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With the popularity of Bitcoin, there is a growing need to understand the functionality,
security, and performance of various mechanisms that comprise it. In this paper, we
analyze Bitcoin’s scripting language, Script, that is one of the main building blocks of
Bitcoin transactions. We formally define the semantics of Script, and study the problem of
determining whether a user-defined script is well-formed; that is, whether it can be
unlocked, or whether it contains errors that would prevent this from happening.
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1 INTRODUCTION

Bitcoin (Nakamoto, 2008; Bonneau et al., 2015; Narayanan et al., 2016; Antonopoulos, 2017) is a
decentralized cryptocurrency protocol proposed in 2008 by a person or a group of people under the
pseudonym Satoshi Nakamoto. As a currency, Bitcoin allows for transactions between users, and can
be used for instance as a way of transferring money between individuals in a secure way, and without
depending on any bank or centralized institution. But there are several other advantages of using
Bitcoin to transfer currency. The subject of this article is a feature called “smart contracts”, which, in
Bitcoin, work by specifying certain requirements that must be satisfied by transactions before this
money can be spent1. These contracts are issued using Script, a language specifically designed for this
task, and that is integrated into the Bitcoin protocol.

The Bitcoin protocol and its Script language permit the design of different forms of smart
contracts, and currently we have a variety of pre-designed contracts, and several formal models to
understand the correctness of contracts, their semantics or their power [see e.g. (Bartoletti and
Zunino, 2019)]. However, there are still lower-level complexity questions that remain unanswered
about Script. In this paper, we focus on the complexity of processing scripts, and, more importantly,
of verifying whether a smart contract is valid, in the sense that the requirements posed by the contract
are actually possible to satisfy. In order to dig deeper on Bitcoin’s smart contracts, we start by
pointing out some of the differences that exist between a common bank transaction and a Bitcoin
transaction.

First, there is no concept of account in the Bitcoin protocol. Assume that person A wants to
transfer X amount of money to person B. A does not have an account with a balance that determines
how much money he/she can transfer. Instead, A must point to one or more transactions of which
he/she is the recipient, and whose sum must be at least X. Clearly, the system must address the
problem of determining which transaction outputs have been spent and which have not. In the case
of Bitcoin, instead of inspecting the whole ledger to determine whether a certain transaction output
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has been spent, the nodes in the network keep a record of all of the
unspent transaction outputs (UTXOs).

The second main difference between bank and Bitcoin
transactions is that the Bitcoin protocol was designed to allow
for more complex spending requirements. In other words, instead
of just indicating a recipient for a transaction, the sender states
certain requirements that need to be met by the recipient in order
to spend the transferred money. For example, one could wish to
forbid the money from being spent before a certain date, or to
require multiple people to agree to spend the money. The tool
that is used to establish these requirements is Script, which is a
non-Turing-complete scripting language designed specifically for
this purpose (O’Connor, 2017; Klomp and Bracciali, 2018; Jansen
et al., 2019).

Script was designed to disallow infinite loops from being
created, so that the nodes in the network could not be tricked
into executing a never-ending program. However, the
requirements that can be represented through it can be
complex, and this is why these requirements can be
understood as smart contracts.

In practice, the protocol for spending requirements associates
each transaction output with a locking script, which corresponds
to a sequence of Script operators. Afterwards, when creating a
new transaction, in addition to pointing to an unspent transaction
output, the sender must provide an unlocking script that fulfills
the requirements established through the locking script
associated with such an output. Specifically, to determine if
the unlocking script is valid, the nodes that receive these
transactions append the locking script to the unlocking script,
execute the resulting construction and determine whether the
execution is successful. An execution is considered successful if it
does not raise any errors and results in a structure that represents
the Boolean value true.

Script provides enough freedom to easily create a locking
script for which there does not exist any valid unlocking script.
This can be done on purpose, and there is even a specific operator
OP_RETURN that automatically flags the locking script as
invalid. In practice, this is used to store information in the
blockchain, so that there is a verifiable proof that said
information was available to the sender on a certain date.
However, locking scripts that cannot be unlocked can also be
created by mistake.

This causes problems at the individual and collective level. On
the one hand, a person simply loses money if he/she creates a
transaction with a locking script that cannot be unlocked. In fact,
there is no possible way of accessing funds that have been locked
in this manner. On the other hand, these unspent transactions are
accumulated in the pool of UTXOs, occupying memory and
resources on all the nodes that have received it. Given that these
outputs cannot be spent, the resources used to manage them
cannot be freed.

