2

{ } (7)

Defining auxiliary variables W � 1 − κ �H0 and V � κ hA2
H2
, leaves

just:

max
hA1

WhA1H
−1
1 + hA2

H2
− VH1{ }

Differentiating this with respect to hA1 and setting to zero gives:

W H−1
1 − hA1H

−2
1( ) − V � 0,

Which can be rearranged as follows:

W H1 − hA1( ) − VH2
1 � 0

WhB1 − V h2A1 + 2hA1hB1 + h2B1( ) � 0
−Vh2A1 − 2VhB1hA1 − Vh2B1 +WhB1 � 0

In any symmetric equilibrium where hA1 = hB1 = h1, the last
equation becomes:

−Vh21 − 2Vh21 − Vh21 +Wh1 � 0

h1* � W

4V
� 1 − κ �H0

4κ
hA2
H2

(8)

This last equation pins down the optimal hash rate for miner A
(and symmetrically the same for miner B), for assumed period
2 hash rates. If this ‘game’ is only played for these two periods, the
same cannot be derived for period 2. However, as shown in section 3
later, assuming the same type of Nash equilibrium behaviour in
period 2 is consistent with maximisation of an infinite discounted
stream of future profits. In the special case where the initial
conditions are set up to ensure a steady state where
�H0 � H1 � H2, and where the same symmetric outcome in
period 2 (hA2 = hB2 = h2) is assumed (so that hA2

H2
� 1

2), from the
earlier definitions of W and V, this implies:
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h1* � 1 − κ �H0

2κ
� 1
4κ

� Ω
4γ

(9)

which also implies the aggregate hash rate �H0 � H1* � 2h1* � Ω
2γ and

from earlier definitions �H0 � M
T0
, κ � γ

Ω and Ω = 2016 × ω, so:

Ω
2γ

� 2016 × ω

2γ
� M

T0

T0 � γ

1008ω
2256

With a block reward subsidy worth ω = 6.25 bitcoins, and using
the calibration example where the average cost of a single hash is γ =
8.7 × 10−14 bitcoins, the target will be approximately the same as
earlier:

T0 � 8.7 × 10−14

1008 × 6.25
2256 ≈ 2200

Note that at the Nash equilibrium, the profit function
simplifies to:

E1 ΠA[ ] � Ω − 2γh � Ω − 2γ
Ω
4γ

( ) � Ω
2
, (10)

So with the tailored steady state initial conditions (equivalent in a
multi period model to assuming dynamic equilibrium), and Nash
equilibrium outcomes, each miner expects to earn half of this, or Ω

4

in terms of profit each period. In Nash equilibrium, their total expected
profits are independent of hash costs. Although this result is present in
Dimitri (2017) and others, it is worth briefly reflecting on what drives
this. It is unintuitive, in the sense that in equilibrium, the total level of
profits made by the miners are completely unrelated to the underlying
cost of a hash γ. It is explained by the fact that by design, the Bitcoin
system changes the unit cost of hashing systematically, depending on
miners’ collective behaviour. Even if γ is astronomically high, the two
miners both end up contributing negligible hash effort in equilibrium,
so difficulty, and hence their average costs fall to appropriate levels until
eachminer is back to expecting Ω

4 . Any increase in average cost per hash
(indicated by the left hand γ in the representation below) is exactly offset
by miners lowering their optimal choice h1* � 1

4 γ
Ω
� Ω

4γ, which lowers
difficulty, and hence costs:

Ω − 2γ ↑( ) Ω
4γ

↓( )
This mechanism also implies that ignoring investment costs,

profits stay positive in equilibrium for arbitrarily large numbers of
competing miners. As others enter this competition, expected
profits fall at a decreasing rate, approaching zero as n → ∞
where n is the total number of miners. Specifically with n
miners, each miner expects a profit of Ω

2n. The introduction of a
fixed overhead cost to the profit equation, along with a zero profit
condition defines n.

2.2 Best response functions

Nash equilibria described in the previous sub-section can be
thought of as fully rational forward looking behaviour. Both miners
know that in both periods, they will be able to respond to each other

strategically, and that their choices in period 1 will affect difficulty in
period 2. With varied hash rates, competition can unfold even within
difficulty periods. When two large miners interact during a difficulty
period, they can estimate each others’ hash rates by observing each
others’ block successes in real time. However this is done (as a Bayesian
learning process, for example), this strengthens the assumption of
forward-looking rational behaviour, with each miner responding to
each others’ hash rate choices in real time. This sub-section first derives
the best response functions from the perspective of period 1, for each
miner A and B, before briefly considering how miners could best-
respond to each other in real time, during a difficulty period.

