
Enhanced scalability and privacy
for blockchain data using
Merklized transactions

Jack Davies1,2*
1Research and Development, nChain, London, United Kingdom, 2Centre for Networks and Collective
Behaviour, University of Bath, Bath, United Kingdom

Blockchain technology has evolved beyond the use case of electronic cash and is
increasingly used to secure, store, and distribute data for many applications.
Distributed ledgers such as Bitcoin have the ability to record data of any kind
alongside the transfer of monetary value. This property can be used to provide a
source of immutable, tamper-evident data for a wide variety applications
spanning from the supply chain to distributed social media. However, this
paradigm also presents new challenges regarding the scalability of data
storage protocols, such that the data can be efficiently accessed by a large
number of users, in addition to maintaining privacy for data stored on the
blockchain. Here, we present a new mechanism for constructing blockchain
transactions using Merkle trees comprised of transaction fields. Our construction
allows for transaction data to be verified field-wise using Merkle proofs. We show
how the technique can be implemented either at the system level or as a second
layer protocol that does not require changes to the underlying blockchain. This
technique allows users to efficiently verify blockchain data by separately checking
targeted individual data items stored in transactions. Furthermore, we outline
how our protocol can afford users improved privacy in a blockchain context by
enabling network-wide data redaction. This feature of our design can be used by
blockchain nodes to facilitate easier compliance with regulations such as GDPR
and the right to be forgotten.

KEYWORDS

blockchain, scalability, privacy, efficiency, networks, data, redaction, compliance

1 Introduction

The use of the blockchain as a data source for various applications has significantly
increased in recent years Ali et al. (2017); Sgantzos and Grigg (2019), Liang et al. (2020).
Blockchains such as Bitcoin and its derivatives utilise a scripting language to lock and spend
the native blockchain token. These scripts generally contain opcodes that operate on small
items of data, such as public keys and digital signatures, for the purpose of transferring
funds and verifying transactions. However, it is also possible to use these scripts to embed
any kind of data on the blockchain. This data is sometimes called ‘arbitrary’ data because it
does not relate to the conditions used to transfer the funds themselves Matzutt et al. (2018).
There are several ways in which data can be embedded on Bitcoin-like chains using the
scripting language, and the use of these methods has grown substantially over time
Bartoletti and Pompianu (2017). One of the primary motivations for including such
data on the blockchain is that it creates an immutable record for the data, which can
improve transparency for a wide range of applications by enabling reliable proofs of data

OPEN ACCESS

EDITED BY

Luigi Vigneri,
IOTA Foundation, Germany

REVIEWED BY

Lianna Zhao,
Imperial College London, United Kingdom
Darcy Camargo,
IOTA Foundation, Germany

*CORRESPONDENCE

Jack Davies,
j.davies@nchain.com

RECEIVED 14 May 2023
ACCEPTED 20 December 2023
PUBLISHED 09 January 2024

CITATION

Davies J (2024), Enhanced scalability and
privacy for blockchain data using
Merklized transactions.
Front. Blockchain 6:1222614.
doi: 10.3389/fbloc.2023.1222614

COPYRIGHT

© 2024 Davies. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Blockchain frontiersin.org01

TYPE Original Research
PUBLISHED 09 January 2024
DOI 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/articles/10.3389/fbloc.2023.1222614/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1222614/full
https://www.frontiersin.org/articles/10.3389/fbloc.2023.1222614/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2023.1222614&domain=pdf&date_stamp=2024-01-09
mailto:j.davies@nchain.com
mailto:j.davies@nchain.com
https://doi.org/10.3389/fbloc.2023.1222614
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2023.1222614


integrity Bartoletti and Pompianu (2017); Sgantzos and Grigg
(2019); Aitsam and Chantaraskul (2020).

Despite the compelling use case for embedding arbitrary, non-
payment data on the blockchain, the ability to do so has given rise to
new problems and challenges. Most notably the inclusion of illicit
data on the blockchain Zhang et al. (2021); Aitsam and Chantaraskul
(2020); Deuber et al. (2019). These are cases where illegal or
inappropriate data has been added to the ledger either for
directly nefarious purposes or to undermine the credibility of the
blockchain itself. In addition, issues have been raised regarding the
“right to be forgotten” Ateniese et al. (2017) and the need for
compliance with legal requirements around data processing, such
as the General Data Protection Regulation (GDPR) Shah et al.
(2019). The existence of these concerns when embedding data on
the blockchain has brought with it calls for blockchain
implementations and designs to build in mitigations for these
issues, such as the ability for illegal data to be redacted from the
blockchain Matzutt et al. (2018).

A range of previous efforts have been made to address these
problems by introducing data redaction capabilities to blockchain
designs Zhang et al. (2021). Early proposals Rajasekhar et al. (2018);
Ateniese et al. (2017) that sought to enable redaction for blockchain
data relied upon Chameleon hashes. While tackling the issue
directly, these solutions also introduce the problems of needing
central coordination and allowing mutability of block data,
undermining the desired immutability property in general. The
use of voting or consensus-based mechanisms to remove data
from the blockchain at the system level have also been proposed
Deuber et al. (2019); Zhang et al. (2021). Such techniques require a
high level of network-wide coordination and do not allow individual
nodes to unilaterally remove data locally, whilst also requiring
changes at the blockchain protocol level.