Our goal is to understand the complexity of determining
whether the output of a transaction is spendable or not, by
looking at how its associated locking script is constructed. As
a first necessary contribution for tackling this goal, we propose a
simple and direct formalization of a fragment of Script, which
provides a suitable setting to define and study the aforementioned

unlockability problem. We use our formalization to prove that
there is no efficient algorithm for detecting unspendable
transaction outputs in the considered fragment of Script
(unless Ptime � NP), which immediately implies that no such
an algorithm can exists for the entire language. Interestingly, we
also use our formalization to provide a mathematical proof for the
folklore fact that processing a script is in Ptime.

Our formalization of Script is similar to the one presented in
(Klomp and Bracciali, 2018); in particular, they are both based on
a notion of configuration, or state, that is updated when a Script
operator is executed. A state is defined in (Klomp and Bracciali,
2018) as a single main stack together with some extra components
like pointers to the head and bottom elements of the stack, and
the semantics of Script is defined by a set of structural operation
semantics rules. On the other hand, the notion of configuration in
our formalization consists of the main and alternate stacks used
in Script, and a control stack needed to define if statements. We
diverted from the definition in (Klomp and Bracciali, 2018) to
have a more appropriate formalization to study the unlockability
problem, which also includes the alternate stack of Script. A
comprehensive description of different formalizations and
extensions of Script can be found in (Bartoletti and Zunino,
2018). These works have focused on proposing executable
semantics of Script, and some extensions of it, and on
enabling the formal verification of some properties of
protocols defined in this language (Andrychowicz et al., 2014;
O’Connor, 2017; Atzei et al., 2018b; Atzei et al., 2018a; Bartoletti
and Zunino, 2019; Singh et al., 2020). In this sense, our definition
of Script follows a different direction, guided by the need to study
the unlockability problem, which, to the best of our knowledge,
has not been considered in previous works.

2 HOW SCRIPT WORKS

Transactions are at the core of Bitcoin. Simply put, they specify
which coins are spent and to whom they are transferred. On a
technological level, each Bitcoin transaction can have multiple
inputs, each of which is an output of a previous transaction.
Conceptually, for a transaction to be accepted, each input that is
used requires a digital signature that corresponds to the public
key specified by the transaction where this input was generated2.
We depict this dependence graphically in Figure 1. Besides, the
list of all transactions (grouped into blocks) is kept by a peer-to-
peer network “running” Bitcoin, so that we are able to check if the
transaction inputs have already been spent. The only transactions
that differ from this template are the coinbase transactions in
which new “coins” are minted, and that have no inputs. These
appear once per block, and only specify who can spend the newly
created “coins”.

In reality, the process of signing a transaction input is more
complicated and depends on Bitcoin’s scripting language, Script.
More precisely, each transaction output specifies a part of a script

2As we explain below, one does not necessarily provide a digital signature. This
example serves for illustrative purposes only.
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written in this language, called the locking script. In order to
spend this output, the transaction using it as an input must
provide another sequence of Script commands, called the
unlocking script, such that the script obtained by
concatenating the two executes correctly. Given that stack-
based languages operate “in-reverse”, the two scripts are also
concatenated in this order, namely, the locking script is appended
to the unlocking script spending it. We depict this process
graphically in Figure 2.

When Script was conceived, the process of executing the
combination of both scripts was done by literally
concatenating them together, and then executing the resulting
script. However, for safety concerns this procedure has been
modified, so that the execution of the concatenation is performed
by first executing the unlocking script while checking that it was
properly constructed, and then executing the locking script with
the final state of the execution of the unlocking script as its initial
state (Github, 2010). This distinction is irrelevant in the analysis
of the most commonly used locking scripts. However, it will
become important in the later sections of this document, when
laying out proofs about the inner workings of Script.

Script (Bitcoin Wiki, 2021) is a simple stack-based language
which allows to push elements to a stack, and manipulate its
content using basic arithmetic, logical operations, if-else
statements, and cryptographic primitives such as hashing and
signature verification. Script is designed to be loop-free and is,
therefore, not Turing-complete (O’Connor, 2017), which allows it
to be more secure, and to be implemented efficiently. In spite of
this, Script still allows to express an array of complicated
conditions, giving rise to what is known as “smart contracts”,
which are nothing more than non trivial Script programs that
specify how an output of a previous transaction can be unlocked.
In what follows, we briefly recap the main commands of Script,
and explain the problems we study in this setting.

Script evaluation relies on a stack in order to store some
elements, perform simple operations on them, and later compare
them for equality. Instructions of Script can be grouped as
follows:

• Data (256 bit numbers), which are pushed onto the stack
when encountered.

• Stack operations (push, pop, . . .).

FIGURE 1 | The input to one transaction is the output of a previous transaction. Here Bob confirms with his digital signature that he is the owner of the private key
corresponding to the public key used when specifying the recipient of the funds in the previous transaction. Transactions reference each other via their hash (i.e. 0xffaa in
this case).

FIGURE 2 | Interaction between the locking and unlocking scripts.
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• Logical operations (and, or, . . .).
• Arithmetical operations on numbers.
• Cryptographic primitives (hashing and signature
verification).