From earlier, miner A’s best response function is:

Vh2A1 + 2VhB1hA1 + Vh2B1 −WhB1 � 0

This is solved and rearranged as follows:

hA1* � −2VhB1 ±
��������������������������
2VhB1( )2 − 4 V( ) Vh2B1 −WhB1( )√

2V

hA1* � −hB1 ± W

V
( )1

2

h
1
2
B1

Assuming non-negative costs and hash rates, the negative root is
dropped:

BRFA: hA1* � −hB1 + W

V
( )1

2

h
1
2
B1 (11)

where W � 1 − κ �H0 and V � κ hA2
H2
, and as before, with the selected

initial condition �H0 � H1, and at the equilibrium hA1 = hB1 = h1,
then the (WV)

1
2 term simplifies down to θ � κ−1

2 � (Ωγ)
1
2 leaving:

BRFA: hA1* � −hB1 + θh
1
2
B1 (12)

Miner B will optimally respond to A, in the same way to give B’s
best response function:

BRFB: hB1* � −hA1 + θh
1
2
A1

Rearranged as the inverse function for comparison on the same
plane this is:

FIGURE 1
Best response functions (Gigahashes per second).
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BRFB: hA1 � θ2

2
− hB1* ± θ

�������
θ2

4
− hB1*

√
(13)

The two best response functions together provide each miner’s
optimal response to the other’s hash rate choice in period 1. On its own,
forward-looking rational reasoning could be used to justify this outcome
as an assumption from the perspective of the start of period 1. Compared
to many other real world settings though, the fact that during a difficulty
period, miners can observe each others’ activity only strengthens these
rationality assumptions. Figure 1 shows the unique Nash equilibrium.

The blue line in Figure 1 shows minerA’s best hash rate response
(in numbers of billions of hashes, or Gigahashes, per second, GH/s)
on the y -axis, to B’s choice on the x-axis. To recalibrate from hashes
per 2 week period in the BRF equations above, the following
conversion of parameter θ was required (there are 1,209,600 sec
during 2 weeks): Ω/(1,209,600)

γ × (1 billion). As already established, at the Nash
equilibrium where the two BRFs intersect, each miner maximises
their profit given the others’ hash rates when they both choose
hA1* � hB1* � Ω

4γ, which in the numerical example here is 6.25/(10 × 60)
4 × 8.7 × 10−5 �

30 GH/s. If they both choose this hash rate in periods 1 and 2, total
expected profits for each miner are Ω

2 � 6, 300 bitcoins.

2.3 Comparative cost advantage

Again, just as in Dimitri (2017) and others, unit hash costs may be
heterogeneous. If, for example, miner A has more expertise, or entered
the competitive environment with more efficient hashing technology
(e.g., better specialised ASICs), it could be that γA< γB (and from earlier,
κ � γ

Ω and θ � κ−1
2 so θ �

��
Ω
γ

√
). With this definition, the Nash

equilibrium comes from solving the following simultaneous equations:

BRFA : hA1* � −hB1 + θAh
1
2
B1

BRFB : hA1 � θ2B
2
− hB1* ± θB

�������
θ2B
4
− hB1*

√
The solution to this system is:

hA1* � θ2B
θ2A

θ2A + θ2B
( )2

� θB
θB
θA
( )2 + 1

⎛⎜⎝ ⎞⎟⎠2

hB1* � θ2A
θ2B

θ2A + θ2B
( )2

� θA
θA
θB
( )2 + 1

⎛⎝ ⎞⎠2

And given θA �
��
Ω
γA

√
and θB �

��
Ω
γB

√
hA1* � Ω γB

γA + γB( )2 � κB
κA + κB( )2 (14)

hB1* � Ω γA
γA + γB( )2 � κA

κA + κB( )2 (15)

Figure 2 shows the same numerical example as earlier, with the
upper blue line indicating miner A’s best response function when its
marginal hash cost γ halves in value. As its unit hash costs fall, its
equilibrium hA1* increases substantially, while the fall in B’s hash rate
hB1* in equilibrium is relatively modest.

2.4 Learning towards equilibrium

Dimitri (2017) assumes complete information about opponents’
cost structures, arguing that there are only a few, large miners. This
section discusses this a little further. The previous results
documented Nash equilibria in the sense that both miners were
best-responding to each others’ best responses, and A’s profit
ΠA(hA1* , hB1* )>ΠA(hA1′ , hB1* ) for all hA1′ . It can easily be shown
however, that if miner A behaves systematically according to BRFA,
then miner B receives Ω

2 profit, no matter what hash rate B adopts (to
the detriment of A, if they, veer away from equilibrium). The threat
of punishment strategies can steer both miners to the Nash
equilibrium. For example, introducing a dampening parameter
0 < D < 1 as follows causes a unique profit maximisation point
close to hB1* even for values of D very close to 1:

BRFA: hA1* � D −hB1 + θh
1
2
B1( )

Miner A could adopt more dramatic responses, like simply
matching B’s hash rate. Fully rational miners should want to
avoid these scenarios in the first place, as it is in their interest to
simply land straight on the Nash equilibrium from the outset. Note
also that within a difficulty period there is of course a time lag
between actual miners’ implementation of their hash rates, and the
stochastic observed outcomes, so each miner can only approximate
their opponents’ hash rates, and with a lag. In terms of information,
miners are pseudonymous in the sense that when they win a block,
they do not have to include a self-identifying label. Even if they
attempt to stay private though, very large miners may be easy to
identify, not least because it is in all of their interests to build strong
network connections with each other (that give them slight time
advantages in starting and finishing block races, for example). At
scale, large miners are enterprises that require large investment, so
again it should be easy to reconcile their public business credentials
with observed behaviour on the public Bitcoin blockchain.

Depending on precise assumptions on their information sets
though, more complex scenarios may unfold. For example, miner B
could be bluffing in the sense of pretending to have more efficient

FIGURE 2
Best response functions (Heterogenous marginal hash costs).
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hashing technology, and hence a higher hash rate. Competitive
miners should therefore want to gain intelligence on the underlying
lowest real cost of conducting a hash, as well as testing their
competitors by incorporating the probability of bluffing tactics,
which in practice will mean raising their hash rates higher than
the equilibria derived above. A Bayesian learning approach to both
intra-difficulty period competition, and also longer term estimation
of competitor cost structures and behaviour makes sense. With free
entry, at the margin of profitability, miners that bluff in this way may
not survive in the sense that they become unprofitable for long
enough to go bankrupt.