As identified in Zhang et al. (2021), other mechanisms include
the creation of “meta-transactions” or by pruning data directly from
the blockchain. The creation of such meta-transactions leads to
general transaction mutability and in some cases allows for the
removal of full transaction history from the blockchain. The
pruning-based mechanisms introduce the concept of block expiry
for older data, which may force users to spend transactions within a
given time period to avoid their loss in the system. However, these
mechanisms benefit from their efficiency as they do not rely on
heavy cryptographic primitives and are lightweight in nature. More
recently, ring signatures have been suggested as amethod to improve
the scalability and privacy of blockchain redaction techniques
Huang et al. (2021), but this also mandates changes to the
underlying blockchain protocol and can sacrifice immutability as
a system-wide property.

In related problem spaces, Liang et al. (2020) addresses the
challenge of resilience to data loss within a network, while Yang et al.
(2018) outlines a method to provide secure proof of deletion using
the blockchain. These mechanisms utilise the blockchain to improve
concerns around the use of data, but they do not directly address the
issue of ensuring blockchain data can be handled efficiently and
privately in compliance with GDPR and other laws.

This paper presents a novel approach to the redaction and
management of sensitive blockchain data. The proposed
mechanism builds on concepts from the meta-transaction and
pruning frameworks Zhang et al. (2021) to solve the problem

using Merklized transactions. The solution has the following
properties:

• enables transaction redaction without introducing mutability
to the underyling blockchain

• does not require a central authority to coordinate
data redaction

• allows any blockchain node to unilaterally redact transaction
data from their copy of the blockchain

• is scalable and allows lightweight proof-of-existence
verification for blockchain data

We also build on the core solution to outline how blockchain
regulatory protocols can be implemented to enable nodes to more
easily comply with GDPR and other legislation.

2 Background

In the following we describe the necessary background to build
up our proposed blockchain redaction mechanism. In general the
mechanism we outline in this paper is blockchain-agnostic, and can
therefore be applied to any blockchain that uses a typical
transaction-based ledger. The protocol outlined in this paper can
be applied to any such blockchain by choosing appropriate fields of
the transaction as the leaves of each transaction Merkle tree, as
explained in Section 3. The proposed design does not depend on the
consensus algorithm (e.g., Proof-of-Work, Proof-of-Stake) of the
underlying blockchain, and can be applied whether the blockchain
uses a UTXO-based transaction structure like Bitcoin or an account-
based structure like Ethereum. For the purposes of this paper, we use
Bitcoin as an illustrative example to show directly how the solution
applies to Bitcoin-like chains, such as Bitcoin Core (BTC), Bitcoin
Cash (BCH), or Bitcoin Satoshi’s Vision (BSV).

2.1 Bitcoin

Bitcoin is a peer-to-peer electronic cash system that enables
multiple parties to transact directly with one another, without
needing to rely on trusted third party as a mediator. The system
maintains a distributed ledger, formed of blocks of many
transactions, and utilises a Proof-of-Work (PoW) consensus
algorithm to append new blocks to the chain. The native token
of the blockchain, denominated in Satoshis, can be transferred
between users through new transactions whereby digital
signatures allow the movement of funds to be validated.

The blockchain ledger is maintained by a network of nodes. Each
node is responsible for aggregating and ordering users’ transactions
into blocks and attempting to find a PoW solution for their block by
expending computational power. The nodes are incentivised to do
this through a block reward, which itself contains a block subsidy
and transaction fees. The block subsidy halves approximately every
4 years, meaning that over time the incentive to create blocks is
increasingly made up of the fees paid in each transaction.

Once a transaction has been included in the blockchain, or has
reached a certain depth due to subsequent blocks built on top, it
becomes computationally infeasible to alter the its data or claim an

Frontiers in Blockchain frontiersin.org02

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


alternative record existed in its place. This is a statement of the
immutability property of Bitcoin-like chains. This property should
be distinguished from indelibility, or the property that data can be
removed from the blockchain. Bitcoin-like chains are immutable due to
the PoW process, but they are not indelible since data can be pruned
from the blockchain. The data that can typically be pruned from the
blockchain is anything that cannot be used in a future spending
transaction, such as in transactions whose outputs have already been
spent. The data stored using the most common embedding methods
Bartoletti and Pompianu (2017) can also be pruned in this way.

2.2 Blocks

A Bitcoin block (B) is used to collect and order a batch of
transactions. These blocks are produced by Bitcoin nodes in regular
time intervals of approximately 10 min and comprise three core
components as shown in Figure 1.

2.2.1 Block header
The block header contains the metadata of a block including the

protocol version number, timestamp, previous block hash and two
PoW parameters (bits and nonce). The header also contains a
Merkle root, which uniquely summarises the ordered set of
transactions contained in the block using a Merkle tree
Merkle (1980).

2.2.2 Transaction list
The second component is the full list of transactions included in

the block. Each transaction is itself a separate data structure
containing additional fields, and the first transaction in the block
is called the coinbase transaction. The transaction count is simply a
variable field which encodes the total number of transactions
included within the block.

The block header has multiple important functions. First, it
creates a one-way link to the previous block header, which gives rise
to the chain of blocks that constitute the overall blockchain data
structure. The block header also encodes the PoW expended to
create the block that can be easily verified by other nodes and entities
using only the chain of successive block headers. Finally, the block
header contains the Merkle root as a cryptographic commitment to

the set of transactions in the block, which we exploit in our protocol
to achieve blockchain data redaction.

2.3 Transactions

A Bitcoin transaction (Tx) is used to convey a transfer or value
between users or to record data on the blockchain. Each transaction
has a unique identifier defined as the double SHA-256 hash of the
transaction contents TxID≔H(Tx).

