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The rapid upswing in interest in federated learning (FL) and federated analytics

(FA) architectures has corresponded with the rapid increase in commercial AI

software products, ranging from face detection and language translation to

connected IOT devices, smartphones, and autonomous vehicles equipped with

high-resolution sensors. However, the traditional client-server model does not

readily address questions of data ownership, privacy, and data location in the

context of the multiple datasets required for machine learning. In this paper, we

report on a pilot distributed ledger and smart contract networkmodel, designed

to track analytic jobs in an HPC supercomputing environment. The test system

design integrates the FL/FA model into a blockchain-based network

architecture, wherein the test system records interactions with the global

server and blockchain network. The design goal is to create a secure audit

trail of supercomputer analytic operations and the ability to securely federate

those operations across multiple supercomputer deployments. As there are still

relatively few real-world applications of FL/FAmodels and blockchain networks

in use, our system design, test deployment, and sample code are intended to

provide interested researchers with exploratory tools for future research.
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Introduction

Continued advancements in data science promise to bring improved decision analytics

and privacy-preserving technologies to data architectures and workflows for analytic

processing. Federated learning (FL) refers to an emerging machine-learning paradigm

where multiple machines train models locally on a distributed dataset and compute a

global model based on local model updates (Lo et al., 2020). The federated learning model

is an example of the more general approach of “bringing the code to the data, instead of the
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data to the code” (Bonawitz and Eichner, 2019; Truex et al., 2019).

Operationally, the FL protocol iteratively requests random clients to

download a trainable machine learning (ML) model from a server,

update it with their own data, and upload the changes to the model

back to the server. Concurrently requesting the server to aggregate

multiple client updates to improve the model. The design of this

distributed data and processing architecture is intended to address

problems in data locality, data privacy, and data ownership.

The rapid upswing in interest in FL architectures has

corresponded with the rapid increase in commercial AI software

products, ranging from face detection and language translation on

consumer smartphones, to voice recognition and speech synthesis

used in virtual assistants such as Amazon Alexa and Google Home.

IoT devices, smartphones, and autonomous vehicles equipped with

high-resolution sensors and connected to high-speed networks are

seen as commercially promising data collection platforms. However,

the typical mobile edge computing paradigm assumes all data

resources are transferred from the IoT client device (e.g., a

smartphone) to the computational platform (e.g., a data server)

through a cellular network. Federated learningmodels, and their first

derivative, federated analytics models, have been developed to

address locality, privacy, and data ownership concerns in

distributed machine-learning models and use cases.

In this paper, we report on a pilot distributed ledger and smart

contract system, designed to track analytic jobs in an HPC

supercomputing environment. The technical design integrates the

federated learning (FL) and federated analytics (FA) models into a

blockchain network model, wherein the system records interactions

with the global server and blockchain network. The benefit of

combining these technologies is the immutability of the access

and modification logs, such that any breach of policy is recorded

without failure and privacy can be defined across participants in the

network. This benefit may provide benefits over traditional FL/FA

systems wherein the privacy and security of data are part of the

system infrastructure. Our goals included first, to defining,

configuring and deploying a workable FL/FA model and

blockchain network in an HPC supercomputing environment;

second, defining and testing key operating parameters of the

network; and third, assessing results and describing our system

design, test procedures, and example code in sufficient detail for

researchers to replicate our test environment and results. As there

are still relatively few real-world, commercial applications of FL/FA

models and blockchain networks in use, our system design and

deployment is intended to help spark further research into the

integration and application of both technologies.

We organize our paper into five sections. First, we define the

basic paradigms for federated learning (FL) and federated analytics

(FA), briefly tracing their origins. Second, we summarize a selected

sample of key technical articles. Third, we discuss design

considerations in building our test environment and describe how

we ran simulations of supercomputer jobs in this environment. We

then discuss how we obtained results by capturing state information

from the system, and how we analyzed state transitions and storage

from smart contract execution used for access and modification logs.