Finally, just as in the classic Prisoners’ Dilemma, miners can
gain from collusion, so what forces might prevent this? If both
miners could agree to arbitrarily lower their hash rates, their
combined profits would approach the full value of block rewards
available with negligible hash costs as difficulty falls. Apart from
regulator enforcement, the threat of new entrants limits this
possibility. Compared to many other real world economic
settings, again, in the case of Bitcoin miner competition, cost and
revenue structures are fully transparent, and any drop in difficulty
should immediately encourage new entrants.

3 Medium run competition

Garratt and van Oordt (2020) show that the fixed costs
associated with capital investment make Bitcoin more resilient to
attack. This section builds on the intra difficulty period competition
outlined up to now by introducing the cost of investing in
equipment. Similar to the previous simplifying assumption that
the marginal cost of one hash is constant, investment costs are
assumed to be linear, again without compromising general
conclusions laid out here. In practice, mining rigs are ‘lumpy’ in
the sense that they cannot be purchased in tiny fractions, but again to
keep analysis simple, it is assumed that conducting 1 single hash
every 2 weeks requires a tiny fractional unit of mining rig kh, that
costs pkh each, and there is no depreciation. Expanding the
numerical example from earlier where the average cost of a single
hash is γ = 8.7 × 10−14 bitcoins, assume the unit cost of investment is
the same pkh = 8.7 × 10−14, and as before this can be expressed relative
to the 2 weeks reward as κkh � pkh

Ω . In the two period model this
introduces κkhkh1 as a one-off cost to the profit equation. In the
previous section, the only constraint was γ comprised of the cost of
energy c and energy efficiency of equipment e, but introducing
capital exposes the need to explicitly endogenise the speed of hashing
equipment denoted as s. Specifically, it is assumed that a fractional
micro unit of mining rig kh provides the capability of running s
hashes every 2 weeks, placing an upper bound on the number of
hashes each period for each miner �h � s × kh. With the same
dynamic equilibrium assumptions used earlier, defining K = khA
+ khB, the profit equation for miner A then becomes:

E1 ΠA[ ] � Ω hA1
H1

+ hA2
H2

( ) − κs hA1
�H0

H1
+ hA2

H1

H2
( ) − κkhkAh1[ ]

E1 ΠA[ ] � Ω 2kAh1K
−1 − 2κs + κkh( )kAh1[ ]

(16)
Defining auxiliary variablesW = 2 and V = 2κs + κkh, leaves just:

maxkAh1 WkAh1K
−1
1 − VK1{ }

Differentiating this with respect to kAh1 and setting to zero gives:

W K−1
1 − kAh1K

−2
1( ) − V � 0,

which assuming symmetrical outcomes with miner B rearranges to:

kAh1* � kBh1* � W

4V
� 2
4 2κs + κkh( ) �

1
2 2κs + κkh( )

More generally, the same can be derived for longer time
horizons assuming dynamic equilibrium prevails, and for more
than two miners. Specifically for T 2-week time periods, and n
other miners:

kAh1* � kBh1* � . . . � knh1* � T

n2 Tκs + κkh( ) (17)

This is characterised as a Nash equilibrium, in the sense of being
the unique choice of hash capital purchased by n miners, who each
are selecting the best investment given the choices of each of the
others. All other things equal, miners invest more, the lower the
relative average cost of running a hash κ, the speed of the hashing
equipment s, and the fractional unit cost of hash capital κkh.

This investment equilibrium is a Stackelberg outcome, in the
sense that all the miners make an optimal investment choice, but
then during the 2 week difficulty periods these become sunk costs,
and only the underlying already-established hash costs determine
outcomes. This becomes apparent when considering what happens
when the speed s and/or relative price κkh of hashing equipment is
low enough, so that

kAh1* � T

n2 Tκs + κkh( )>
1
n2κ

The term on the right hand side 1
n2κ is the nash equilibrium from

section 2. It is not worth miners investing any more than this
amount, because the optimal hash rates within the 2 week difficulty
period are:

hA1* � s × kAh1* � s ×
1
n2κ

(18)

Intra-difficulty period competition, without coordination (see
previous Best Response Functions section 2.2) steers hash rates
towards this outcome, regardless of the sunk investment costs.

3.1 Stackelberg leadership as R&D
investment

To concretely see how the strategic interactions outlined
here are a multi-period multi-player Stackelberg game, consider
a scenario where miner A can spend the fiat equivalent of Z
bitcoins on research that aims to improve the energy efficiency
of their hashing by Z × ϕ%. This process could be stochastic,
with ϕ% being the mean of a random variable, in which case
assuming risk-neutral miner preferences would still be
consistent with the following analysis. The R&D process can
be interpreted as costly research time that is expected to
improve energy efficiency in various ways. Hashing
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equipment could be reconfigured, or rigs could be replaced with
newer technology. In the latter case, the following problem
would be more complex, but the underlying principle will still
be the same for any process that is costly for the leading miner,
with expected improvement in efficiency.