2.3.1 Transaction structure
The contents of each transaction must conform to a common

structure as outlined in Figure 2. Each transaction contains a version
number and a locktime, in addition to a list of inputs and a list of
outputs. The inputs are defined by a separate data structure
containing a previous transaction identifier (TxIDPrev), a previous
output index (vout), an unlocking script and its length, as well as a
sequence number. Similarly, the outputs are defined by a separate
structure, containing a Satoshi-denominated output value, a locking
script and the length of the locking script.

2.3.2 Coinbase transactions
The first transaction in each block is a special case, the coinbase

transaction. These transactions are used to distribute new tokens to
the node that created the block, and as such these transactions are
subject to different transaction validation rules. Specifically,
coinbase transactions do not spend a previous transaction output,
meaning the input script of a coinbase transaction can contain any
arbitrary data as the script will not be validated by the blockchain
protocol. We call these “coinbase scripts”, and we utilise them in our
solution to enable redaction as a second-layer protocol that can be
implemented voluntarily by any node.

2.4 Merkle proofs

In Bitcoin, the use of a Merkle tree to encode the set of
transactions in a block allows for efficient lightweight verification

FIGURE 1
The data structure of a Bitcoin block.

FIGURE 2
The data structure of a Bitcoin transaction.

Frontiers in Blockchain frontiersin.org03

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


that a given transaction is part of a block. The mechanism used to
perform such a check, given a candidate transaction Txi, located at
index i in a block B, and the Merkle root RB of the block, is known as
a Merkle proof (π) Merkle (1980). This proof comprises a set of hash
values used to recover a candidate Merkle root R′. If R′ = RB then the
proof is valid and Txi is contained in B. Note that the entire data of
Txi is required to verify such a proof.

3 Merklized transactions

The goal of the following is to define a framework for managing
blockchain data that has two properties. First, it should allow for the
efficient verification of any item of data on the blockchain without
the need for the full transaction data. Second, the scheme should
enable data to be easily redacted from the chain at the discretion of a
given node to increase the levels of privacy available to
blockchain data.

An additional design principle of the proposed mechanism is
that it may be implemented without change to the underlying
consensus protocol of a given blockchain. While the design
outlined in this section may be implemented more simply at the
base layer (“layer 1”) for a chosen blockchain, it has been designed in
such a way that it can also be deployed as a “layer 2” solution on top
of most blockchain networks. This choice is to ensure that the
proposed mechanism can be used to enable transaction data
redaction regardless of whether the protocol is adopted uniformly
by the nodes of a blockchain network. In what follows, we focus on
the design details for the layer 2 approach, which allows any
individual node to facilitate data redaction unilaterally. This can
help any node meet the regulatory and legal obligations of the
jurisdiction in which it operates without requiring that other nodes
on the network also use this protocol.

The core of the proposed mechanism is to use a Merkle tree to
represent the contents of each transaction stored on the blockchain.
This allows for smaller subsets of the transaction data to be verified as
included on the blockchain, after the transaction has been mined,
without requiring the whole transaction data for the post hoc
verification. In any given implementation of this mechanism,
transactions may be split into different fields to form the Merkle
tree to allow different subsets of information to be verified after the
transaction is mined. The protocol may also be adapted to each
underlying blockchain protocol by choosing different fields or subsets
of transaction data to be used as leaves of the transaction Merkle tree,
as appropriate.

3.1 Transaction identifiers

As described previously, every Bitcoin transaction Tx has a
unique identifier TxID associated with it. Because this identifier
is derived from the double-hash of the transaction, this means that
the entire transaction must be possessed in order to verify whether
any subset of the transaction content exists on the blockchain.

The first aspect of the proposed solution is that a secondary
identifier can be generated for each transaction. In general this can
be thought of as a “meta” transaction identifier, and we can use the
notation MTxID to refer to it. We propose that such a secondary

transaction identifier must be some function F of the full transaction
data, such that MTxID≔F(Tx). This ensures that all of the data
within Tx can be identified by MTxID. However, to fulfil our stated
goals, we must also ensure that only a subset of the contents of Tx are
required to verify that something is contained within Tx.
Furthermore, we must ensure that MTxID is unique to Tx.

3.2 Merkle-based transaction identifiers

The proposed mechanism to generate a secondary transaction
identifier that is unique and only requires a subset of Tx to verify is to
use a Merkle tree. In this approach, we define the secondary
identifier as MTxID = R, where R is the root of a Merkle tree T.
In our construction, the leaves of T are comprised of the contents of
Tx split into discrete segments, such that the entirety of Tx is
collectively contained within the set of leaves of T.

This approach ensures the uniqueness of MTxID because the
root is derived from successively hashing the leaves of the Merkle
tree using a one-way cryptographic hash function (e.g., SHA-256).
Changing any of the data within the leaves, or the order of the leaves
of T, will necessarily alter the resulting MTxID identifier. An
example structure of such a transaction-based Merkle tree T is
shown in Figure 3.

3.3 Transaction splitting

As outlined in other Merkle-based protocols for blockchain data
applications such as Bruschi et al. (2021), the use of a Merkle tree
inherently allows for compact and efficient proofs of existence. The
proposed system extends this property to individual fields of blockchain
transactions, such that any item of data within any blockchain
transaction can be independently verified in isolation. This presents
a signficant efficiency gain when compared with existing blockchain
Merkle proofs where the entire transaction is required.

In our scheme, a transaction Tx is segmented into a set ofM data
packets D1, . . .DM. There are many possible ways the transaction
data can be split and we here outline a few options as examples.

3.3.1 Field-wise splitting
The transaction can be split simply into its component fields,

whereby each field will correspond to a single leaf of the transaction
Merkle tree T used to generate MTxID. For improved efficiency,
some fields may be grouped together by concatenation. An example
would be to group the “non-script” fields together and leave each
script to a separate leaf of the tree, since data redaction will most
likely occur for script fields.

