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As data analytics is used in business to increase profits, organizations use it to
pursue their goals. Even if enterprise data could be already valuable on its own, in
many cases, combining it with external data sources would boost the value of the
output, making data sharing a need in data analytics. At the same time,
organizations are reluctant to share data, as they are scared of disclosing
critical information. This calls for solutions that are able to safeguard data
holders by regulating how data can be shared to ensure the so-called data
sovereignty. This paper focuses on the usage of data lakes as well-established
technology across enterprises for data analytics where internal or publicly
available data are considered. The goal is to extend data lakes with
functionalities that, respecting the data sovereignty, enable a data lake also to
be ingested with data shared by other organizations and to share data to external
organizations. Notable, the purpose of this work is to face this issue by defining an
architecture that, inserted in a federated environment: restricts data access and
enables monitoring that the actual usage of data respects the data sovereignty
expressed in the policies agreed upon by the involved parties; makes use of
Blockchain technology as a means for guaranteeing the traceability of data
sharing; and allows for balancing computation movement and data movement.
The proposed approach has been applied to a healthcare scenario where several
institutions (e.g., hospitals and clinics, research institutes, andmedical universities)
produce and collect clinical data in local data lakes.
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1 Introduction

Organizations are more and more recognizing data as one of their fundamental assets,
not only to increase the efficiency and effectiveness of the internal processes but also to
provide a service to other organizations. Much effort has been spent providing methods and
tools to collect and store data produced during the execution of the operational/transactional
business processes. Thus, these data are now collected in dedicated systems (e.g., data
warehouses), ready to be analyzed to offer the management a more detailed and updated
snapshot of the organization by computing indicators concerning, among others, process
performances and resource usage. More recently, with the Big Data paradigm, the scope is
becoming broader. Organizations can now collect more and diverse data from, e.g., social
networks, smart devices, and sensors embedded in manufacturing machineries. More
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flexible architectures, such as data lakes (LaPlante and Sharma,
2016), help to efficiently support the data management while the
amount of data increases.

In this context, once the possibility to collect data from internal
structures can be taken for granted as the data sources are under the
realm of the same organization, it becomes more complex to deal
with scenarios in which an organization can take advantage of data
owned by another organization. For instance, in a supply chain, a
manufacturing company that wants to increase the efficiency of the
just-in-time production can find beneficial the possibility to have an
updated view on the availability of the raw material of its suppliers.
Considering a different context, a hospital that wants to validate
some clinical trial results could be interested in applying the
developed clinical study to the data of patients stored in another
hospital. In these kinds of scenarios, a federation of the data lakes can
be put in place to enable analytics on data coming from different
organizations.

If, on the one hand, many organizations are willing to access
data managed by other organizations, on the other hand, most of the
time, the organizations that are supposed to provide the data are
skeptical. These organizations, indeed, want to keep the so-called
data sovereignty, i.e., the power to keep in control of the data they
generate (European Commission, 2020). Thus, ensuring data
sovereignty requires balancing the demand for data sharing and
the need to secure privacy. This implies considering that: 1) data can
contain personal information, thus the data provisioning is
subjected to specific norms that are not easy to implement (e.g.,
GDPR), 2) once data are shared, the control over these data becomes
looser and this could be a problem in case of business-critical data, 3)
data management becomes more complex as each data consumer
could access to a different portion of data with different rights. Even
if data lakes are a well-established technology, there is not yet a
standard solution to share data in a trusted way, as it is difficult to
both allow the execution of federated queries and guarantee the
respect of the data holder’s perimeter. This lack of ready solutions
may prevent organizations from gaining the most from data
analytics.

On this basis, the research question addressed in this paper is:
how is it possible to preserve the data sovereignty in a data lake
federation setting while enabling the data sharing among the
members of such a federation? In this direction, we propose
THROTTLE (Trusted sHaRing fOr federaTed daTa LakEs), a
data sharing mechanism that combines: 1) an attribute-based
access control system to guarantee access to the data only to the
users with appropriate privileges, 2) a container-based architecture
to increase the flexibility of the approach allowing the data to be
moved, when possible, where the analysis is more efficient, and 3) a
blockchain-based approach to create a trusted environment. In
particular, THROTTLE:

1. Restricts the access to a data source and enables monitoring that
the usage of its data is compliant with the access policies agreed
upon between the data provider and data user.

2. Ensures that the operations against the data source are logged
according to agreed logging policies, and that all the logs are
stored in a tamper-resistant manner.

3. Enables an auditor to verify if the usage of the data respects the
access policies.

4. Enables the balance of computation movement and data
movement, as data sources are managed in portable containers.

The proposed mechanism is designed to be framed in a data lake
federation. The members of such a federation are assumed to have a
data lake platform where owned data sets are stored, classified, and
managed (Gorelik, 2019). With THROTTLE, each member can
decide to share—under some agreements—data sets with other
members of the same federation for analytical purposes,
monitoring whether the agreement is respected. In this way,
THROTTLE can hold a relevant role in supporting organizations
to achieve the data sovereignty.