Finally, abstracting from lessons learned, we comment on applicable

use-cases and directions for future research.

Our work was carried out at BlockLAB, the blockchain research

laboratory at the San Diego Supercomputer Center, UC San Diego,

with research, systems, and administrative support from Dell

Technologies, and VMware and Boomi business units within

Dell. We worked closely with Dell Boomi web services and

VMware to execute smart contracts on the VMware blockchain

service in organizing our test system environment.

Federated learning and federated
analytics: technical and
organizational review

Recent advances in federated learning (FL) and federated

analytics (FA) continue to drive an expanding literature. The

large and growing technical literature covers FL and FA system

development, while the organizational literature addresses team

and organizational design criteria in FL/FA implementation.

Field reviews of FL system design and
software engineering

In a systematic review and classification of FL studies, Lo et al.

(2020) reviewed 231 primary studies covering the software

engineering aspects of FL system development. The authors

followed the review methodology described in Kitchenham and

Charters, (2007) organizing articles into four areas—Background

Understanding, Requirement Analysis, Architecture Design, and

Implementation and Analysis. A Software Development Life Cycle

(SLDC) for FL was derived from combining practices in traditional

software development with those of machine learning system

development, as shown in Figure 1.

The primary purpose of Lo and colleagues was to cross-classify

their primary sample of 231 articles into active research topics and

open problems. Lo outlines key architectural components of the FL

system, evaluation metrics for FL performance, and outlines open

problems and future trends in FL, including enterprise and

industrial-level implementation and adoption, and tradeoffs

between data privacy and model system performance.

A second comprehensive review of federated learning is

presented in Kairouz et al. (2019). Their review is a composite

of thirty individual papers presented at the Workshop on

Federated Learning and Analytics held at Google’s Seattle

office in June 2019. In their introduction, the editors state that

a key property of FL is its inherent interdisciplinary nature,

integrating models and approaches derived from, for example,

machine learning, distributed optimization, cryptography,

security, and differential privacy. Initially, FL addressed data

locality and privacy in mobile and edge computing applications.
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In proposing a broader definition, the authors define two FL

settings, “cross-device” and “cross-silo”, respectively:

Federated learning is a machine learning setting where

multiple entities (clients) collaborate in solving a machine

learning problem under the coordination of a central server or

service provider. Each client’s raw data are stored locally and not

exchanged or transferred; instead, focused updates intended for

immediate aggregation are used to achieve the learning objective.

The basic federated learning model

The basic FL model, typically developed by a model engineer

for a particular application, is shown in Figure 2. The primary

activities, stakeholders, and workflow break down into six steps:

1 Problem identification: the model engineer defines the

problem to be solved using FL.

2 Device (client) instrumentation: in a mobile—edge

computing application, the clients (an application running

on the mobile phone) are instrumented to store the necessary

training data locally. For example, text messages or photos.

3 Simulation prototyping: the model engineer may prototype

model architectures and test learning parameters using a

proxy dataset.

4 Model training: multiple FL tasks are started to train

different models, using different optimization parameters.

5 Model evaluation: after the specified period of time

necessary to train the models, the models are analyzed to

select the best candidates defined by selection criteria.

6 Model deployment: deployment includes standard activities,

including debugging, quality tests and A/B testing (comparing

two variations of a model against “best” criteria), and activities

defined by context, specifically the criteria used to determine

“best” and fit to purpose.

Research questions

Algorithmic questions remain open in the real-world

usability of decentralized approaches for machine learning.

Some questions are analogous to the special case of federated

learning with a central server, while others are specific to the fully

decentralized or “trustless” model.1 Kairouz et al. (2019)

summarize four key areas:

1 Effect of network topology and asynchrony on decentralized

SGD (stochastic gradient descent, a smoothing function):

FIGURE 1
Question groups defining the FL software development life cycle (SDLC). Source: Lo et al., A systematic literature review on federated machine
learning from a software engineering perspective (2017).

FIGURE 2
The basic federated learning model framework.