3.3.2 Field-wise granular splitting
A variant of field-wise splitting would be to further split each

script field into multiple data leaves, such that individual elements of a
single script can later be redacted without removing the entire script.

3.3.3 Fixed number of packets
Each transaction may alternatively be split into a fixed number

of packets, meaning packet size will be constant for a given
transaction and determined by its size. Different transactions will

Frontiers in Blockchain frontiersin.org04

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


have different sizes and therefore have different packet sizes in
this scenario.

3.3.4 Fixed packet size
A similar strategy would be to fix the packet size for the Merkle

tree and allow its number of leaves to increase depending on the size
of the transaction.

Our scheme is agnostic to the choice of splitting methodology
and can be implemented in any of these ways, depending on the use
requirements of nodes or the particular use case.

3.4 Binding to original transaction identifier

The proposedmechanism can be implemented as a layer 1 protocol
simply be replacing the TxIDs withMTxIDs within the base consensus
algorithmof the blockchain used. However, in a layer 2 settingwhere we
do not modify the underlying consensus protocol, we require an
alternative way to bind the secondary transaction identifier MTxID
to the original identifier TxID. This can be achieved either by including
TxID as an additional leaf in the transaction Merkle tree or by
prepending the TxID to each leaf in the transaction Merkle tree.
Both options ensure that the entire transaction Tx must be

processed when MTxID is first generated and that each other leaf is
inextricably linked to the full original transaction data.

3.5 Identifier generation

The steps to generate an MTxID for a given transaction Tx are
outlined in the Algorithm 1. In this algorithm the function
Merklize() generates a typical binary Merkle tree from a set of
leaf data items, whose Merkle root is labelled R.

Input: Transaction Tx

Output: Transaction Identifier MTxID

1: Generate TxID ← H2(Tx)

2: Split Tx into M packets D1, . . ., DM
3: Generate T ← Merklize(D1, . . ., DM, TxID)

4: Set MTxID ← R

5: return MTxID

Algorithm 1. Transaction Identifier Generation.

The generation algorithm is intended to be used by a node when
it first receives a new transaction in the blockchain network. In the
layer 1 setting, this algorithm would be used to directly generate

FIGURE 3
A schematic outline of Merkle-based transaction identifier generation.

Frontiers in Blockchain frontiersin.org05

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


MTxID as the canonical transaction identifier for a given transaction
Tx used for the consensus algorithm and block generation process.

When used at layer 2, this generation algorithm can be used by
any node voluntarily using our proposed mechanism to prepare
transactions for potential data redaction at a future time. If the
node wishes to include a transaction in its own block, it should
construct the block according to a modified block generation process
(see Algorithm 3) that incorporates the above algorithm to ensure that
the MTxID is bound to the canonical TxID for this transaction, such
that the node can later redact data contained in Tx without sacrificing
the ability to prove the existence of the non-redacted content of Tx, as
required. If the node does not wish to include Tx in its own block, it
may still store the correspondingMTxID locally for similar purposes.

3.6 Identifier verification

The corresponding protocol for verifying a secondary
transaction identifier, given MTxID and Tx, is detailed in
Algorithm 2. The root of the generated tree T′ is labelled R′.

Input: Transaction Identifier MTxID, Transaction Tx

Output: True/False

1: Generate TxID ← H2(Tx)

2: Split Tx into M packets D1, . . ., DM

3: Generate T′ ← Merklize(D1, . . ., DM, TxID)

4: Set MTxID′ ← R′
5: if MTxID = MTxID′ then
6: Result ← True

7: else

8: Result ← False

9: end if

10: return Result

Algorithm 2. Transaction Identifier Verification.

This algorithm is used to verify that a given MTxID has been
correctly generated for a given Tx, and therefore requires the full data of
the transaction. For this reason, Algorithm 2 is only directly relevant to
blockchain nodes in a layer 1 implementation of the mechanism and
during the consensus process, while a new transaction is propagating
through the network for inclusion on the blockchain andwhen verifying
a new block that contains the transaction. Algorithm 2may nonetheless
be used at any time in a layer 2 setting by a node or a third party external
to the blockchain network in possession of the full transaction dataTx to
verify it has been correctly associated with an MTxID by nodes
voluntarily using our proposed mechanism as a layer 2 protocol.

The transaction identifier verification process should not be
conflated with the process of verifying, in the absence of the full
transaction data Tx, whether an individual data portion Di of the
transaction has been included on the blockchain. This process is
instead referred to as a lightweight proof of existence verification and
is outlined in Section 4.4.

4 Data redaction

The previous section outlined a process for generating secondary
transaction identifiers for blockchain transactions. These identifiers

areMerkle-based to allow the granular verification of data fields. The
verification of an individual field using an MTxID is more efficient
that using the traditional TxID because it does not require the
verifier to obtain the full transaction data Tx. We now use this
technique as a building block to enable data redaction for Bitcoin-
like ledgers.

4.1 Trusting transaction identifiers

Previously, deleting any part of a transaction would compromise
the ability of a blockchain node to prove the existence of data
contained within the rest of the transaction. The introduction of
MTxIDs now enables data to be redacted from the blockchain by
allowing nodes to simply delete particular leaves from a transaction
Merkle tree T. Deleting these leaves does not prohibit the node from
providing compact proofs of existence for the remainder of the
transaction, or even verifying future spending relationships with the
transaction in question. However, the addition of anMTxID for each
transaction is only part of the solution. Specifically, we need a
mechanism to establish trust that a given MTxID has been
generated correctly for the corresponding transaction. Without
having a publicly known and reliable attestation of the MTxIDs
for each transaction, we cannot use them to prove with confidence
that a particular data item actually exists on the blockchain.