The rest of this paper is organized as follows. Section 2 presents
the THROTTLE′s architecture. Section 3 provides implementation
details and reports on the application of the THROTTLE approach
to a case study from the healthcare domain. Section 4 reviews the
relevant related literature. Finally, Section 5 concludes the paper and
discusses directions for future work.

2 Proposed architecture

A data lake (a.k.a. data lakehouse) is a platform composed of a
set of software tools supporting the acquisition, governance, and
provisioning of heterogeneous datasets to improve the effectiveness
and the efficiency of data analytics, especially when considering the
Big Data domain (Gorelik, 2019). Usually, data lakes are seen as
platforms specifically deployed for supporting the secondary usage
of data for a given organization. Data that feed the data lakes come
from internal sources or publicly available sources (e.g., open data
repositories). Computational resources can be on-premise or, more
commonly, relies on solutions offered by cloud providers as a
combination of different services.

Although a data lake offers a good solution for improving data
analytics, especially when managed data can have different formats,
different structures (if any), and different ways to be ingested
(i.e., stream or batch), frictions arise when 1) organizations want
to share some of the collected data with other organizations and 2)
organizations want to use data of other organizations to improve or
extend their analytics. In fact, data sharing implies an agreement
specifying, in addition to technical details, the data that are shared
and the permitted usage. Moreover, compliance with the agreed
terms must be preserved. To make these aspects easier, federation
frameworks, like GAIA-X (gaia-x, 2022), that can also be exploited
for data lakes, have been proposed to manage data sharing while
preserving data sovereignty. Framed in this type of solution,
i.e., assuming that a federation of data lakes has been already
established and the organizations can specify agreements
concerning which data can be shared and the permitted usage,
THROTTLE is proposed as a solution to ensure the correct access to
the data and to monitor the usage. Before introducing the main
aspects of the THROTTLE architecture, it is important to clarify
which are the main actors and which are the initial phases that are
assumed to be already performed to define the agreement.

As shown in Figure 1, the three main actors involved in
THROTTLE are: the data holder, the data user, and the auditor.
The data holder is a federation member owning a dataset that he/she
wants to share. To this purpose, metadata (Gilliland and Baca, 2008)
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associated with the shareable dataset is used to index and publish
(step 1) the dataset in a data catalog, which is one of the tools usually
included in a data lake (Jahnke et al., 2022). On the other side, the
data catalog is used by the data user to browse for datasets that can
be relevant to the analysis that has to perform (step 2). Metadata can
be used as keys to filter out data sources to find the right one. Once
found, before the data is usable, the data holder and data user define
an agreement to formalize in a policy document the terms of use
(step 3). These terms could include whether the dataset is completely
accessible or only as a portion. In the latter case, if the portion is the
result of a selection, i.e., only specific rows can be seen, or a
projection, i.e., only some attributes can be accessed. The
agreement can also include information concerning where the
data can be used, i.e., whether the analysis can be done at the
data holder or user side. This decision could depend on privacy
reasons, e.g., to avoid data leakage, or performance reasons, e.g., to
reduce the quantity of data to be moved (Plebani et al., 2018). Based
on the agreement, the data holder prepares the environment to make
the dataset available (step 4), and the data user can now access the
dataset (step 5). Finally, the auditor is a third party in charge of
certifying that data have been accessed and used in compliance with
the agreement (step 6).

Based on this setting, the goal of THROTTLE is to define an
architecture to implement the dataset access environment able to 1)
enforce this policy in terms of data access and 2) monitor the data
policy in terms of data usage, and 3) provide a portable solution that
permits to either leave the data at the data holder side where the
analysis will be performed, or to move the data to the data user side.
In this way, while it will not be possible for the data recipient to
access data that are not allowed in the agreement as the involved
mechanisms will block any unauthorized access, the control of the

usage relies on the generation of a log to store information about
how the data are used. Notably, a blockchain is used as a storage
element (Tai et al., 2017) for the log. Being available to all the
federation members, this information stored in the blockchain can
also be accessed by the auditor to check the aforementioned
compliance. Indeed, while the access control system guarantees
access to the data only to authorized users and the blockchain
guarantees the traceability of data sharing, no guarantee is enforced
concerning the usage of accessed data; hence, the need for
monitoring by auditors. Finally, a container-based approach is
used to ensure the portability of the dataset. Containerization, in
fact, allows to create portable elements that host data sets along with
the functionalities required by THROTTLE for logging the accesses.
It is worth noticing that the use of containers is not mandatory to
create trusted data sharing, but it is convenient to simplify the
dynamic deployment of the solution.

Figure 2 shows the overall architecture of THROTTLE which is
composed of four main elements:

• The eXtended Access Control (XAC) is a component that:
1. Parses the incoming access request from the data user and

takes an access decision on the request in accordance with
the policies in place.

2. Stores the decision on the Blockchain to make it auditable
by means of the Persistence Manager.

3. Builds a container-based image of the Data Analyzer
Module (DAM) and creates an instance of this image in
the agreed execution environment. The created DAM will
contain only the requested data.