We show how basic Script commands work, by illustrating
how a basic transaction to transfer funds from one address to
another works. This is called pay to public-key hash (or P2PKH
for short) script, and is one of the simplest scripts that can be
expressed.3 As stated previously, each input to a transaction has
an associated locking script. In the case of P2PKH, this locking
script is as follows:

OP_DUP OP_HASH160 pubKeyData OP_EQUALVERIFY
OP_CHECKSIG.

To unlock this output, we need to provide a set of Script
commands, which, when executed prior to executing the locking
script, result in a stack with a nonzero element at the top. A
correct unlocking script in this case would be

signature pubKeyData.
Intuitively, the unlocking script provides us the signature

signature and the public key pubKeyData corresponding to
this signature, and then the locking script checks its validity.
Namely, the locking script duplicates the top item on the stack
(via OP_DUP), hashes this element (with a combination of
ripeMD160 and SHA-256 hash functions), pushes an item
onto the stack, pushes the public key data onto the stack,
checks that the provided public key and the one specified in
the script match, and finally verifies the signature.

This example already shows how locking scripts can specify
complex conditions. While it is easy to construct the unlocking
script for the locking script above, provided we have the required
private key needed to produce the signature, this is not necessarily
always the case. For instance, the locking script.

OP_DUP OP_ADD 7 OP_EQUALVERIFY
can never be unlocked since it is asking for an integer number

n such that 2n � 7. This can of course be very problematic if funds
are locked behind such a locking script. A good Bitcoin wallet
should try to prohibit such transactions, or at least try to warn the
user that his/her output will become unspendable due to the
locking script condition. This is known as the unlockability
problem, and it is the main subject of study of this paper.
More precisely, we provide a formalization of a fragment of
the language Script in Section 3. Then we use this formalization
in Section 4 to provide a definition of the unlockability problem,
and to prove that this problem is NP-hard. Finally, a discussion of
the consequences of this intractability result are given in
Section 5.

3 FORMALIZING SCRIPT

In this section, we develop a formalization for Script that allows
us to study the computational complexity of some problems

related to the evaluation or unlocking of scripts. Besides, this
formalization enables us to fix the notation used throughout the
paper. Given that Script is a stack-based language, we begin with a
formal definition of the stacks that are used by this language. We
then focus on the operators of Script, defining their semantics in
terms of stack operations.

3.1 The Stacks in Script
For an arbitrary nonempty setM, we denote the concatenation of
two elementsA, B ∈M asA · B, and naturally extend this notion to
any finite number of elements. By Mp we denote all finite
concatenations of elements of M, including the empty string ε,
and with M+ we denote Mp without ε. A stack over M is any
element A0 · A1/Ak ∈ Mp. Intuitively, this string over M
represents a stack containing A0 as the top element, A1 as the
element below the top one, etc. Notice that we allow the empty
stack, which is denoted by the empty string ε.

Script has two stacks at its disposal: the main stack, denoted by
φM, and an alternate stack, denoted by φA, that can be accessed by
a few of the operators. Hence, the stacks of Script shall be denoted
as the pair (φM, φA). To manipulate these stacks, we use functions
top and tail, defined as follows: top:M+→M is used to return the
top of the stack, that is top(A0·A1·. . .·Ak) � A0, while tail: M

+ →
Mp is used to return the stack below the first element, that is,
tail(A0·A1·. . .·Ak) � A1·. . .·Ak. Notice that the result of tail can be
the empty stack ε.

3.2 Script Operators
For simplicity, we assume that data items in Script come from the
set Z.4 This is a natural generalization when studying the
complexity of the unlockability problem for Script.

Script has a precisely defined set of allowed operations (Bitcoin
Wiki, 2021), which can be thought of as transforming the two
stacks, or giving an error that terminates the execution. We
denote the set of Script operators with O. Formally, every
Script command f, apart from those used for flow control (see
Section 3.2.3), can be understood as a function which takes the
main and the alternate stack as its inputs, and transforms them in
some way, or produces an error (denoted by □):

f: (Zp × Zp) ∪ {□}→ (Zp × Zp) ∪ {□}. (1)

Thus, scripts–as functions–can be composed, which naturally
allows us to define the semantics of a sequence of operators. In
particular, to handle errors, we impose the restriction that all of
Script operators return an error when the input is an error itself,
that is, f(□) � □.

With this notation at hand, we define how each operator f ∈ O
works. We start by introducing in Section 3.2.1 a group of basic
operators, and defining how a sequence of them is executed. Then
we describe in Section 3.2.2 how the operators associated with
cryptographic primitives work. Finally, we introduce in Section

3We use this for simplicity. Pay to script hash is by far the currently most used type
of script, often encapsulating P2PKH.