To prove that a data element Di is included in a transaction on
the blockchain, we must prove both of the following:

• there must be a valid proof πM connecting Di to a secondary
identifier MTxID; and

• there must be a valid proof πB that MTxID corresponds to a
valid transaction Tx on the blockchain that can also be
identified by TxID

If both conditions are met, we can be convinced that Di exists at
the claimed location on the blockchain.

The first condition is met simply by obtaining πM, which is the
set of hashes corresponding to a standard Merkle proof Merkle
(1980) that proves the leaf data Di is a member of the set of leaves of
the Merkle tree corresponding the Merkle root R = MTxID for the
transaction in question.

The second condition is easily met in a layer 1 setting, where
MTxID is simply the canonical transaction identifier for the
transaction, assuming that the consensus algorithm has been
modified appropriately to ensure this. In this case, the proof πB
is simply the standard Merkle proof that connects MTxID to the
Merkle root RB of a valid block B in the blockchain, in the same way
that there exists a Merkle proof in the Bitcoin consensus algorithm
that currently connects each transaction identifier TxID to a root RB.

In a layer 2 setting however, a participating node must perform
additional steps during the block generation process to ensure that a
valid πB will exist for a given MTxID. In the following subsections,
we outline how a node may generate a secondary block Merkle tree,
in addition to the standard Merkle tree of a Bitcoin block, and
include the root RM of this secondary tree in a coinbase transaction
during block generation. By including both RB and this additional
root RM when generating a block, the participating node establishes
the required information for a valid proof πB in the layer 2 setting.

Frontiers in Blockchain frontiersin.org06

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


The use of πB to verify the existence of a transaction data portion on
the blockchain is then outlined in Section 4.4.

4.2 Secondary block Merkle tree

To achieve such a proof, we introduce a secondary block Merkle
tree denoted by TM and whose root is RM. For a block B containingN
transactions, the leaves of TM correspond to the set of secondary
transaction identifiers MTxID1, . . ., MTxIDN for the transactions
Tx1, . . ., TxN contained with the block. In other words, TM is
effectively a tree of Merkle trees. The proposed redaction
mechanism relies on a node including the root RM in the
coinbase transaction of blocks they successfully generate.

The structure of a secondary block Merkle tree is outlined in
Figure 4. As shown, the order of the transactions used to derive TM

must be the same as the order of the transactions as they appear in
block B and its original block Merkle tree TB. The exception is the
coinbase transaction, which does not appear in the secondary tree.
The coinbase transaction is necessarily excluded from TM because
our redaction protocol requires RM to be stored in the coinbase
transaction itself.

4.3 Block generation protocol

To facilitate the redaction of data after it has been included on
the blockchain in a block B, we require only that the node

responsible for generating B also includes the root RM in the
coinbase transaction. This represents a minor modification of the
standard process of generating Bitcoin blocks that a node
participating in this redaction scheme. The details of the updated
block-generation protocol is shown in Algorithm 3. The modified
process requires that the node generates the secondary Merkle tree
TM and includes its root RM in the coinbase transaction. A suitable
option is to include the root in the coinbase script. The node can
then generate the standard block Merkle tree TB and generate the
final block B by finding a valid proof of work solution. Crucially, the
proposed solution operates at a layer above the base blockchain
protocol and does not require any change to the underlying rule set
used to maintain and validate the blockchain.

Input: Transaction set T ≔ {Tx1 , . . .TxN}
Output: Block B

1: for Txi in Tx1, . . .TxN do

2: Split Txi into M packets D1, . . ., DM
3: Generate Ri ← Merklize(D1, . . ., DM, TxIDi)

4: Set MTxIDi ← Ri
5: end for

6: Generate TM ← Merklize(MTxID1, . . ., MTxIDN)

7: Add RM to coinbase transaction TxC
8: Generate TB ← Merklize(TxC, Tx1, . . ., TxN)

9: Generate block B including RB
10: return B

Algorithm 3. Block Generation for Redactable Data.

FIGURE 4
A schematic outline of the block generation protocol for Merklized transactions.

Frontiers in Blockchain frontiersin.org07

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


4.4 Lightweight proof of existence

The core goal of the mechanism outlined in Section 3 is to
prepare a transaction Tx, when it is added to the blockchain, such
that a subset of its data can be verified as included on the blockchain
at a later time in the absence of the full original transaction data. In
other words, to allow for the verification that a data portion Di ∈ D1,
. . .,DM has been included in the blockchain without access to one or
more of the remaining data portions Dj≠i of the original Tx. As
outlined previously, we require two proofs πM and πB to satisfy our
conditions that prove the data portion exists on the blockchain in the
absence of the full transaction data.

The first proof πM is the Merkle proof connecting the data
portion Di to the secondary identifier MTxID and can be checked
simply using a standard Merkle proof verification. This check is
performed by verifying the Merkle proof πM for the leaf Di against
the Merkle rootMTxID, which we denote by C1 ←MerkleVerify(Di,
MTxID, πM), setting C1 to True if the check is successful and
False otherwise.

In the layer 2 context we are considering, the second proof πB =
(πMTxID, πTxID) in fact comprises two further Merkle proofs πMTxID

and πTxID, which connect MTxID to the secondary root RM and
TxID to the standard root RB respectively. In order to verify the
second condition using πB, we must perform a total of three checks
C2, C3, C4. Checks C2, C3 are simply Merkle proof verifications
similar to C1 and using the same notation. The final check C4 is to
confirm that both RM and RB have been included in the same block
header HB by a participating node. In combination, checks C2 to C4

prove that MTxID corresponds to the same transaction as TxID
included in the block B.