4. Returns to the data user the endpoint of the just
instantiated DAM.

FIGURE 1
THROTTLE’s main actors.
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• The Data Analyzer Module (DAM) is the component running
inside the container that:
5. Exposes an endpoint allowing the data user to access the

requested dataset.
6. Logs access to data according to logging policies specifically

defined for this dataset and stores this log by means of the
Persistence Manager.

• A Persistence Manager (PM) acting as a gateway to the
blockchain when it is needed to store auditable
information. This component is also responsible for
balancing between on-chain/off-chain storage based on the
type and amount of data to be stored. For the off-chain
storage, IPFS is assumed to be adopted.

• A Smart Contract (SC) is the on-chain component that
enables the system to actually implement the tamper-
resistant storage, by registering on-chain the hashes of the
logs that are stored off-chain in the IPFS.

The data stored in the blockchain and the IPFS can be used by
the auditor (step 7) to verify, through the logs, that the data
sovereignty requirements prescribed by the agreed policies are
met. Due to the limitations of blockchain in terms of velocity
and the high costs when a significant amount of data are stored,
the Persistence Manager can decide to not entirely store the log in
the blockchain. Conversely, IPFS is used to store the entire log while

the Content IDentifier (CID) is stored on the blockchain. Using the
hash of the file stored on IPFS as CID, this solution has two
advantages: the amount of information stored in the blockchain
is proportional to the number of files (regardless of their size)
constituting the log, and any modification done on the file log
can be detected as it alters the corresponding hash. The combination
of these two aspects offers tamper-resistance storage for the logs.
Notably, the data stored in the data holder’s datasets are not
inserted in IPFS because they typically are private data (in our
case study, e.g., we consider personal and medical data of
patients) that the data holder would like to keep under its
control. Summing up, to check if data users violated the
agreed access policies, the requirements for auditors consist
of just having access to the blockchain and IPFS.

Decoupling the data access into two separate components,
i.e., the XAC and the DAM, increases the data access’s
interoperability and flexibility. In fact, the request submitted in
step 1 could include not only information about the data that the
user wants to access, but also how the data should be exposed (e.g.,
SQL-based or REST-based) and where the data should be stored.
Thus, the XAC is in charge of analyzing the feasibility of the access
and preparing the environment for making the access possible
according to the policy through a container that is created on
demand. Moreover, only the data that have been requested by
the user—which can be a subset of the original dataset—are

FIGURE 2
THROTTLE’s overall architecture.
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embedded in the container. Thus, the user has no visibility on the
complete dataset with a limited effort also at the data holder side.
Finally, the adoption of a container-based solution allows the XAC
to create a container to host a DAM based on the technology
adopted by the infrastructure that will host the container (e.g.,
x68 vs. ARM), and the container can be deployed either on
resources managed by the data holder or the data user, again,
with a limited effort.

From a management standpoint, the proposed solution requires
to publish in the data catalog only the endpoint of the XAC,
regardless of the dataset to be accessed. The real endpoint is
produced at runtime through the container. In this way, given a
dataset, each user has a specific and personal endpoint to access.
Moreover, the data holder can decide to re-deploy the dataset
internally without informing the data user.

Based on this overall description, details of the three elements
are described in the next paragraphs.

2.1 XAC—eXtended access control

Figure 3 shows the internal structure of the XAC, which is
composed of the following modules:

• Request Parser: the front-end component offering an API to
enable communication with the data user. This module
receives the data request and returns the endpoint to the
instantiated DAM container.

• Policy Decision Point (PDP): the module that has access to the
policies specifying the terms of usage of a data user to a dataset.
Based on this knowledge, the PDP decides whether to allow or
deny a data user’s request;

• Image Manager: the component responsible for building the
container image of a DAM based on the technology as
requested by the data user and defined in the policy;

• Container Manager: the component in charge of instantiating
a container image of a DAM on the resources as requested by
the data user and defined in the policy.

As different solutions are now available to implement container-
based solutions (e.g., Docker, Podman), the Image and Container
Manager modules offer a technology-independent interface to the
other modules in THROTTLE to create and instantiate images and
containers. Internally, these modules are responsible to translate the
received requests to commands that are specific to the selected
technology.

Focusing on the interaction among the modules, the
inbound request from the data user is handled by the
Request Parser (step 1). Notably, the request contains the
dataset, the technology through which the dataset is
reachable (e.g., SQL, REST, S3, etc.), the action the data user
is willing to perform, and the resource onto which the action
should be performed. The request is forwarded to the PDP for
evaluation (step 2), and the decision is stored on the blockchain
through the Persistence Manager (step 3). In case of a negative
answer from the PDP, the data user is informed, and the process
ends. In case of a positive answer, the Request Parser contacts
the Image Manager (step 4), which is in charge of building a
container image that exposes an endpoint matching the
technology and containing the dataset as decided by the
PDP. The instantiation of the container based on the built
image is left to the Container Manager (step 5), as the same
image might be used in different settings. This could occur
when the same dataset, based on the same technology, is

FIGURE 3
Internal structure of the XAC component.
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requested to be deployed on different resources. In this case, the
Image Manager immediately forwards the control to the
Container Manager. Finally, after the container is created,
the XAC returns to the data user the URI of the endpoint
exposing the requested data, anywhere it is deployed (step 6).