1 “Trustless” systems, typically associated with blockchains, are systems
where “trust” is distributed among different actors in the blockchain
network using an economic model that incentivizes actors to
cooperate with the rules defined by the consensus algorithm.
However, the term is often criticized as being imprecise.
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denser networks encourage faster consensus and give better

error convergence rates, at the cost of incurring

communication delays that increase with the number of

nodes.

2 Local-update decentralized SGD: this is basically the

problem of designing an efficient convergence model when

running an optimization—smoothing function (SGD) in a

decentralized network.

3 Personalization and trust mechanisms: this is a related class

of problems posed by the fully decentralized environment.

The authors summarize: “The use of incentives or mechanism

design in combination with decentralized learning is an

emerging and important goal, which may be harder to

achieve in the setting without a trusted central server.”

4 Gradient compression and quantization methods: a final

algorithmic challenge is in redesigning compression-

communication protocols, originally designed and

optimized for centralized server systems, for the fully

decentralized environment. The performance and cost of

the FL approach are severely affected by network

performance and transmission costs.

The work reported here focuses on topic areas 2 and 3. In

future research, we plan to address topics 1 and 4.

Practical questions in combining FL/FA
and blockchain technology

Combining FL and blockchain technology, in principle,

could enable decentralization of the global server by using

smart contracts to do model aggregation. Participating clients

executing the smart contracts could secure the use of FL models

and data throughout the system. However, there is the logical

inconsistency that data available on public blockchain platforms

such as Ethereum is available to all network clients by default,

and a principal motivation of the decentralized FL protocol is the

protection of data privacy. How might existing privacy-

preserving protocols be modified to fit the decentralized FL

scenario? Kairouz et al. (2019) identify three approaches: first,

to prevent the participating nodes from exploiting individually

submitted model updates, existing secure aggregation protocols

could be used. A practical secure aggregation protocol already

used in cross-device FL was proposed by Bonawitz and Eichner,

2019; effectively handling dropped out participants at the cost of

complexity of the protocol.

Alternatively, another approach might have each client stake

a deposit of cryptocurrency on the blockchain and suffer a

penalty if they drop out during the execution. A third

approach to achieving secure aggregation would be to use

confidential smart contracts—for example, what is enabled by

the Oasis Protocol (Oasis Protocol Foundation, 2022) executing

within secure enclaves. In this system, each client could submit

an encrypted local model update, wherein only specific secure

hardware could decrypt and aggregate the encrypted model

through remote attestation. (Cheng et al., 2019). Utilizing

blockchain technology with FL/FA could provide a secure,

automated, and auditable process to update models.

Configuring the federated analytics/
blockchain test environment

In this section, we present the Federated Analytics (FA) test

environment created in BlockLAB with Dell partners VMware

and Boomi. We first discuss the key considerations in designing

an FA/blockchain system in an HPC environment. We then

discuss configuring and testing the system under test (SUT).

What is needed: FA/blockchain design
considerations

As summarized in Figure 3, designing and configuring a FA/

blockchain system involves a number of considerations

appropriate for the SUT test environment. The initial

consideration is to determine the system components and

benefits under test. Generally, federated analytics jobs will

consist of many participants sharing the same resource or

many participants contributing to the same resource. In our

test case, we modeled our use cases along the lines of multiple

researchers using the SDSC HPC system for conducting work. In

this scenario, FA benefits would include generating a secure audit

trail of what the supercomputer was used for, and the blockchain

controlling access to analytic and operational data generated by

the FA jobs running in the SDSC HPC system.

An early and widely discussed baseline federated learning use

case is where the FL model enables mobile phones to collectively

learn a shared prediction model while keeping all the training

data on the device (McMahan and Ramage, 2017). The design

consideration in this case is to decouple the ability to do machine

learning from the need to store data in a centralized data store,

for example, in the cloud. To do this, a machine learning model is

downloaded onto user phones in the FL network, then executed

locally, with the results from the model sent back to the analyst.