The full lightweight proof of existence process is outlined in
Algorithm 4. This mechanism allows anybody to verify that a data
portionDi has been included on the blockchain as part of Txwithout
requiring the other data portions Dj≠i comprising the original
transaction.

Input: Di, MTxID, TxID, RM, RB, block header HB, proof πM,

proofs πB = (πMTxID, πTxID)

Output: Result

1: C1 ← MerkleVerify(Di, MTxID, πM)

2: C2 ← MerkleVerify(MTxID, RM, πMTxID)

3: C3 ← MerkleVerify(TxID, RB, πTxID)

4: C4 ← Check(RM, RB ∈ HB)

5: if C1 and C2 and C3 and C4 then

6: Result ← True

7: else

8: Result ← False

9: end if

10: return Result

Algorithm 4. Layer 2 Lightweight Proof of Existence.

This proof of existence protocol is lightweight because it only
requires the portion of the transaction Di that is to be verified. For
instance, if a large transaction 100 Megabytes in size has been split
into 1 Kilobyte portions the verifier only needs to retrieve 0.001% of
the transaction data. This represents a significant storage and
bandwidth saving for any application that needs to verify small
items of data stored within large transactions. The flexibility and

granularity of data portions Di that can be verified in this manner is
constrained by the choice of how the transaction Tx was originally
split into packets in Algorithm 3 by the participating
blockchain node.

It is anticipated that the lightweight proof of existence
verification process may be performed by any blockchain node or
third party that needs to verify the existence of a portion of data on
the blockchain. An example application using this feature would be a
video streaming service to allow users to check the metadata of a
video file stored on the blockchain without needing to download the
entire media file itself.

In both layer 1 and layer 2 implementations of the Merklized
transaction protocol, it should be noted that lightweight verifications
are expected to be performed at a later time after the transaction has
been initially added to the blockchain. This means that transactions
are still expected to be processed in the usual manner at the time they
are added to the blockchain. However, by implementing the
transaction Merklization process during block generation,
whether at layer 1 or 2, individual fields can be later verified by
any party in a lightweight manner.

4.5 Data redaction

A key benefit of the proposed transaction Merklization protocol
is that individual data elements within transactions can be verified as
existing on the blockchain without possessing the full transaction
data. This feature is crucial to allow nodes to selectively delete some
portions of transaction data without sacrificing the ability to
verify others.

This is particularly advantageous in the event that a node is
compelled by law to delete or redact some data from its local copy of
the blockchain database. Typically, if a node is required to delete or
redact a portion of transaction data it must delete the full
transaction, making it impossible to preserve other parts of the
transaction not subject to the redaction. This can render nodes
unable to prove legally-compliant data exists on the blockchain in
the case that it is stored in the same transaction as data which must
be redacted.

Conversely, our mechanism allows nodes to redact only the
portions of data to which legal deletion or regulations such as GDPR
apply. The use of Merklized transactions, and the extensions
outlined for support as a layer 2 protocol, ensure that the
remaining portions of the transaction data can still be proven as
part of the blockchain database even after the node has removed
other components as required.

In this regime, the redaction of a data portion from a transaction
simply involves a node deleting the specific leaves from a transaction
Merkle tree T that correspond to the data that must be redacted. The
deletion of a subset of leaves from a given transaction by one node
does not preclude other nodes from storing and serving the
remaining leaves from the same tree. This is because the Merkle
tree structures used allow any node to prove the existence of any of
the remaining leaves without needing to hold or access the deleted
leaves. In practice, this may be done in response to a request for
deletion to comply with the right to be forgotten or GDPR laws
Ateniese et al. (2017); Shah et al. (2019). Each such request may only
apply to different nodes on a jurisdictional or regional basis.

Frontiers in Blockchain frontiersin.org08

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


Crucially, when implemented as a layer 2 protocol this allows
individual nodes to act unilaterally in redacting data as required
by the legal jurisdiction in which they operate, without affecting the
operations of other nodes in the network. This therefore allows each
node to comply with local rules and regulations regarding data
protection and privacy without impinging on other nodes which
may not be subject to the same legilsation across the world.

5 Discussion

We have defined a framework enabling data to be redacted from
Bitcoin-like blockchains without sacrificing the integrity and utility
of storing the remaining data on the blockchain. Finally we consider
the properties, advantages, and limitations of the solution.

5.1 Properties

The proposed protocol introduced redactability for blockchain
data that can be implemented on top of the base Bitcoin protocol.
This means that there is no requirement to modify the underlying
blockchain infrastructure to facilitate better GDPR compliance for
nodes. Moreover, the mechanism can be implemented
independently by any individual node, whether in their own
interest or as a public service to the network. This also presents a
significant privacy benefit for the end users of blockchain networks
who can now demand that their data is removed from public
blockchain ledgers.

Our solution is also efficient because it does not rely on any
heavy cryptographic primitives and is based primarily on Merkle
trees which are a scalable data structure allowing compact proofs of
existence. The efficiency of this method allows partial transaction
verification that can allow a user to check individual aspects of a
transaction, such as the transaction value or the number of outputs,
without downloading the entire transaction using Merkle proofs.
This presents a new way for blockchain analytics to be conducted
using lower bandwidths suitable for Internet of Things devices or
low-powered user hardware.