Amalicious user could extract some data directly from the image
without running it, therefore bypassing the endpoint. This would
lead to data access that would not generate logs. This possibility can
be mitigated by performing file system-level logging on data access
or encrypting the data at rest, preventing the data user from
handling the image itself but making the data holder in charge of
the deployment. We leave as future work the investigation of this
aspect.

It is worth noticing that the access control system provided by
the XAC component has been mainly conceived for dealing with
private data that the organization would share to a restricted and
well-identified audience. In fact, in general, there is no need to
prevent access to publicly-available data. Anyway, a dataset
containing both private and public data can be easily managed
by our approach: it is sufficient to define access policies for public
data that apply to all requests and always grant access. Even if public
data are always shared, this mechanism permits keeping track of
these accesses via the logging strategies provided by THROTTLE.
Notably, to make private data public or vice versa, it is necessary to
change access policies. This change does not affect the access to the
dataset previously granted to the data user, who must send a new
access request to take advantage of the access right change. Similarly,
changes to the data stored by the data holder are not automatically
reflected in a dataset previously provided to the data user; again, the
latter has to send a new access request. An automatic alignment
mechanism could be put in place, but this is out of the scope of this
work because it would raise complex issues concerning data
consistency.

2.2 Data analytics module

A DAM is a technology-specific component that offers an
environment to access a dataset according to the request done by
the data user. This component is built on-the-fly by the XAC based
on the requirements expressed by the data user and in compliance
with the agreed policies. For this reason, DAM implementations are
slightly different for each specific technology (e.g., a relational
DBMS for SQL, a web server for REST), and we assume that
cookbooks specifying typical settings related to the most
common technologies are defined. Figure 4 shows two possible
configurations of two DAMs that offer, namely, a REST-based and
SQL-based interface. Regardless of the specific technology, a DAM
always includes two common modules:

• The Log Manager, which is in charge of filtering the logs that
are considered to be relevant, according to the logging policy
specifically defined for the dataset and the data user’s request,
ensuring that the relevant logs will be stored in a tamper-
resistant storage.

• A connection with the Persistence Manager to store the logs in
the tamper-resist ant storage.

Based on this setting, all the created DAMs will rely on the same
Persistence Manager to store the information on the blockchain,
thus causing a possible bottleneck. For this reason, if the resource
that will host the container has enough capacity, it is also possible to
have a copy of the Persistence Manager inside the container. This
alternative does not affect the system’s functionalities due to the
distributed and peer-to-peer nature of the blockchain.

To increase the portability of a DAM, which contains the
dataset along with the modules to log the accesses and to store
the log to the blockchain, a container-related technologies is

FIGURE 4
Two examples of DAM structures: REST and SQL based.
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adopted. This requires that a template of container configuration file
(e.g., Dockerfile) is defined in advance by the same actor offering the
dataset. When the dataset is requested and the XAC defines the
logging policy, if an image with a logging policy does not exist then a
new image is created, otherwise a new container of an image already
created with that policy is instantiated The logging policy document
is derived from the policy reporting the agreement between the data
user and the data holder and specifies the information that must be
logged and stored in the blockchain for auditability. To increase the
transparency, the logging policy itself could be published on the
blockchain, too.

Finally, exploiting the portability of containers, where the DAM
container has to be deployed can be decided at run-time. As long as
the hosting environment is properly configured to host a container
(e.g., in case of using Docker the related deamon is installed and
running) the XAC can evaluate the available resources and select
which is the best place where to deploy. It is worth noticing that the
discussion on how to select the deployment location is out of the
scope of this paper.

2.3 Persistence manager

The Persistence Manager is the component in charge of properly
optimizing the storage of relevant data. When invoked it buffers the
incoming data. Once the number of documents in the buffer reaches
a certain threshold or the buffer is flushed, the persistence manager
will store all the buffered data on the IPFS. Then, the CID of the data
stored on IPFS is written on-chain, by invoking a method of the
Smart Contract.

Handling the logs in batches can minimize the number of
operations performed on the IPFS and, consequently, on the Smart
Contract, reducing the overall cost of execution. A weakness of this
approach is that some logs may be lost if the container is forced to shut
down while some logs still need to be stored on-chain. This can be
addressed by setting the value of 1 as batch size; this particular setting is
equivalent to persistently storing the logs one by one (i.e., not buffering
the logs). Independently of the batch size, the logs are stored on IPFS as
a Merkle DAG. This data structure ensures the immutability of all the
nodes; in this way, it is enough to store on-chain the CID of the root
node to guarantee that all the nodes are tamper resistant.

It is worth noticing that IPFS is one possible solution to storing a
large amount of data off-chain. To use this solution in practice, we
assume to exploit one or more dedicated servers. On the other hand,
other solutions may be considered, such as Layer 2 technologies (e.g.,
Polygon1); thanks to the modular architecture of THROTTLE, this
change would imply simply replacing the current Persistent Manager
component by another dealing with the alternative technology.