Sharing only the model results, not the data, helps to ensure

privacy while allowing for improved models.

Our system under test (SUT) involved a series of design

considerations. The first was to determine the access structure of

the blockchain system. A public blockchain would allow anyone

to run nodes that verify the data, which is problematic in this case

due to the possibility that malicious actors in the network could

send false information. Access control is an important

requirement of FL/FA and, therefore, we chose the alternate

model of a permissioned blockchain. Here, network participants

are first required to be verified. Participant roles are then assigned
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to determine the level of data visibility each participant in the

network is permitted.

The second design consideration was to define how smart

contracts should be organized and created. Smart contracts refer

to self-executing code that specifies the exchange rules for

network transactions. We chose a very straightforward smart

contract design that performed access control and the storing of

an audit trail of data access and modifications. The secure nature

of the access control and audit trail offer significant

improvements to the data privacy and security of FL/FA

models by utilizing self-executing programmatic rules to

enforce privacy and security.

A third set of design considerations refers to how data producers

are connected on the blockchain. It is desirable to design the test

system to work only when there is “good” data being reported out as

transactions are executed. “Good” data refers to data that is

accurate—a measure of data quality—and “truthful”—a composite

measure of node consensus that the data submitted to the chain is

verifiable, reliable, and accessible by all participants in the network

(Awan et al., 2019; Lo et al., 2020; Mugunthan et al., 2020). The most

direct way to connect actions performed by users is by making API

calls to a network server that, in turn, then submits the updated data

to the blockchain. Further, it is desirable to build these API calls into

the underlying test system so that all actions are automatically

reported to the transaction ledger.2

The integration of data quality metrics associated with access

control and historical data access and modification logs enables

high-trust analytics regarding information in the system without

exposing the underlying data itself. This is an improvement over

traditional FL/FA systems where data quality is very difficult to

determine without first being exposed to the raw data.

Furthermore, blockchain technology has the potential to

utilize Zero-Knowledge proofs, which could further abstract

the data from a data quality score.

Creating and testing the FA—blockchain
test environment

The BlockLAB development team first created and tested a

system for recording analytic jobs performed on the SDSC

supercomputer and then wrote that data onto a blockchain.

The team then partnered with Dell units Boomi and VMware

to use the VMware blockchain stack hosted in a cloud offering

and fronted by Boomi’s web interface. Our test system

architecture is shown in Figure 4. Smart contracts created by

the Dell and BlockLAB development teams enabled analytic job

information to be transmitted and stored in the VMware ledger

(Project Concord, 2018; Gueta et al., 2019; VMware Blockchain

Group, 2022).

The VMware blockchain core natively supports pluggable

state machine replication (SMR) atop a Byzantine fault-tolerant

(BFT) consensus protocol. It enables blockchain nodes (defined

as “members” in the VMware documentation), who may not

necessarily trust one another, to share data or transact in a

permissioned business network. Further, the blockchain

FIGURE 3
Design considerations in configuring an FA Blockchain system.

2 Attached in the supplemental section is the set of API endpoints we
created to interact with the test environment. These endpoints allow
the user to fetch information about the supercomputer jobs and also
create new users for the system and new jobs for the supercomputer.
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architecture is designed to enable the network to operate

correctly even if a subset of nodes behaves maliciously. The

system also allows for an increase in the number of nodes in the

network, improving network availability and tolerance to faults.

At a high level, the test environment created using the

VMware blockchain platform is a distributed trust platform.

By “distributed trust,”we refer to a programming language-based

control system that can verify “who is asking for what,” using a

comparison approach that matches up the user or the role the

user adopts with policies that distribute access rights and

authorizations to that user or role. Trust platforms have

become essential components of blockchain networks, where

potentially large numbers of people are spread geographically,

making multiple requests for information, sometimes for the first

time. In this scenario, conventional system-security and

verification approaches are inadequate (Boomi, 2022).