In the 2 period model, in dynamic equilibrium, A’s profits are as
follows, where x = f(z) = 1 + Zϕ% and A’s underlying costs κA � κ

x

compared to B’s that will remain at κB = κ.

E1 ΠA[ ] � 2Ω hA
H

− κ

x
hA[ ] − Z

E1 ΠA[ ]
2Ω � Π � hA

H
− κ

x
hA − z, where z � Z

2Ω

The Comparative cost advantage section 2.3 showed that when
A’s underlying hash costs κA differ from B’s, equilibrium hash rates
are determined by hA1* � κB

(κA+κB)2 and hB1* � κA
(κA+κB)2. These can be

substituted into the profit equation, and rearranged as follows:

hA � κB
κA + κB( )2 �

κ
κ

x
+ κ( )2 �

1
κ

x

1 + x
( )2

hA
H

� κB
κA + κB

� κ
κ

x
+ κ

� x

1 + x

Π � x

1 + x
− 1
x

x

1 + x
( )2

− z

Π � x

1 + x
( )2

− z

(19)

The earlier definitions together mean x = 1 + 2Ωϕz, so defining
α = 2Ωϕ, x = 1 + y, where y = αz

Π � 1 + y

2 + y
( )2

− y

α
(20)

then the choice of y that maximises profit is:

max
z

1 + y( )2 2 + y( )−2 − 1
α
y{ } (21)

This has solutions defined by:

2α 1 + y( ) − 8 − 12y − 6y2 − y3 � 0, (22)
which only has a positive root if α > 4.

To illustrate what this can mean in practice, here is an
example. Up to this point, the investment time horizon has been
limited to only an approximate month (two 2-week periods).
The two period model can be expanded to an infinite horizon
where each miner maximises the expected discounted sum of
future profits enjoyed from the efficiency boost. Although such
net present values are very sensitive to precise assumptions over
the rate of time preference as a theoretical concept, such
analysis provides a logical approach to understanding the
decisions forward-looking miners face. A natural approach is
to interpret the discount rate as the entrepreneur/investors’
access to funds in the form of the interest rate they can borrow
at (or compare different projects with). If some investors have
better access, this will give them an advantage that expands their
relative size and profits. Here the discount rate is assumed to be
β for all miners, and the net present value of profits for miner A
is defined by the following equation:

Et ∑∞
s�t

βs−tE ΠAs[ ] � Ω

hAt
Ht

+ β
hAt+1
Ht+1

+ β2
hAt+2
Ht+2

+/( )
−κ hAt �Ht−1

Ht
+ β

hAt+1Ht

Ht+1
+ β2

hAt+2Ht+1
Ht+2

+/( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−Zt

(23)

Assuming dynamic equilibrium (hAtHt
� hAt+1

Ht+1 � . . . and
�Ht−1 � Ht � . . .), the discounted summed stream (now labelled
Π) becomes:

Π � 1 + β + β2 +/( )Ω hA
H

− κhAt( ) − Zt

Π � 1
1 − β

Ω hA
H

− κhAt( ) − Zt

This looks similar to the 2 period analysis earlier, except α �
1

1−βΩϕ instead of α = 2Ωϕ. Given that the approximate length of one
period is only 2 weeks, if, for example, the annual interest rate is r =
1%, then β ≈ 1

1+0.01
24
� 0.99958 and 1

1−β ≈ 2401. Earlier it was
established that in equilibrium (hAH − κhA) � 1

4, so with a 2-week
reward of 12,600 bitcoins, the profit equation is:

Π � 2401 × 12, 600 ×
1
4
− Zt,

which means the R&D spending Zt would be compared to much
larger net present values, approximately 7.5 million bitcoins in this
example. Here, there is no depreciation, and the time preference rate
is relatively low, but it illustrates the important principle clearly that,
with longer time horizons, it is of course much more likely that a
forward-looking miner will find it worth investing in R&D.

Taking this example a little further, assume that a 10,000 bitcoin
spend on R&D is expected to increase energy efficiency by 10%. In
the example used in the short run section 2, this would mean the
equivalent of mining rigs running at 0.1 J/Gh, improving down to
0.09 J/Gh, and all else equal, that would also lower average hashing
costs κ by 10%. So what would be the optimal R&D investment
spending for the leader miner? If 10,000 bitcoins improve efficiency
by 10%, then each bitcoin spent improves efficiency by ϕ = 0.001%.
This means α � 1

1−βΩϕ � 2401 × 12, 600 × 0.001 � 30, 252.6, so
y* = 243.477, and therefore Zt′ � y*

ϕ � 243.477
0.001 � 243, 477 bitcoins.

This amount of spending would be expected to lower miner A’s
underlying costs from κ to:

κA* � κ

1 + x
� κ

1 + 243, 477* × 0.001%
� κ

3.43477

In equilibrium without R&D spending, κA = κB = κ so hash rates
are the same hA* � hB* � 0.25 1

κ. After the optimal spending, the lower
costs that miner A is expected to enjoy will shift equilibrium to:

hA* � 1

2 + x*( )2 1 + x*( )21
κ
� 0.60

1
κ

hB* � 1

2 + x*( )2 1 + x*( ) 1
κ
� 0.17

1
κ

This means the aggregate hash rate H = hA + hB is expected to
change from H � 0.5 1