2.4 Smart contract

The Smart Contract is the element of THROTTLE responsible
for storing on and retrieving from the blockchain the information

about the decision taken by the data holder and the usage of the data
user. Although a smart contract can be invoked by anyone connected
to the blockchain, we assume that the PersistenceManager is the actor
in charge of calling the contract to store information, while the
Auditor is the one in charge of calling the contract to retrieve
information. Notably, the smart contract exposes three methods:

• storeDecision: this method is invoked by the Persistence
Manager after the policy evaluation step to store the CID of the
decision previously stored on the IPFS.

• storeLog: this method is invoked by the Persistence
Manager in DAM when new logs are stored on IPFS and,
consequently, the CID of the root node of the Merkle DAG
changes. The Smart Contract only needs to store the last value
of CID to allow the retrieval of all the logs.

• getRequestInfo: this method is invoked by an auditor to
retrieve information about the operations consequent to a request;
the method returns the CID of the decision and the CID of the
root node of the Merkle DAG containing all the logs. The auditor
can then retrieve the documents on IPFS and analyze them.

3 Validation

To validate the feasibility and effectiveness of our proposal, we
provided a prototypical implementation of the THROTTLE
architecture and we applied it to a healthcare case study. Sources
of the implementation and instructions for replicating the validation
experiments are available on GitHub2. We provide technical details
about the implementation in this section, illustrating them by means
of a scenario of the case study used as a running example.

The language used for implementing the components of the
THROTTLE architecture is Typescript. We selected this language
since it inherits the advantages of the rich ecosystem of Javascript
and, in addition, brings the possibility to use types, improving the
robustness and readability of the code.

In the following paragraphs, we first introduce the healthcare case
study and then describe the implementation of theTHROTTLEmodules.

3.1 Case study

We consider the hereafter described case study related to a
healthcare scenario in Europe where the need for data sharing is
urgent. Multi-centric clinical trials are studies that involve different
hospitals. The collaboration among hospitals allows them to
increase the number of patients that can be enrolled for the
study, thus increasing the reliability of the result. Nevertheless,
since the considered data deal with personal information, they
cannot freely flow among the hospitals, but some constraints are
required for compliance to the GDPR3. For instance, when moving

1 https://polygon.technology/

2 https://github.com/davide94/Data-Sharing-Framework

3 General Data Protection Regulation, a.k.a. GDPR, is a fundamental
regulation active in all the countries belonging to the European Union
which regulates how personal data must be treated to avoid abuse or data
leakage.
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data from one hospital to another, all the information that can
disclose the patients’ identity must be removed. For this reason,
anonymization techniques are required. At the same time, only data

of patients that have explicitly given consent to use the data for the
given trial can be managed. Finally, assuming that the ethical
committee that supervises the study has decided to limit the

FIGURE 5
Scenarios of the healthcare case study: (A) local comparison (B) remote comparison (C) remote query and local comparison.
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analysis to patients aged between 18 and 35 years, none of the data
about patients aged outside this range can be considered, also in case
they gave consent.

More specifically, we consider a clinical trial studying the
validity of a new genome sequencer, called Next-Generation
Sequencing (NGS), and a new technique, called Liquid Biopsy
(LB), to find tumoral markers. With respect to the current
approach, which is based on a different sequencing technique,
the NGS can find in a single step many tumoral markers, while
the LB allows finding tumoral markers with a blood test, thus
without requiring invasive surgery.

The goal of the clinical trial is to verify if the NGS and the LB are
able at least to find the same tumoral markers that the former
sequencing technique was able to find. To this aim, each of the three
hospitals involved in this trial, named H1,H2, and H3, have two data
sets:

• Personal data about a set of patients. This dataset is named
PDn, where n indicates the hospital.

• Tumoral markers found for each patient by applying the
traditional sequencing technique. This dataset represents
the golden set for the clinical trial and it is named GSn,
where n again indicates the hospital.

Moreover, due to the limits in the instruments available in the
hospitals:

• H1 and H2 have the tumoral markers obtained by applying the
NGS techniques for their patients. This produces the datasets
NGS1 and NGS2, respectively.

• H3 has the tumoral markers obtained with the LB technique,
thus producing the dataset LB3.

In the considered case study, a researcher U1 of the hospital H1

wants to validate the results of the NGS technique stored in the
dataset NGS1. To this aim, we consider three different scenarios
(depicted in Figures 5A–C, respectively):

[(a)] NGS1 is compared with GS1. In this case, the two involved
datasets belong to the same organization, hence the query is
locally executed inH1. More specifically, once the request sent by
U1 (step 1) is evaluated against the access policies (step 2), the
requested data are retrieved from the datasets (step 3), locally
deployed (step 4), and finally accessed by U1 (step 5).
[(b)] NGS1 is compared with LB3 on H3 premises. Being too
heavy, the LB3 dataset cannot bemoved toH1, thus it is preferable
to move NGS1 to H3 and to perform the comparison remotely.
This time, the access request is forwarded fromH1 toH3 (step 4),
and both NGS1 and LB3 are deployed within H3 (steps 7 and 8),
hence U1 accesses the data remotely (step 9).
[(c)]NGS1 is compared withGS2 andGS3. In this case, a federated
query is performed and the data satisfying the request are moved
to H1 for the comparison. Here, the access request is parallelly
forwarded from H1 to H3 and H2 (steps 5a-b), resulting on the
deployment of all requested datasets in H1 (steps 4 and 8a-b).