4In other words, we assume that each binary string encodes an integer. Notice that
in Bitcoin the integers are bounded by size, however, for complexity theoretic
analysis it is natural to lift this restriction, since considering bounded size inputs
makes all of the results trivial.
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3.2.3 the flow control operators and the control stack, which
determine when an operator should or should not be executed. A
summary of the operators used in this paper, without including
the control flow operators, is given in Table 1. Readers familiar
with the Script syntax as given in (Bitcoin Wiki, 2021) may note
that a small number of the operators are not included in this table.
For space reasons we have left out several operators that are
similar to or can be simulated by applying instead a constant
number of other operators. This includes, as explained bellow,
merging all push operators into a single family of operators,
arithmetic operators OP_1ADD and OP_1SUB for adding or
subtracting one from the top of the stack, OP_NEGATE to flip
the sign of the top of the stack, OP_ABS for the absolute value,
binary operations OP_NOT, OP_0NOTEQUAL,
OP_BOOLAND and OP_BOOLOR, number comparison
operators OP_NUMEQUAL, OP_NUMEQUALVERIFY,
OP_NUMNOTEQUAL, which are not useful under the
assumption that elements in the stack are numbers, and
comparison operators OP_LESSTHAN, OP_GREATERTHAN,
OP_LESSTHANOREQUAL, OP_GREATERTHANOREQUAL,
OP_MIN, OP_MAX and OP_WITHIN. Reserved words are
not included because they immediately make transactions
invalid, and similarly for pseudo words OP_PUBKEYHASH,
OP_PUBKEY and OP_INVALIDOPCODE. An operator-by-
operator check allows one to verify that none of these
operators alter the results presented in this paper, and in
particular the PTIME upper bound shown later on in the
paper continues to hold. Furthermore, we have also left out
locktime-related operators OP_CHECKLOCKTIMEVERIFY
and OP_CHECKSEQUENCEVERIFY, because they require
checking the nLockTime field of transactions and this is not
part of our model. Finally, we will comment on the cryptographic
operators on Section 3.2.2; we have also left out some of them but
once again the complexity analysis does not change.

3.2.1 Basic Operators in Script
The most basic operation in Script is pushing data onto the
(main) stack, which is achieved using a multitude of different
operators [see e.g. the section on “Constants” in Bitcoin Wiki
(2021)]. In order to simplify this process, we combine all of these
methods of pushing data through theOP_PUSHC operator, which
pushes the value C onto the main stack. In terms of our generic
description of Script commands (1), the semantics of this
operation is defined as follows:

OP_PUSHC(φM,φA) � (C · φM,φA).

That is, if the operator receives as input a pair of valid stacks φM
and φA, then it puts C on top of φM. Moreover, as already
mentioned, we assume that OP_PUSHC(□) � □.

Notice that for each value C ∈ Z, we include an operator
OP_PUSHC. We designed the language in this way to be able to
define the semantics of a sequence of operators as their
composition as functions. In fact, if we had included a single
operator OP_PUSH with input (C, φM, φA), then this property
would no longer hold; in particular, the output (φM, φA) of an
operator cannot be used as the input of OP_PUSH.

Similarly, to pop the top of the stack, we can use OP_DROP,
and to duplicate the top element of the stack, OP_DUP. Both of
these operators require that the main stack φM contains at least
one element (i.e. |φM|≥ 1), otherwise they return an error. In the
case of a nonempty stack, their behavior is defined as:

OP_DROP(φM,φA) �(tail(φM),φA)
OP_DUP(φM,φA) � (top(φM) · φM,φA)

The alternate stack in Bitcoin can be accessed in a very limited
number of ways: we can only move the top element from themain
stack onto it by means of the operator OP_TOALTSTACK, and
move the top element of the alternate stack onto the main stack by
means of the operator OP_FROMALTSTACK. Formally,

OP_TOALTSTACK(φM,φA) �(tail(φM), top(φM) · φA) if |φM|≥ 1
OP_FROMALTSTACK(φM,φA) � (top(φA) · φM, tail(φA)) if |φA|≥ 1

In Table 1, we provide the list of remaining basic operators
and their semantics (except for the last three rows of this table
that include the operators defined in the following section).

As Script operators are understood as functions, the semantics
of a script f1·f2·. . .·fn consisting of a sequence of operators is
defined as the composition of these functions. Moreover, a script
is executed successfully over a stack φ if upon executing all of its
commands with φ as the initial main stack, we are left with a
nonempty main stack containing a nonzero element at the top.
Formally, a script f1·f2·. . .·fn is executed successfully over a stack φ
if (fn◦. . .◦f2◦f1)(φ, ε) � (φM, φA) with φM ≠ ε and top(φM) ≠ 0. It is
important to notice that the possibility of starting with a
nonempty main stack is included because of the way in which
the unlocking and the locking script are executed in succession,
which does not exactly match the execution of the concatenation
of both scripts. Formally, when we have a locking script l, and an
unlocking script u, we require that: 1) u(ε, ε) � (φu

M,φA) (with no
errors thrown in between); and 2) l(φu

M, ε) executes successfully.