κ to H* � (0.60 + 0.17) 1κ � 0.77 1
κ, so

approximately a 53% increase in aggregate hash rates. On the
other hand, each hash conducted by the leading miner will be
more efficient - in this example, the baseline efficiency measured
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as hashes per Joule is e = 1010 (expressed conventionally, the inverse
of this, per billion hashes, is 0.1J/Gh). The optimal R&D spending
above means an improvement in efficiency by the same factor 1

1+x*,
so efficiency increases to e* � (1 + x*) × e � 3.43477 × 1010 h/J (so
Joules per gigahash fall down to 0.029J/Gh). The leader in the new
equilibrium conducts 1+x*

2+x* � 77.5% of the hashes, the follower
1

2+x* � 22.5%, so the aggregate energy efficiency changes by a
weighted factor from e to: ( 2

2+x* + x*)e.
Putting all this together, aggregate energy use J will change from

J � H
e to J* � hA*

e* + hB*
e , as follows:

J � 1
2κe

J* � 2
κe

1 + x*( )
2 + x*( )2( ),

which means aggregate energy use changes by a factor of:

J*
J
� 4

1 + x*( )
2 + x*( )2 (24)

In the numerical example here, with x* = 3.43477 this is 0.7. In
other words, the action of the leading miner is expected to reduce
overall energy use by 30%. Moreover, as long as ϕ is positive, and
hence so is x* = ϕZ* >0, then aggregate energy use in the new
equilibrium is guaranteed to fall, because J*

J � 4 (1+x*)
(2+x*)2 < 1 for all

x* >0. In other words, the expected improvement in efficiency ϕ%
from R&D is not necessarily guaranteed to be high enough to induce
the leader into investing, but if it is, then aggregate energy use is
guaranteed to fall.

4 Long run competition

In the long run, the only revenue source for miners comes from
gathering transactions fees. Previous analysis up to this point only
included a fixed subsidy Ω without consideration of assumptions
relating to the demand for transactions over time. To emphasise just
how absolute this design feature of Bitcoin is, note that most of the
subsidy, and hence its long run total supply (more than 90%) has
already been extracted. In 2140 the subsidy will become so relatively
tiny, that this year was chosen as a cut-off point: the Bitcoin subsidy
will vanish entirely! It is worth just reflecting for a moment on how
important this is. It means that in the long run, only two variables
prop up the incentive for miners to provide effort, namely the
quantity of transactions processed per block, and their price. Their
value will always be obtained in the same way, by winning block
competitions. They will still compete with each other, and their
collective efforts will still be channeled into one single blockchain,
giving it value to end users. Economists refer to price and quantity
collectively as ‘demand’, and tend to think of it as being determined
by some kind of utility function associated with the end user, in this
case of Bitcoin transactions. As the price of individual transactions
rises, consumers will tend to substitute towards alternatives (existing
and emerging fiat and data management systems that provide
similar services). In other words, Bitcoin competes in a
marketplace alongside other systems. Up to now, this demand
has tended to stem either from strong ideological principles, or
relative price speculation (Schilling and Uhlig, 2019). Although the
former motive is culturally strong amongst a subset of the global

population, restricting the number of transactions per block logically
leads only to one of a combination of the following: long run real
resources that flow to miners (whose effort in turn secures the
system) will be limited; or demand will have to remain inelastic
while transactions fees rise. Similarly, there are limits to how long
speculative mania can persist in the long run. Previous work (e.g.,
Easley et al., 2019; Huberman et al., 2021) has taken a queuing
approach to this problem by assuming that users lose utility while
waiting for their transaction to appear confirmed on the public
Bitcoin blockchain. While there is some merit in this reasoning,
section 8 of the Bitcoin whitepaper (Nakamoto, 2008) includes
methodology referred to as ‘simplified payment verification’
(SPV), making the payment process more analogous to handing
a banknote to a merchant. It is true that for both parties, the more
time that passes, the more likely it is that the transaction is final. For
example, in the analogy of physical cash, the merchant (who is
presumably more concerned about a failed payment) might hand all
their banknotes over to a bank later, that scrutinises them more
carefully, and finds one forgery. In practical terms, SPV is like
physical cash in the sense that once a transaction has occurred, both
parties can consider it final, subject to a failure probability. Given
that the transaction is broadcast to all miners, depending on wallet
software, intermediate service providers and miner policies, both the
payer and the payee know that it should be included in a block
eventually. The only question is whether or not the person sending
the money tried to forge it and/or commit a double spend. SPV
offers the merchant some assurance even in the extreme case where
both parties are completely offline, let alone in cases where the
transaction has been broadcast. Overall then, when Bitcoin is
governed without the imposition of block size caps, payments
can be thought of as instantaneous, and transaction fees can be
determined freely based on the real underlying economic costs of
processing transactions. These principles may not apply to how BTC
Bitcoin works in practice today, but they are clearly articulated in
section 8 of the Bitcoin whitepaper, and some implementations like
Bitcoin SV apply them currently.