Smart contracts: creating “blocklab” and
“job” smart contracts

“Smart Contracts” are self-executing digital exchange

agreements that reside and run on a distributed ledger/

blockchain service. The “smart” aspect of a smart contract

refers to the autonomous execution of software code. Each

smart contract exposes a set of publicly accessible functions

that are called by applications (APIs). The ‘contract’ aspect of

smart contracts refers to the execution of the transaction once all

pre-defined rules are met (Levi and Lipton, 2018; Cheng et al.,

2019).

The BlockLAB and VMware development teams wrote two

smart contracts to enable analytic job information to be

transmitted and stored in the blockchain ledger. The first,

called “BLOCKLAB,” kept track of all analytic jobs submitted,

and the second, called “JOB,” represented each job submitted, its

job parameters, and the result. As summarized in Figure 5,

instantiating the smart contracts, establishing distributed data

streams for the blockchain, and verifying the data and blockchain

network connectivity involved a series of design considerations

and programming steps3.

The final steps in building and testing the blockchain

network implement the following sequence of steps: the

program sequence starts when an analytic job is submitted to

the supercomputer, triggering a transaction containing the name

of the analytic job, the requester of the job, and the submission

FIGURE 4
System under test.

3 Historically, smart contracts automated the execution of a set of pre-
defined rules between a set of agreeing nodes. Trigger events invoke
the execution of these agreements via methods codified in the smart
contract (thus enforcing the rules). In short, through conditional logic,
the smart contract verifies and enforces the execution of a digital
transaction between two ormore nodes. As smart contracts run on top
of a distributed ledger platform, all interactions are immutably
recorded. Ledger entries generate an auditable record for all parties
involved in the transaction.
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date to be run against the BLOCKLAB contract. The BLOCKLAB

contract then instantiated a new JOB contract, corresponding to

the submitted job. Once instantiated, JOB was updated with

parameters including the job input data, the analytic model and

resources requested. Once the supercomputer job was completed,

the JOB contract was updated with the analytic job output

parameters. Both BLOCKLAB and JOB contracts could be

accessed through a set of published APIs and, in principle,

could be integrated into the larger analytics job workflow. As

each contract ran on the distributed ledger, all interactions in the

test environment were recorded immutably on the DTL

(distributed transaction ledger) and made available for

verifiability and reporting.

Experimental results and assessment

Over a several-month testing period, the BlockLAB

development team tested and verified system parameters by

submitting over 500 API calls to the blockchain network. The

API calls simulated a wide range of analytic jobs and system

resources required by researchers at SDSC using the COMET

supercomputer. The blockchain system worked as designed: the

analytic jobs were successfully transmitted from the SDSC servers

to the VMware Boomi web service using smart contracts and

were recorded to the VMware blockchain distributed ledger for

subsequent analysis and reporting. Excerpts of the code used are

presented in the Supplementary Material.

In partnering with commercially developed technologies

from Boomi and VMware, SDSC and BlockLAB researchers

avoided a number of complexities. Researchers were not

constrained to specific blockchain implementations, allowing

the team to future-proof their application logic (e.g., no code

changes for different blockchain implementations). System

features built into the Boomi and the VMware blockchain

platform eliminated the need for the SDSC development team

to interact with the ledger directly. By this, the team was able to

focus resources on the use case and test environment, job

classifications, SUT system architecture and test parameters,

and the successful posting of data to the blockchain and

distributed ledger environment.

In reviewing the results, the two development teams

reconsidered three important project goals. First, the primary

design goal was to build and successfully test a workable FL/FA/

blockchain system in an HPC environment. A second key

objective was to create and test a workable and efficient smart

contract implementation in the test environment. Third, a key

objective was to open up discussion of future use cases and

operational scenarios presented by the pilot. We will comment

on this last objective in our concluding section.

Key takeaways from our pilot system design and testing

include:

1 Blockchain applied to Federated Learning/Federated

Analytics can improve model and data consistency through

smart contract automation, and trust through the

transparency and public nature of the blockchain.