5.2 Complexity

As discussed, the key efficiency benefit afforded by the proposed
protocol is during the lightweight verification processes, where only
a minimal portion of the transaction data is required to verify its
existence. In extreme cases, this may represent a significant saving in
terms of storage and bandwidth required to obtain the data
necessary for verification.

When assessing the overall scalability of the solution as
compared with current blockchain protocols, we must consider
the complexity of the process used to generate an MTxID and to
generate the corresponding secondary root RM used to encode these
identifiers in a block by participating nodes.

The time complexity of computing a standard transaction
identifier TxID is determined by the time complexity of the hash
function used to generate the identifier. In the case of Bitcoin, the
SHA-256 hash function is used, whose complexity scales as O(n),

where n is the number of 512-bit message blocks contained in the
full data of Tx Rachmawati et al. (2018). The complexity associated
with generating the MTxID for a given transaction will therefore
depend on the size of the data packets Di into which the transaction
is split. If it is split into packets of approximately 512-bits, the
process of generating a MTxID will scale as O(n + log(n)), where
the additional log(n) arises due to the definition of MTxID as a
Merkle tree requiring additional hashes to be computed upon the
leaf hash values. This shows the additional time complexity required
to computeMTxID is small compared to the existing complexity for
generating a TxID, and therefore does not significantly impact the
performance of nodes when processing transactions.

The generation of the additional root RM to be included in the
coinbase transaction has the same complexity as generating the
standard root RB, which scales asO(N) where N is the total number
of transactions contained in the block. However, this should not
increase the time taken to generate a block significantly as both roots
can be generated in parallel and either computation represents a
small fraction of the total verification process for transactions which
is generally dominated by the verification of elliptic curve digital
signatures.

5.3 Protocol extensions

The protocol in its current form is limited because only the
transactions in blocks mined by participating miners are eligible for
redaction. In addition, the protocol still requires a level of trust in the
nodes themselves to faithfully create the correct secondary tree TM

for each of their blocks. Here we propose potential extensions to
improve these aspects.

5.3.1 Accounting for interim periods
We do not anticipate that all nodes will simultaneously

implement the redaction protocol since it is not a protocol-level
requirement. However, the nodes that do choose to provide the
redaction service can also account for the interim periods between
their blocks by creating secondary trees for the interim blocks and
combining them into a summary root hash RInt. This additional root
can be included in a node’s blocks alongside the root RM for the
current block each time the node successfully generates a new block.

5.3.2 Trusting participating nodes
In the case where the protocol is implemented at layer 1, the

underlying consensus mechanism can be updated such that the
secondary identifiers MTxID are made canonical according to the
protocol. This means that there is no additional trust placed on
network nodes as the Merklized transaction identifier is enforced by
the protocol rules directly.

However, when implemented at layer 2 volunatrily by individual
nodes, there is no verification by the underlying blockchain protocol
that the secondary Merkle tree TM has been generated correctly and
that the correct corresponding root RM has been included in the
coinbase transaction. For instance, it is possible that the root RMmay
be malformed either due to error or malicious intent of a
participating node. This creates the need for greater trust in the
participating nodes when performing lightweight proofs of
verification on individual portions of transaction data.

Frontiers in Blockchain frontiersin.org09

Davies 10.3389/fbloc.2023.1222614

https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614


Trust in participating nodes may be improved by implementing
a reputation system for nodes providing this service, where
reputation can be based on the proportion of successfully-
generated secondary Merkle roots. In addition, it is possible for
the generation of each secondary root to be checked far in advance of
a data redaction request. This means that faulty roots can be easily
detected in advance and incorrect proofs of existence mitigated.
Additional third parties such as regulators could perform the
checking procedure to support the blockchain ecosystem and
prevent fraud.

6 Conclusion

In conclusion, we have presented a novel, Merkle-based data
redaction mechanism for public blockchain networks such as BTC,
BCH, and BSV. Our design enables improved privacy for the users of
such blockchains by enabling nodes to redact transaction data on a
granular level. This allows them to provide improved compliance
guarantees and additional protections for users and applications
putting data on the blockchain. Moreover, the protocol can be
implemented on top of any Bitcoin-like chain, without the need
to modify the underlying blockchain system, by a single
participating node. The mechanism we have proposed is also
highly efficient and scalable through its use of Merkle tree
structures. This has the added advantage that individual
characteristics of transactions, such as size or value, can be
checked without obtaining the full transaction data. The effect is
that our proposal reduces the bandwidth costs required to interact
with blockchain-based applications that use distributed ledgers as an
underlying data source. The proposed system we have outlined

overcomes limitations in existing redaction protocols by removing
the requirement of a central coordinating party and by ensuring that
blockchain-level mutability is not introduced by our design.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

The author confirms being the sole contributor of this work and
has approved it for publication.

Conflict of interest

Author JD was employed by nChain.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aitsam, M., and Chantaraskul, S. (2020). Blockchain technology, technical challenges and
countermeasures for illegal data insertion. Eng. J. 24, 65–72. doi:10.4186/ej.2020.24.1.65

Ali, M., Shea, R., Nelson, J., and Freedman, M. J. (2017). Blockstack: a new
decentralized internet. Whitepaper.

Ateniese, G., Magri, B., Venturi, D., and Andrade, E. (2017). “Redactable
blockchain–or–rewriting history in bitcoin and friends,” in 2017 IEEE European
symposium on security and privacy (EuroS&P) (IEEE), Paris, April 26-28, 2017, 111.

Bartoletti, M., and Pompianu, L. (2017). “An analysis of bitcoin op_return metadata,”
in International Conference on Financial Cryptography and Data Security, Sliema,
Malta, April 3-7, 2017, 218–230.