To get a better sense of how these assumptions shape the long
run, this section adds transaction processing demand and capital.
First, define p as the average price of one transaction (the average
transaction fee), and q as the number of transactions per 2 week
difficulty period, so that R = pq is the total transaction revenue
available during a difficulty period. Demand is defined by the
following equation, where ε is the elasticity of demand for a
transaction (how responsive user demand is to changes in
transaction fee charges):

p � q−
1
ε (25)

To the extent that individual miners are price takers in a
competitive fee market, this means that miner revenue can be
expressed purely as a function of the number of transactions they
decide to process:

R � q−
1
ε q � q1−

1
ε (26)

As before, the two miners A and B compete within difficulty
periods, but with R added to the fixed subsidy. Whereas Ω is
independent of time durations τ, in each difficulty period R expands
and contracts proportionately the same way hash costs γh do. The
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average cost of a hash is now labelled γh, distinguished from γTX, the
average cost of processing one transaction - how these two different
activities differ is explained later. As before, this analysis abstracts from
risk by assuming risk neutral preferences and hence avoiding the
complication of having to make specific assumptions about arrival
rate distributions of transactions over time. In other words, the overall
arrival rate of transactions is assumed to be constant, and captured by q.
Adding all this to A’s profit equation gives:

Ω + Rτ1( ) hA1
H1

− γhhA1 + γtxq1( )τ1
+ Ω + Rτ2( ) hA2

H2
− γhhA2 + γtxq2( )τ2 (27)

Although these extra terms require solving more complex cubic
equations, profit maximisation by A and B leads to the same type of
symmetric Nash equilibrium as before, as long as dynamic
equilibrium is obtained. The number of transactions q that flow
to miners will of course affect profits, but this variable here is
exogenous, unaffected by the number of hashes conducted. For now
this means that γtx does not appear in miners’ profit maximising
considerations, but it will affect investment decisions later. Overall,
these assumptions result in exactly the same equilibrium hash rates
as in previous analysis, except for the addition of R:

E1 ΠA[ ] � 2 Ω + R( )hH−1 − 2γhh

hA1* � hB1* � hA2* � hB2* � h* � 1

4
γh

Ω + R

� Ω + R

4γh
(28)

For now, the only two consequences of including transactions
fees are more complex intra-difficulty period equilibrium dynamics,
and a higher inter-difficulty period equilibrium hash rate with the
inclusion of R. Crucially though, miners now require transaction
processing capabilities in addition to just plain old hashing. In the
previous section, they had to consider how much hash capital, now
labelled kAh to purchase. As before, each micro unit of kAh releases
the miner’s constraints by sh hashes every 2 weeks. Although there
are complementarities in the production of hashes on the one hand,
and transaction verifying and batching together on the other, they
are two very distinct functions. Bitcoin’s transaction processing
design is based on a UTXO model that is superiour to account
based systems, because it allows parallelisation. Double spending
attacks are automatically ‘checked’ by miners as a simple by-product
of their need to keep an up-to-date record of the current intra 10 min
set of unspent transaction outputs. This may sound complicated, but
it can best be thought of as miners having to manage a set of labelled
boxes with coins moving from box to box, rather than having to
check the global state of every single account, every time a single
transaction is checked and verified. Despite this natural advantage,
specific hardware and software is still required. The more
transactions that have to be gathered, verified, and processed into
blocks, the more hardware will be needed, and the higher will be
variable costs just as before with conducting hashes. Define
transaction processing capital purchased by miner A as kAtx, each
unit of which is capable of processing stx transactions during
2 weeks. The price of transaction capital as ptx, and its speed
(how many transactions a unit of capital can process in 2 weeks)
as stx, these can be added to the miner profit maximisation problem
from the previous section as follows:

E1 ΠA[ ] � Ω + stxkAtx1( )1−1
ε( ) hA1

H1
+ hA2
H2

( )
−γhsh hA1

�H0

H1
+ hA2

H1

H2
( ) − γtxstx

�H0

H1
+ H1

H2
( )

−pkhkAh1 − pktxkAtx1

(29)

Note that this involves optimally choosing both kAh and kAtx
simultaneously, with the aim of balancing hashing and transaction
processing capabilities. In dynamic equilibrium, this becomes (as
before, aggregate hash capital is K = kAh + kBh):

E1 ΠA[ ] � Ω + stxkAtx( )1−1
ε( ) 2kAhK

−1[ ]
− 2γhsh + pkh( )kAh − 2γtxstx + pktx( )kAtx (30)

Profit maximisation requires fulfilling two first order conditions
(dropping A notation that denotes miner A):

δΠ
δkAh

� 2 Ω + stxktx( )1−1
ε( ) kh( ) − 2γhsh + pkh( )4k2h � 0

δΠ
δkAtx

� 1 − 1
ε

( )s1−1
ε

tx k
−1
ε

tx − 2γtxstx + pktx( ) � 0,

Which rearranges to:

2 Ω + stxktx( )1−1
ε( ) kh( ) − 2γhsh + pkh( )4k2h � 0

1 − 1
ε

( )s1−1
ε

tx k
−1
ε

tx − 2γtxstx + pktx( ) � 0,

Rearranged for the optimal choice of hash and transaction
capital as:

kh* � Ω + stxktx( )1−1
ε

2 2γhsh + pkh( ) (31)

ktx* � ε − 1
ε

( )ε

2γtxstx + pktx( )−εsε−1tx (32)

The first of these equations shows that as the Bitcoin subsidy Ω
tapers to zero in the future, forward-looking miners invest relatively
less and less in energy intensive hash capital (and hence conduct
relatively fewer hashes per time period) compared to transaction
capital and processing. Just as in the previous section, the hash
capital choice, with its corresponding hash rate, represents a
‘maximum’ in the sense that the h* � Ω+R

4γh
rate derived earlier will

be the equilibrium choice if the choice above turns out to be higher
(which will be true for a low enough price of hash captial pkh, for
example).