Based on the agreement among the parties, all the actions
performed on the datasets must be traced appropriately. The

resulting logs must be made available, on request, to an auditor
that can check whether the clinical protocol defined by the ethical
committee has been respected. We assume that the logs of the
decisions and the data accesses can be made publicly available
without disclosing sensitive information. If this is not the case,
the problem can be addressed by encrypting the data before storing
it through a cryptography technique; in this way, only those who are
entitled can decrypt and interpret the data.

3.2 eXtended access control

A paramount concern for this component was to expose an API
that a variety of clients can consume without forcing them to use a
specific technology. Our choice, therefore, was HTTP since, for this
purpose, it is the most widely used and well-known standard.
Specifically, we expose the HTTP API of the XAC component
via a web server implemented with the Express framework.4

The data user can send a request by performing an HTTP POST
request. The request’s body should contain all the information in
JSON format. In our running example, considering the scenario
depicted in Figure 5A, where the data user wants to compare the
datasets NGS1 and GS1, the body of the request is as follows:

In this case, the data user is a member of the hospital H1, that
would like to access via SQL the data resulting from the join ofNGS1
and GS1.

The XAC component parses the request’s payload and stores it
in a queue as a task. The id of the created task is returned to the user,
who can periodically check the advancement of the request
processing by calling a specific endpoint with the obtained task’s
id. More in detail, the endpoint in place for this purpose can be
invoked by a POST request to /status/:id, being id the
identifier of the task.

Asynchronously, a worker checks if there are some pending
tasks in the queue. If it finds one, it processes the task as follows. The
request, stored in the task, is disposed to the Parser, which produces
a request that is formatted according to the input language of the
PDP. In our implementation of the THROTTLE architecture, the
language exploited by the PDP is XACML (OASIS, 2013). This is the
OASIS standard language for writing access policies and requests
according to the Attribute-Based Access Control (ABAC) model.
The ABAC model evaluates the access rules against the attributes of
the subjects and objects involved by the access request, without the
need to specify individual relationships between each subject and
each object. Attribute-based rules are typically hierarchically
structured in policies and paired with strategies (i.e., combining
algorithms) for resolving possible conflicting authorisation results.
More specifically, we have implemented our PDP as an instance of
the WSO2 Balana5 engine, which is an implementation of the

4 https://expressjs.com/

5 https://github.com/wso2/balana
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XACML standard. Since Balana is implemented in Java, we could
not natively interact with Balana from the Typescript code.
Therefore, we have wrapped Balana with a Java web server,
which provides a REST interface that simply invokes the Balana
method for evaluating the request received as input. This enabled us
to interact with the instance of the PDP in a technology-agnostic
manner.

A policy evaluated by the PDP in our running example is as
follows (for the sake of readability we omitted some details, such as
the namespaces):

This is the policy regulating access to the GS1 dataset. Indeed, as
specified by its <Target> element (lines 2–11), it applies to all
requests concerning the resource identifier (line 7) with value GS1
(line 6). Notably, the value of the resource-id attribute is set in
the XACML request by the Parser, which extracted this information
from the query specified in the JSON request; in our example, this is
a multivalued attribute whose evaluation produces a bag containing
the strings GS1 and NGS1. The policy contains two rules: the first
(lines 12–20) grants access to any subject (line 16) from the hospital
H1 (line 15), while the second (line 21) always forbids access. The
decisions returned by these rules are combined by the permit-

overrides algorithm (line 1), which returns a permit decision
if the evaluation of at least one rule is permit. The second rule is
used, in fact, to define deny as the default decision, to be returned
whenever no rule returns permit.6 Finally, the evaluation of this
policy returns two obligations (lines 22–33) whenever the final
decision is permit. Obligations are additional actions produced
by the access control system that must be discharged at the end of
the policy evaluation. In this case, a logging-policy is
generated to keep track of the accesses to the dataset GS1 (lines
24–26), and the data-locality value local is returned to
indicate that the data within GS1 must remain local to the data
holder’s locality (lines 29–31). It is worth noticing that, in the overall
implementation of the case study, this policy would be enclosed in a
larger policy (a <PolicySet> element in XACML) that collects

the policies related to all datasets under the control of the
hospital H1.

Given the access request and the policy discussed above, the
decision (in JSON format) computed by the PDP is as follows:

In the actual implementation, the logging policy is an XML file
that simply contains a <level> element specifying a logging level.
In our running example, the policy logging-policy-GS1.xml
specifies the level ALL, meaning that all accesses to the dataset GS1
must be logged.

The PDP decision is passed to the PersistenceManager to store it
permanently. Then, if the decision is not to allow the request, the
task is marked as completed, and the worker terminates. If,
conversely, the decision is to allow the request, the request and
the resulting obligations are disposed to the Image Manager, which
selects the Dockerfile template matching the technology asked,
injects in it the data source and logging policy, builds it, and
deploys the image to a Registry. The URI of the image is stored
in the task. If the container has to be deployed by the Data Holder,
the Image Manager is asked to run it, and the endpoint exposed by
the container instance is stored in the task. The task is finally marked
as completed.