2 Tracking and securing the executed code to train models can

ensure consistency throughout the FL/FA lifecycle because

each successive run of analytic jobs on the training datasets in

the distributed data architecture is “known” to be consistent,

and therefore “trusted”. The distributed ledger and

distributive nodes’ reaching consensus ensures consistency

is improved, which is a contributing factor in “trust”.

3 Data can be verified/proven consistent in the distributed

storage model, and/or zero-knowledge proofs can be

employed to ensure data integrity used in the FL/FA

architecture without exposing the underlying data4.

4 Provenance in the FL/FA architecture appears to be a key

blockchain use case, in that concerns around implementing

blockchain in FL/FA can be mitigated through a variety of

traditional security techniques that anonymize users in the

system.

Conclusion and future research

Motivated by the growing interest in the integration of

federated learning and blockchain technologies, this paper

presents a system design, test implementation, and example

code to provide its interested researchers exploratory tools for

study and experimentation in FL/FA blockchain. The integration

of FL/FA and blockchain technologies provide their own unique

FIGURE 5
Design consideration in building the Blockchain network.

4 In cryptography, a zero-knowledge proof or zero-knowledge protocol
is a method by which one party (the prover) can prove to another party
(the verifier) that a given statement is true while the prover avoids
conveying any additional information apart from the fact that the
statement is indeed true.
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challenges in the design and testing of pilot systems. As the data

engineering and smart contract design considerations, for

example, do not have an obvious “federated version” that

would be efficient or necessarily comprehensive under the

assumptions motivating this work. However, as major

technology firms have deployed federated learning in

production, and several startups have been founded with the

objective of using federated learning to address privacy and data

collection challenges, these activities suggest that FL/FA

blockchain will continue to gain traction in a range of

industry use cases and in interdisciplinary academic research

(Li et al., 2021; Salim et al., 2021; Unal et al., 2021).

In defining our future research objectives, the authors plan to

extend this work into topics including federated optimization

(Konecny et al., 2016), FL algorithmic performance

benchmarking (Nilsson, A. et al., 2018), and blockchain

performance evaluation (Egbedion et al., 2021). Here again, the

challenge will be to design performance criteria, appropriate SUTs,

and assessment methods that will integrate across FL optimization

problems and blockchain performance. Optimization and

performance research in FL has tended to focus on the efficiency

of different algorithms in resolving communications inefficiencies

(time, energy) in the distributed data model. With this emphasis,

researchers are often concerned with sparse data, where

inefficiencies may occur on a small subset of nodes or data points.

Researchers addressing blockchain performance have tended to

cluster performance evaluation into four groups, benchmarking,

monitoring, experimental analysis, and simulations. An early

benchmarking example is BlockBench, a framework designed for

evaluating private blockchains in terms of performance metrics on

throughput, latency, scalability, and fault-tolerance (Tuan AnhDinh

et al., 2017). More generally, performance metrics are typically

divided into two groups: macro and micro. Macro metrics

provide an overview of the system’s performance for users at the

application level, such as, for example, transaction throughput,

latency, scalability, or fault tolerance. Micro metrics track the

performance of different sub-processes of transactions or specific

layers in the blockchain developer model, including peer discovery

rate, transaction propagating rate, contract execution time, or

encryption and hash function efficiency (Yu et al., 2017;

Dickerson, et al., 2020; Fan et al., 2020). As a general rule, both

macro and micro metrics are evaluated under well-specified

workloads.

We intend to pursue this work to address two use cases that

are receiving widespread attention in both academic and industry

publications. In the IoT space, smart home energy management

and in the financial domain, credit score monitoring and

reporting. Both use cases present design challenges that draw

on the pilot work presented in this paper and extend into the

design and analysis of their operational performance. Use case

scenarios are important for requirements specification and the

description of high-level functionalities. Specifically, we will be

interested in identifying patterns of requirements that are

common across different test system implementations. We

envision multiple challenges in the design, implementation,

and assessment of pilot field tests in our work, and in the

overall goal of assessing how such systems are implemented in

practice.
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