Example 3.1. Consider the script

OP_PUSH5 ·OP_PUSH−3 · OP_ADD
We execute this script starting with empty main and alternate

stacks.We first push number 5 onto the main stack, and then push
−3 at the top of the main stack. The last operator is OP_ADD,
which according to the semantics defined in Table 1 generates a
main stack containing only the number 2 � − 3 + 5. Hence, this
script is executed successfully, since upon its completion, we have a
nonempty main stack with a nonzero top element. ■

3.2.2 Operators for Executing Cryptographic
Primitives
An important part of Script resides in the execution of
cryptographic primitives, since in most of the popular
locking scripts these functions are used to verify the
identity of the recipient of a transaction. While there are
several cryptographic operators in Script, we only consider
the most prevalent of them: OP_HASH160, which hashes an
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input, and OP_CHECKSIG and OP_CHECKSIGVERIFY,
which are used to check a digital signature. The analysis
for all the other cryptographic primitives is identical to these
cases. Let us first describe the primitives hash and chksig
underlying these operators.

The operator hash: Z→Z is a functionwhose value is the result
of hashing the input by using SHA-256 and then RIPEMD-160.
Moreover, chksig is defined as follows. In a digital signature
protocol, the signature verification function receives as input a
public key, a string and a signature. Then such a function
determines whether the signature was obtained by executing the
signing function over the string and the private key corresponding
to the public key. However, the signature verification operators in
Script only receive as input a public key and a signature. This is
because the purpose of these operators is just to determine if the
recipient has access to a certain private key. Therefore, the string
that is signed is a predetermined construction that is obtained by
executing certain transformations over a combination of the
transaction’s inputs, outputs and locking scripts. Thus, given
that for the purposes of each script the document that is signed
is a constant, we will disregard this element in our analysis, and we
define chksig: Z × Z→ {0, 1} as a function that takes only two
inputs: a string representing a public key and a string representing a
digital signature. The value of chksig(n1, n2) is defined as 1 if n2 is a

valid signature for the document constructed from the transaction
(as described previously) and the public key n1, and the value of
chksig(n1, n2) is 0 otherwise. The digital signature protocol that is
used to generate and verify signatures is ECDSA with the
secp256k1 elliptic curve (Bitcoin Wiki, 2021).

Finally, we provide the formal definitions of the hashing and
signature checking operators. For the hashing operator, the main
stack φM is required to contain at least one element (i.e. |φM|≥ 1),
whereas both signature checking operators require the main stack
to have at least two elements (i.e. |φM|≥ 2). If these conditions are
not satisfied, then these operators return an error □. In the
definition, we assume that φM � A0·A1·. . .·Ak:

OP_HASH160(φM,φA) � (hash(A0) · tail(φM),φA)
OP_CHECKSIG(φM,φA) � (chksig(A0 , A1) · A2 · . . . · Ak,φA)
OP_CHECKSIGVERIFY(φM,φA) � (A2 · . . . · Ak,φA) if chksig(A0 , A1) � 1

□ if chksig(A0 , A1) � 0
{

3.2.3 Operators for Flow Control
The final piece we need to add are the flow control operators of
the form if-then-else. While conceptually simple, formalizing this
concept needs an extra piece of notation, since in a block of
the form

if < somecommands > else < someothercommands > end_if,

TABLE 1 | Semantics of Script commands. We assume that φM � A0 · A1/Akwhenever |φM| > 0. The condition column states the requirement that needs to be met for each
operator not to return an error. Formally, if the condition for operator f is not met by (φM, φA), then f(φM, φA) � □. The function hash corresponds to using SHA-256 and
RIPEMD-160 hashing algorithms in succession. The function chksig corresponds to the verification algorithm of the ECDSA protocol for the string comprised of the
transaction information, the first input as the public key and the second input as the signature. Computing the transaction information is a non-trivial process in Bitcoin. Since
the main focus in this paper is to study the properties of Script itself, we do not model this process in our formalization.