On the other side, the data user will find in the response either
the URI of the image to be instantiated, or the URL of the endpoint
ready to be queried, depending on the prescribed deployment
location of the container.

3.3 Data analytics module

The instance of DAM will vary, depending on the technology
specified in the request. Currently, the implementations for two
technologies are provided:

• REST. To implement a REST endpoint that allows the data
user to query the data, an approach similar to the XAC
endpoint has been followed. We used, also in this case, the
Express framework to implement an HTTP GET endpoint
that returns the requested data to the data user. To make the
web server reachable from outside the container (i.e., by the
data user), the TCP port onto which the web server is listening
(80) is made available to the services outside of Docker by
specifying the -p 80:80 flag while running the container.
The web server is configured to store a log of each request in
the /logs folder.

• SQL. To implement an SQL endpoint and allow the data user
to run full SQL queries, we selected the Postgres DBMS7. One

6 We recall that in XACML, besides permit and deny, there are other two
decision values: indeterminate and notApplicable. 7 https://www.postgresql.org/
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of the main advantages of Postgres is that it is open source and
easily customizable, which are two fundamental requirements
for a DBMS to be integrated into our DAM. The DBMS is
configured to log any query performed to the file system in the
/logs folder.

Regardless the technology used for the endpoint, the DAM
always includes a Log Manager component. It detects when a
new file is created in the /logs folder, reads the logs contained
in the file, filters them according to the logging policy, and sends the
filtered information to the Persistence Manager. Specifically, the Log
manager invokes an OS’s API that callbacks a function when a new
document is created inside a selected folder. The callback function is
the one that actually reads the file, and filters and sends the
logging data.

In our running example, when the data user accesses the
obtained dataset, reading all contained data, the log produced by
the DBMS and filtered by the Log Manager is as follows:

3.4 Persistence manager

The Persistence Manager implements a queue populated with
the logs from the Log Manager. When the number of logs exceeds
the desired batch size or when the flush function is invoked, the
Persistence Manager writes to IPFS all the documents by calling the
store method exposed by the IPFS Adapter. The CIDs of the
documents are used to update the Merkle DAG, and the CID of the
root is stored on-chain through the Smart Contract by calling the
storeLogs method of the Smart Contract Adapter. The IPFS
Adapter and Smart Contract Adapter are common classes used in
the DAM and the XAC.

3.5 Smart contract

The Smart Contract, which is the software component that
allows the system to store and retrieve data on-chain, is
implemented in Solidity8.

The smart contract has two state variables:

• decisions: a mapping that associates to each request id the
CID of the decision that has been stored on IPFS;

• logs: a mapping that associates to each request id the CID of
the log stored on IPFS.

Both the variables are declared as mapping(bytes32 =>
bytes32), since bytes32 is appropriate to store a request id in
UUID4 format and a CID.

The function storeDecision takes as input the id of a
request and the CID of the decision for that request that has

been stored on IPFS, and updates the decisions mapping to
map the former to the latter.

Similarly, the function storeLog takes as input the id of a
request and the CID of the logs related to that request that has been
stored on IPFS, and updates the logs mapping accordingly.

Finally, the function getRequestInfo takes in input the id of
a request and returns a pair containing the CID of the decision and
the CID of the logs related to the request by accessing the two state
variables of the contract.

3.6 Validation results

To evaluate our implementation, we simulated a series of
operations using a designated script. These operations included
the deployment of the smart contract, the storage of a decision,
and the storage of a generated log. The performed experiments
allowed us to assess the costs associated with the use in the practice
of the THROTTLE’s approach.

Our experiments have been carried out on Sepolia, an Ethereum
testnet employing a proof-of-stake consensus mechanism to
simulate the mainnet environment closely. The smart contract
deployment incurred an average cost of 254,508 gas, equating to
approximately 0.0004 ETH at the time of writing. Storing a decision
consumed an average of 46,810 gas units (approximately
0.00007 ETH), while storing a log required an average of
46,855 gas units for the first log associated with a specific request
and 26,956 gas units for appending subsequent logs to the DAG that
contains logs for that request. Notably, retrieving a decision or a log
did not entail any costs, as these operations do not necessitate
updating any state on the blockchain and thus do not need to be
committed. All the invocations can be examined on Etherscan.9

The costs of these operations are considered optimized, given
that the on-chain data storage is minimal, consisting of only 32-byte
CIDs for IPFS data. Layer 2 solutions (e.g., the Polygon scaling
technology) may be explored if further optimization is deemed
necessary.

4 Related work

Access Control (AC) systems (Hu et al., 2006) are software
components required to determine the allowed activities of
legitimate users, allowing or denying each attempt to access data
in a system. Among the different approaches available, Attribute-
Based Access Control (ABAC) gives great flexibility and finer
granularity (Hu et al., 2015). In THROTTLE we adopt the
ABAC approach, due to its suitability in scenarios where
granular access controls for each individual is required (like, e.g.,
in the healthcare case study considered in this paper). Specifically,
we use the OASIS standard language XACML (OASIS, 2013) for
writing the policies regulating the access to the data stored in the
federated data lakes.