Bruschi, F., Rana, V., Pagani, A., and Sciuto, D. (2021). Tunneling trust into the
blockchain: a merkle based proof system for structured documents. IEEE Access 9,
103758–103771. doi:10.1109/ACCESS.2020.3028498

Deuber, D., Magri, B., and Thyagarajan, S. A. K. (2019). “Redactable blockchain in the
permissionless setting,” in 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, May 19 2019 to May 23 2019, 124. doi:10.1109/SP.2019.00039

Huang, K., Zhang, X., Mu, Y., Rezaeibagha, F., and Du, X. (2021). Scalable and
redactable blockchain with update and anonymity. Inf. Sci. 546, 25–41. doi:10.1016/j.
ins.2020.07.016

Liang, W., Fan, Y., Li, K.-C., Zhang, D., and Gaudiot, J.-L. (2020). Secure data storage
and recovery in industrial blockchain network environments. IEEE Trans. Industrial
Inf. 16, 6543–6552. doi:10.1109/TII.2020.2966069

Matzutt, R., Hiller, J., Henze, M., Ziegeldorf, J. H., Müllmann, D., Hohlfeld, O., et al.
(2018). “A quantitative analysis of the impact of arbitrary blockchain content on

bitcoin,” in Financial cryptography and data security. Editors S. Meiklejohn and K. Sako
(Berlin, Heidelberg: Springer Berlin Heidelberg), 420–438.

Merkle, R. C. (1980). “Protocols for public key cryptosystems,” in 1980 IEEE
Symposium on Security and Privacy, Oakland, California, USA, April 14-16, 1980,
122. doi:10.1109/SP.1980.10006

Rachmawati, D., Tarigan, J., and Ginting, A. (2018). A comparative study of message
digest 5 (md5) and sha256 algorithm. J. Phys. Conf. Ser. 978, 012116. doi:10.1088/1742-
6596/978/1/012116

Rajasekhar, K., Yalavarthy, S. H., Mullapudi, S., and Gowtham, M. (2018). Redactable
blockchain and it’s implementation in bitcoin. Int. J. Eng. Technol. 7, 401–405. doi:10.
14419/ijet.v7i1.1.9861

Sgantzos, K., and Grigg, I. (2019). Artificial intelligence implementations on the
blockchain. use cases and future applications. Future Internet 11, 170. doi:10.3390/
fi11080170

Shah, P., Forester, D., Berberich, M., Raspé, C., and Mueller, H. (2019). Blockchain
technology: data privacy issues and potential mitigation strategies. Pract. Law. Available
at: https://www.davispolk.com/sites/default/files/blockchain_technology_data_
privacy_issues_and_potential_mitigation_strategies_w-021-8235.pdf.

Yang, C., Chen, X., and Xiang, Y. (2018). Blockchain-based publicly verifiable data
deletion scheme for cloud storage. J. Netw. Comput. Appl. 103, 185–193. doi:10.1016/j.
jnca.2017.11.011

Zhang, D., Le, J., Lei, X., Xiang, T., and Liao, X. (2021). Exploring the redaction
mechanisms of mutable blockchains: a comprehensive survey. Int. J. Intelligent Syst. 36,
5051–5084. doi:10.1002/int.22502

Frontiers in Blockchain frontiersin.org10

Davies 10.3389/fbloc.2023.1222614

https://doi.org/10.4186/ej.2020.24.1.65
https://doi.org/10.1109/ACCESS.2020.3028498
https://doi.org/10.1109/SP.2019.00039
https://doi.org/10.1016/j.ins.2020.07.016
https://doi.org/10.1016/j.ins.2020.07.016
https://doi.org/10.1109/TII.2020.2966069
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1088/1742-6596/978/1/012116
https://doi.org/10.1088/1742-6596/978/1/012116
https://doi.org/10.14419/ijet.v7i1.1.9861
https://doi.org/10.14419/ijet.v7i1.1.9861
https://doi.org/10.3390/fi11080170
https://doi.org/10.3390/fi11080170
https://www.davispolk.com/sites/default/files/blockchain_technology_data_privacy_issues_and_potential_mitigation_strategies_w-021-8235.pdf
https://www.davispolk.com/sites/default/files/blockchain_technology_data_privacy_issues_and_potential_mitigation_strategies_w-021-8235.pdf
https://doi.org/10.1016/j.jnca.2017.11.011
https://doi.org/10.1016/j.jnca.2017.11.011
https://doi.org/10.1002/int.22502
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org
https://doi.org/10.3389/fbloc.2023.1222614

	Enhanced scalability and privacy for blockchain data using Merklized transactions
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 Blocks
	2.2.1 Block header
	2.2.2 Transaction list

	2.3 Transactions
	2.3.1 Transaction structure
	2.3.2 Coinbase transactions

	2.4 Merkle proofs

	3 Merklized transactions
	3.1 Transaction identifiers
	3.2 Merkle-based transaction identifiers
	3.3 Transaction splitting
	3.3.1 Field-wise splitting
	3.3.2 Field-wise granular splitting
	3.3.3 Fixed number of packets
	3.3.4 Fixed packet size

	3.4 Binding to original transaction identifier
	3.5 Identifier generation
	3.6 Identifier verification

	4 Data redaction
	4.1 Trusting transaction identifiers
	4.2 Secondary block Merkle tree
	4.3 Block generation protocol
	4.4 Lightweight proof of existence
	4.5 Data redaction

	5 Discussion
	5.1 Properties
	5.2 Complexity
	5.3 Protocol extensions
	5.3.1 Accounting for interim periods
	5.3.2 Trusting participating nodes


	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