Operator Condition Semantics

OP_PUSHC None OP_PUSHC(φM, φA) � (C · φM, φA)
OP_DROP |φM|≥ 1 OP_DROP(φM, φA) � (tail(φM), φA)
OP_DUP |φM|≥ 1 OP_DUP(φM, φA) � (top(φM) · φM, φA)
OP_TOALTSTACK |φM|≥ 1 OP_TOALTSTACK(φM, φA) � (tail(φM), top(φM)·φA)
OP_FROMALTSTACK |φA|≥ 1 OP_FROMALTSTACK(φM, φA) � (top(φA)·φM, tail(φA))
OP_VERIFY |φM|≥ 1 ∧top(φM) ≠ 0 OP_VERIFY(φM, φA) � (tail(φM), φA)
OP_IFDUP |φM|≥ 1

OP_IFDUP(φM ,φA) � (φM ,φA) if top(φM) � 0
(top(φM) · φM ,φA) if top(φM)≠0{

OP_NIP |φM|≥ 2 OP_NIP(φM, φA) � (A0·A2·. . .·Ak, φA)
OP_OVER |φM|≥ 2 OP_OVER(φM, φA) � (A1 · φM, φA)
OP_ROT |φM|≥ 3 OP_ROT(φM, φA) � (A2·A0·A1·A3·. . .·Ak, φA)
OP_SWAP |φM|≥ 2 OP_SWAP(φM, φA) � (A1·A0·A2·. . .·Ak, φA)
OP_TUCK |φM|≥ 2 OP_TUCK(φM, φA) � (A0·A1·A0·A2·. . .·Ak, φA)
OP_2DROP |φM|≥ 2 OP_2DROP(φM, φA) � (tail(tail(φM)), φA)
OP_2DUP |φM|≥ 2 OP_2DUP(φM, φA) � (A0 · A1 · φM, φA)
OP_3DUP |φM|≥ 3 OP_2DUP(φM, φA) � (A0 · A1 · A2 · φM, φA)
OP_2OVER |φM|≥ 4 OP_2OVER(φM, φA) � (A2 · A3 · φM, φA)
OP_2ROT |φM|≥ 6 OP_2ROT(φM, φA) � (A4·A5·A0·A1·A2·A3·A6·. . .·Ak, φA)
OP_2SWAP |φM|≥ 4 OP_2SWAP(φM, φA) � (A2·A3·A0·A1·A4·. . .·Ak, φA)
OP_ADD |φM|≥ 2 OP_ADD(φM, φA) � ((A0 + A1) · A2/Ak, φA)
OP_SUB |φM|≥ 2 OP_SUB(φM, φA) � ((A1 − A0) · A2/Ak, φA)
OP_EQUAL |φM|≥ 2

OP_EQUAL(φM ,φA) � (1 · A2 · . . . · Ak ,φA) if A0 � A1

(0 · A2 · . . . · Ak ,φA) if A0 ≠A1
{

OP_EQUALVERIFY |φM|≥ 2 ∧ A0 � A1 OP_EQUALVERIFY(φM, φA) � (A2·. . .·Ak, φA)
OP_PICK |φM|≥ 1 ∧ A0 ≥ 0 ∧|φM|≥ A0 + 2 OP_PICK(φM ,φA) � (AA0+1 · A1 · . . . · Ak ,φA)
OP_ROLL |φM|≥ 1 ∧ A0 ≥ 0 ∧|φM|≥ A0 + 2 OP_ROLL(φM ,φA) � (AA0+1 · A1 · . . . · AA0 · AA0+2 · . . . · Ak ,φA)
OP_DEPTH None OP_DEPTH(φM, φA) � (|φM|· φM, φA)
OP_HASH160 |φM|≥ 1 OP_HASH160(φM, φA) � (hash(A0) ·tail(φM), φA)
OP_CHECKSIG |φM|≥ 2 OP_CHECKSIG(φM, φA) � (chksig(A0, A1)·A2·. . .·Ak, φA)
OP_CHECKSIGVERIFY |φM|≥ 2 ∧chksig(A0, A1) � 1 OP_CHECKSIGVERIFY(φM, φA) � (A2·. . .·Ak, φA)
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we need to determine the correct block of commands to be
executed while reading the script from left to right. We achieve
this by including an extra stack, called the control stack, which is
denoted by φI. Intuitively, the control stack allows us to decide
whether an operator is outside an if-then-else block, in which case
it is executed as usual, or whether it belongs to some of the
commands within this if-then-else block, in which case we need
to make sure that only the operators from the appropriate block
are being executed.

The control stack φI consist of zeros and ones exclusively, that
is, φI ∈ {0,1}p. A control stack φI is said to represent an execution
state if φI ∈ {1}p, which indicates that the command we are seeing
has to be executed (in this case, this will be a command within the
if-then-else block). Similarly, an empty control stack indicates
that we are outside the if-then-else portion of the script, and
should therefore execute the operator.