The volume of transactions is defined by the following equation:

Q* � 2 × ktx* × stx � 2
ε − 1
ε

( )ε

2γtxstx + pktx( )−εsεtx (33)

This shows clearly that transaction volume rises (and hence
transaction prices fall), as the underlying cost of transaction
processing γtx falls, as the price of transaction capital pktx falls,
and as the speed of transaction processing stx rises.

The previous section documented that aggregate energy use was
guaranteed to fall, if a Stackelberg leader optimally invests in
discovering and using energy efficiency improvement technology,
even without followers adopting it. This positive result is partly
thanks to the fact that as leaders’ hash rates expand, followers with
less efficient technology contract. Over time, followers are
incentivised to catch up with leaders, reinforcing the adoption of
the more efficient technology. Now adding to this, what happens to
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aggregate energy in any new equilibria where transaction capital
efficiency improves? To keep analysis simple, assume the
follower has already caught up with the leader, so hA* � hB* �
h* andH* = 2h*, and also assume the case of the simpler low hash
capital price equilibrium, h* � Ω+R

4γh
. So distinguishing hash

capital efficiency eh from transaction processing capital
efficiency etx and defining Q* = 2q*, then the total energy use
is the sum J* � Jh* + Jq* where:

Jh* � H*
eh

� Ω + R*
2ch

(34)

Jq* � Q*
etx

� 1
2etx

stx
2γtxstx + pktx

( )2

, (35)

and where R* � q*
ε−1
ε . Notice as well that γh is replaced by c

eh
, which

cancels out eh from Jh*, so that
δJ*
δeh

� 0. In other words, improvements
in hash capital efficiency never increase or decrease aggregate energy
use. It is always the case that as miners adopt better hashing
technology, the higher hash rates are exactly offset by the lower
energy use per hash.

There are many other questions that can be answered from here,
which will be better answered with calibration of the various
parameters from empirical work. But this section finishes with
arguably one of the most important. Users of Bitcoin get utility
from the transaction and public ledger services they provide, instead
of existing alternatives. So how much energy is used up per
transaction? In other words, how useful is Bitcoin, compared to
its energy consumption, and what happens over time as technology
improves? On aggregate, energy used per transaction is given by J*

Q*.
All the various definitions can be combined and rearranged to the
following:

J*
Q*

� 1
2

ε

ε − 1
( )εshs−εtx 2ctxe

−1
tx stx + pktx( )ε

eh 2γhsh + pkh( )
× Ω + ε − 1

ε
( )ε−1

s
ε−1( )3
ε2

tx 2ctxe
−1
tx stx + pktx( )1−ε( ) + e−1tx

(36)

Although this is complex, with many terms, it can easily be
shown that for ε > 1, meaning demand for transactions is elastic, and
all other normal parameters positive, the differential of this term
with respect to transaction processing efficiency etx is always
negative

δ J*
Q*

δetx
< 0. In other words, for a reasonable level of

responsiveness of demand to changes in the price of transactions
(which is more likely, the more alternative systems Bitcoin competes
with), improvements in transaction processing efficiency always lead
to reductions in energy use per transaction over time.

5 Conclusion

In conclusion, this paper has explored the nature of long run
competition in Bitcoin by taking a standard dynamic short run
model, extending this to a Stackelberg game in the medium run,
and then introducing transaction demand and supply in a free
market with no artificial volume quotas. Although users of Bitcoin
today may be driven more by ideological principles and price
speculation, there is no a priori reason why utility derived from
secure transaction and data services should be ignored. In a
competitive, unrestricted environment, Bitcoin could compete

with existing services (and has some natural advantages to
other systems, by design). The analysis presented here could
be developed more in the direction of a fully-fledged mainstream
DSGE model (Christiano et al., 2018), with stochastic shocks,
clearing conditions, simulation of linearised equations, and so
on. This work can also be taken in different directions, including
empirical testing of the rational benchmark assumptions laid out
here, policy analysis, and long term thought experiments on how
Bitcoin could evolve in the future. For the assumptions laid out
here, it has demonstrated that in the medium run, when leaders
consider investing in R&D that improves the efficiency of
hashing (and/or new equipment that is more energy efficient),
aggregate energy use unambiguously falls. In the long run,
forward-looking miners are incentivised to optimally pivot
towards investing relatively more in transaction processing
capital, and relatively less in hash capital. As they do so,
aggregate transaction volumes rise, average Bitcoin transaction
fees fall, and, as long as the demand for transaction and ledger
services is elastic enough, aggregate energy use per transaction
falls. Although Bitcoin is complex by design, this remarkable
result mostly derives from a very simple idea: dynamic
competition. Figure 3 shows the competitive arena where
contests determine one single winner every 10 min. It is
permission-less in the sense that any enterprise is free to enter
and leave any time, but only the strong survive. If a miner’s
average hash, transaction processing, networking and other
relevant costs are too high compared to their competitors,
they make a loss, leading to either bankruptcy, or substitution
of capital redirected elsewhere.