8 https://docs.soliditylang.org/
9 https://sepolia.etherscan.io/address/

0xe507c8252af80a684c20d95ec901d4eb4326c483
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In the literature, some work has focused on combining AC systems
with Blockchain/DLT technologies. In Ghaffari et al. (2020), an
assessment of Blockchain/DLT-based AC systems has been
performed, and a taxonomy is proposed to categorize the existing
methods based on their type, application environment, and purpose.
Concerning the authentication side, the goal is to adopt Blockchain/DLT
to save credentials and user identities in immutable, secure, while easily
accessible storage. Looking at the access control side, the immutability of
the storage is exploited 1) to store the policies that regulate the
authorization, or 2) to rely on smart contracts to execute the policies.

Focusing on the latter, which is closer to the aim of this paper (Di
Francesco Maesa et al., 2018), proposes to codify AC policies as smart
contracts named Smart Policies. Here, XACML policies are translated
into Solidity-written smart contracts deployed on Ethereum. In this
approach, the evaluation of an access request results in an execution of
the smart policy that computes the decision on-chain and then informs
the Policy Enforcement Point that actually enforces the decision. In
Azaria et al. (2016) and Dagher et al. (2018), Ethereum’s smart contracts
are used to create intelligent representations of existing medical records
stored within individual network nodes. Smart contracts contain
metadata about the record ownership, permissions, and data integrity,
while the contract’s state-transition functions carry out policy evaluations,
enforcing data alteration only by legitimate transactions. Finally, in
Ugobame Uchibeke et al. (2018), Hyperledger Fabric is used to
implement access control of big data by borrowing from two existing
access control paradigms: IBAC and RBAC. IDs are assigned to data
assets, and the blockchain serves as an auditable access control layer
between users and their secure data store. The data IDs can be defined to
represent a specific asset, a query that pulls some data, or an encoded
function that runs to pull data from an existing data store.

Differently from the works discussed above, in the THROTTLE
approach the access control policies are evaluated off-chain, and
then the resulting decisions are stored on-chain. This allows to
reduce the policy evaluation costs (in terms of money and time), still
guaranteeing the traceability of data sharing. In fact, a large amount
of resources with specific access rules (e.g., clinical data with a
specific informed consent policy for each patient) leads to AC
policies with large size. When such policies are rendered as smart
contracts, their evaluation consists of executing much code in the
blockchain, which may become expensive. In addition, our work
differs from the other ones since it does not focus only on access
control, but it defines an architecture that allows enacting in a
federated environment the computed access decisions, providing
automatic mechanisms for moving data and computation, and for
logging the data accesses on IPFS and blockchain. Indeed, the aim of
THROTTLE is not limited to data privacy, but it has been conceived
to enable trusted data sharing for guaranteeing data sovereignty.

Notably, blockchain platforms register on the blockchain, in the
form of transactions, information about the operations performed by
smart contracts on the data structure stored on the blockchain. However,
in general, this cannot be considered as a logging mechanism, because
some operations in blockchain-based applications based on smart
contracts do not generate, for performance and cost reasons,
transactions. For example, in Solidity, getter functions are free,
because they do not require any work from miners, as they just read
information from a node. More in general, in the case of public,
permissionless blockchain (as Ethereum, the blockchain considered in
this work), the stored data can be freely accessedwithout performing any

access request. Instead, in the works combining AC systems with
Blockchain/DLT technologies mentioned above, requests must be
sent to access data (typically not stored in the blockchain) and their
evaluations are logged in the blockchain. From this perspective, our
approach in addition allows us to define different logging strategies, to
regulate which accesses have to be logged.

5 Concluding remarks

In this work, we have presented THROTTLE, a blockchain-
based architecture we propose to support trusted data sharing for
data analytics in federated data lakes. THROTTLE relies on access
and logging policies, and on the immutability of blockchain, for
guaranteeing data sovereignty. In addition, containerization enables
data and computation mobility, thus increasing flexibility.

We applied the THROTTLE approach to a case study from the
healthcare domain. Establishing a federation of hospitals’ data lakes
opens the possibility of setting up multi-centric clinical trials that
can take advantage of data belonging to different institutions. With
respect to the current settings, the approach we propose makes the
definition of access policies easier, improving data sharing while
creating a trusted environment.

As a future work, we plan to investigate the integration of a more
expressive language for writing logging policies. At the time being,
we can define simple policies that prescribe the logging level for a
given data resource. We intend to develop a language specifically
designed for logging policies that permit to specify with a fine grain
which accesses have to be logged and how to log them. We also plan
to extend the THROTTLE implementation to support other
technologies to expose the dataset to the data user. This can be
done by implementing new functions for parsing the requests with
the new technology and adding a Dockerfile template that builds a
container architected adequately for the new technology. Finally, we
intend to provide a full-fledged implementation of the case study to
perform a more extensive validation of the proposed approach.
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