The short contests determine a single winner every 10 min, not
by miner benevolence (though that can be a motive as well), but by
one miner demonstrating proof of work from conducting hashes
that are costly in real economic terms. Forward-looking miners gain
more profit by seeking and finding innovations and investing in the
latest, most efficient technology. In the long run, although the proof
of work process will always form the basis of establishing winners of
these contests, miners will only earn reward by harvesting
transaction fees into blocks, so their ability to run hashes has to
be balanced with their ability to efficiently conduct these other
activities. This paper has made a step forward towards
understanding how this balance plays out in a long run
equilibrium. Interestingly, just as in prior work, there is a hint
here at the possibility of more efficiency from multiplier effects: the

FIGURE 3
Long run competitive forces.
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most efficient miners tend to provide the largest proportion of hash
effort, and the higher are the potential rewards from gathering
transaction fees, the more effort there will be. If this effort makes the
blockchain more secure, this in turn should increase demand,
further increasing potential rewards and so on. This effect
(endogenising the connection between overall hash rates,
Blockchain security, and transaction service utility) would
strengthen the positive conclusions laid out here, as would
positive network effects that increase utility for end-users.

Another implication of this work relates to the possibility of
selfish mining strategies laid out originally in Eyal and Sirer
(2018) (see also Negy et al., 2020, and Hinzen et al., 2022 for an
example of concerns over stable consensus achievement).
If, however, miners find it profitable to signal their behaviour
to each other by their actions as described in this paper,
deviations from these equilibria could become unprofitable.
Similarly, miners can be ignored by the consensus if they
deviate from any agreed interpretation of the rules laid out in
the Bitcoin whitepaper, so these concerns may be over-stated.

The focus here was on competitive and strategic (game
theoretic) interactions between a limited number of miner
participants. Easley et al. (2019) and many others assume free
entry results in a zero profit condition. Although this is
common, some of the economic literature argues that this is
not necessary (Ferreira and Dufourt, 2007). Entry/exit and
industry structure however, could be further developed by,
for example, including a fixed cost term F in the profit
function. In the medium run analysis, a zero profit condition
like the following that derives directly from the medium run
section could be solved to pin down the number of miners n.
More complex modelling could relax the linear cost function
assumptions, and more theoretical work could attempt to
generalise these results. In the example below, from the
2 period model with hash capital, the ratio F

2Ω will define how
many miners can enter before profits drop below zero:

2Ω
n

− V( )kA* − F � 0

It is conjectured here that this addition will not change key
conclusions. Similarly, forces that move the industry towards an
asymmetric structure could be modelled. Miners that gain
competitive advantages over others end up with higher profits
and hash rates, but whether these are reinvested, and what forces
push and pull miners up and down the relative size distribution
need to be explored. It is highly likely that, just as with many
other similar economic phenomena (Gabaix, 2016), Bitcoin
miners’ size and capabilities naturally end up arranged as a
power law structure. Indeed, this is casually what is observed
today - empirical work determining their exact structure offering
another avenue for further research. Power law structures are
even more likely in Bitcoin, partly because actual outcomes at the
block competition level are stochastic (specifically following a
sum of exponential distributions also known as ‘Erlang’), and
partly because just as with City size, network effects manifest
themselves in various ways. At the level of transactions it is
obvious that miners with better capabilities in gathering them
gain advantages. But miners also gain from investing in better
connections to others in order to gain time advantages by

receiving blocks faster (starting the race earlier) and
distributing to others faster (ending the race earlier). It is
more advantageous to be better connected to the better
miners. So modelling how they consolidate into structures
like Mandala networks offers an interesting area for further
research.

Another area for further work could endogenise risk sharing
within mining pools (Cong et al., 2020; Lewenberg et al., 2015),
although this is unlikely to change the inter-enterprise interactions
laid out here. Two mining pools that compete with each other do so
in some ways, similarly to two mining enterprises that are not
distributing hash work across multiple parties and sharing the
proceeds to smooth revenue streams.

The benefits of providing cheaper transaction services have often
been overlooked in the literature, which has instead taken
anonymity and small-size, high-frequency miner distributions as
goals in their own right (Leshno and Strack (2020) even refer to these
outcomes as ‘axioms’). However, explicitly modelling how Bitcoin’s
underlying UTXO model is more efficient than account-based
updating systems provides another avenue for further work
(including intra-difficulty period “saw tooth” hashing behavior).
Similarly, Bitcoin Script, the underlying language transactions
are written in, allows highly complex conditionality, and hence
token and smart contract systems to be built. What should
happen if, for example, miners are able to charge different fees
for different sized transactions? Including heterogeneity of
transaction types offers an interesting area for extending the
demand model laid out here.

Long term governance issues should also be explored further.
Today, Bitcoin and many similar distributed public ledger
technologies enjoy a certain degree of immunity from
regulation by virtue of being ‘decentralised’, even though
critical design changes are frequently made by highly
centralised decision-making groups (Walch, 2019). One of the
great benefits of Bitcoin is that everything takes place in full,
auditable public view, albeit behind private/public signature
aliases. This is why attempts to place and distribute AI
processes on top of Bitcoin have already begun (Sgantzos and
Grigg, 2019), facilitating much needed AI process transparency.
By naturally integrating with IPv6, Bitcoin also brings
competitive advantage in the form of ‘diverse peer-to-peer
payment mechanisms and advanced identity-management
using cryptographically generated addresses’ (Davies and
Pagani, 2022). This paper has added to others by highlighting
the importance of miner market structure. It assumed
transaction fees are set in a free market with no block size
cap, but in this case, how can anti-competitive practices be
prevented by regulators? To what extent are the benefits that
stem from removing a single point of failure maintained even
when equilibrium results in just a few very large miners? These,
and many other questions are left for exploration in future work.
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