Working with an additional stack also requires to redefine the
semantics of all other commands that we outlined in the previous
sections, to allow us to work with them in case flow control
operators are present in the script. We do this in the expected
way: all previous operators are only executed when the control
stack is in an execution state. That is, for every Script operator f ∈
O, Eq. 1 should be replaced by the following:

f: (Zp × Zp × {0, 1}p) ∪ {□}→ (Zp × Zp × {0, 1}p) ∪ {□}. (2)

Hence, each operator takes as input three stacks: the main
stack, the alternate stack and the control stack. The semantics of
commands from Table 1 is then redefined so that there is a third
input, φI, which is also the third output (φI is not changed by the
operators in Table 1). Besides, the condition column in Table 1 is
modified to include the fact that φI represents an execution state
(that is, φI ∈ {1}p). In particular, for each operator f in Table 1, if
φI is not an execution state, then we have that f(φM, φA, φI) � (φM,
φA, φI); namely, the command is not executed. For example,
consider again the operation OP_PUSHC with C ∈ Z. Its
semantics, taking now into consideration the control stack, is
defined as follows:

OP_PUSHC(φM,φA,φI) � (C · φM,φA,φI),
whenever φI is an execution state. When φI is not an execution
state, the semantics of this operator is defined as:

OP_PUSHC(φM,φA,φI) � (φM,φA,φI).
The flow control operators OP_IF, OP_ELSE, OP_ENDIF are

the only ones that can modify the control stack.
Next we explain how they interact with the main and alternate

stacks, and also how they modify the control stack. In essence,
these three commands come in tandem, and take the form:

OP_IF< commands1>OP_ELSE< commands2>OP_ENDIF.

Both commands1 and commands2 are sequences of Script
commands, which can again contain if-then-else blocks. The
objective of the control stack is to signal whether commands1
or commands2 are to be executed, depending on whether the top
value of the main stack upon reaching the OP_IF is true or false.

This is achieved by pushing/popping the appropriate value to/
from the control stack when eitherOP_IF orOP_ELSE is reached,
as to signal which block of commands will be executed. Recall that
only a control stack in an execution state allows for a command to
be executed, so we will use this property accordingly.

Intuitively, when reaching an OP_IF statement, we will store
the truth value of the top of the main stack onto the control stack.
If this was true (or nonzero in our notation), we will push 1 onto
the control stack, thus making it be in an execution state. Then,
upon reaching its corresponding OP_ELSE, we will replace the
value 1 at the top of the control stack with 0, making it not be in
an execution state. This will allow us to skip all the commands
until reaching the accompanying OP_ENDIF, which simply pops
the top of the control stack. A similar process occurs when the top
value of the main stack upon reaching OP_IF is false. Notice that
if-then-else statements can be nested. However, in a syntactically
correct script this is not an issue, as the control stack is populated
and cleared as expected. Formally, the semantics of OP_IF is
defined as follows:

OP_IF(φM,φA, φI) �
(tail(φM),φA, 1 · φI) if |φM|≥ 1∧top(φM)≠ 0∧φI ∈ {1}p
(tail(φM),φA, 0 · φI) if |φM|≥ 1∧top(φM) � 0∧φI ∈ {1}p
(φM,φA, 0 · φI) if |φI|≥ 1∧φI ∉ {1}p

⎧⎪⎨⎪⎩

Moreover, in any other case, OP_IF(φM, φA, φI) � □. For
example, an error is returned if φM is an empty stack, as there is
no stack element to ascertain the truth value. Thus, the definition
of OP_IF states that three outcomes are possible upon reaching
this operator, under the appropriate conditions not to produce an
error: 1) If the top element of the main stack is different from 0
and we are in an execution state, then 1 is pushed onto the control
stack, in order to signal that the IF part of the if-then-else block is
to be executed. Besides, the main stack is popped. 2) If the top of
the main stack is 0, and we are in an execution state, we push 0
onto the control stack (i.e. we do not execute the commands in the
IF block, but rather in the ELSE block), and the main stack is
popped. 3) Finally, if we are not in an execution state, we push the
value 0 to the control stack. The value of the element pushed to
the control stack in this last case is not actually relevant because
even if an OP_ELSE command where to invert it, the stack would
remain in a state of no execution stemming from the existence of
one or more 0 elements corresponding to lower if-then-else
blocks. However, it is still necessary to track the existence of
this new branch, in order to correctly close it once we reach its
corresponding OP_ENDIF command.

On the other hand, the OP_ELSE operator simply has to signal
whether the commands that follow it are to be executed or not,
which is done by changing the top element of the control stack as
follows:

OP_ELSE(φM,φA,φI) � (φM,φA, 1 · tail(φI)) if |φI|≥ 1∧top(φI) � 0
(φM,φA, 0 · tail(φI)) if |φI|≥ 1∧top(φI) � 1

{

Moreover, if φI is empty, then the operator OP_ELSE returns
an error, that is, OP_ELSE(φM, φA, φI) � □. Notice that OP_ELSE
simply flips the top bit in the control stack to signal the transition
between the “then” and the “else” blocks. As previously stated, in
case the top element in the stack is a 0 because the stack was not in
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an execution state when reaching the corresponding OP_IF
operator, OP_ELSE will change it to a 1. However, the stack
will still not be in an execution state, because there will still exist
one or more 0 elements that stem from lower if-then-else blocks.
Finally, each if-then-else block is required to be correctly closed
via the OP_ENDIF operator. To ensure this, we simply pop the
top element of the control stack upon reaching this command:

OP_ENDIF(φM,φA,φI) � (φM,φA, tail(φI))
Notice that as for the case of OP_ELSE, if φI is empty, then the

operator OP_ENDIF returns the error symbol □.
It is important to notice that in adding these flow control

operators to Script, we introduce more nuance into the definition
of a successful execution. More specifically, we now say that a
script is executed successfully over a stack φ if upon executing all of
its operators with φ as our initial main stack, we are left not only
with a nonempty main stack which contains a nonzero element at
the top, but also with an empty control stack. Formally, a script
f1·f2·. . .·fn is executed successfully over a stack φ if
(fn◦/◦f2◦f1)(φ, ε, ε) � (φM, φA, φI) with φM ≠ ε, top(φM) ≠ 0
and φI � ε. Conceptually, this new condition requires flow control
blocks to be properly structured in Script. In particular, a script
that ends with a nonempty control stack has an unfinished if-
then-else block, which indicates that it is not well constructed.

As we have explained previously, when executing a pair of an
unlocking and a locking script, the process consists of executing
the unlocking script over a trio of empty stacks, and then
executing the locking script over the final main stack of the
previous execution and a pair of empty stacks. However, if after
the first execution we are left with a nonempty control stack
signaling unfinished if-then-else blocks, then the locking script is
simply given an error and the combined execution ends
unsuccessfully (see next section for a formal definition of the
unlockability of Script problem). Therefore, when executing a
pair of an unlocking and a locking script, both executions have to
contain properly structured if-then-else blocks.

Example 3.2. To illustrate how flow control operators work,
consider the following script:

OP_PUSH0

OP_IF
OP_DUP

OP_ELSE
OP_PUSH3

OP_IF
OP_PUSH7

OP_ELSE
OP_DUP

OP_ENDIF
OP_ENDIF

Recall that a script consists of a concatenation of operators, but
we have represented this vertically and indented to better
illustrate how flow control blocks are nested. When executing
this script, value 0 is pushed onto the main stack first (notice that
at the beginning the control stack is empty, and we are thus in an
execution state), so we have that:

(φM,φA,φI) � (0, ε, ε)
Following this, an OP_IF statement is encountered, and the

control stack is updated accordingly. In this case, given that we
have value 0 on top of the main stack, 0 is pushed onto the control
stack, and the main stack is emptied:

(φM,φA,φI) � (ε, ε, 0)
Since we are not in an execution state, the OP_DUP command

is ignored, and we continue with the OP_ELSE operator. Given
that the top of the control stack is equal to 0, we replace this value
with 1, signaling that the next block of commands is to be
executed:

(φM,φA,φI) � (ε, ε, 1)
The operator OP_PUSH3 is then executed, so the value 3 is

pushed onto the main stack:

(φM,φA,φI) � (3, ε, 1)
Afterwards, another OP_IF operator is reached. Since we are

in an execution state and value 3 is different from 0, value 3 is
popped from the main stack, and 1 is pushed onto the control
stack:

(φM, φA,φI) � (ε, ε, 1 · 1)
This means that in the next step we push value 7 onto the main

stack, when executing the operator OP_PUSH7:

(φM,φA,φI) � (7, ε, 1 · 1)
The next operator is OP_ELSE, which switches the value 1 on

top of the control stack to 0, which in turn means that we are no
longer in an execution state:

(φM,φA,φI) � (7, ε, 0 · 1)
Thus, we need to ignore the following OP_DUP operator, and

we need to continue with the OP_ENDIF command. Here the top
of the control stack is popped:

(φM,φA,φI) � (7, ε, 1)
Finally, the last command OP_ENDIF is executed, leaving the

control stack empty, and finishing with value 7 on the main stack:

(φM,φA,φI) � (7, ε, ε)
Thus, the script results in a successful execution. ■
Finally, we comment once again that some flow-control

operators have been left out from our formalization. We do this
for the sake of readability and because those operators can be

PROBLEM UNLOCKABILITY OF SCRIPT

INPUT A locking script l
QUESTION Is there an unlocking script u, such that l and u, when given as inputs to

the EVALUATION OF SCRIPT problem result in a positive answer?
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simulated with a constant number of other operators. In particular,
the operators we do not covered correspond to: OP_NOP, which
does nothing at all, OP_NOTIF which simulates an OP_IF but
when the value of the top of the stack is false, and OP_RETURN,
which is used to mark transactions as invalid.

4 COMPLEXITY OF SCRIPT

In this section, we will focus on analyzing the computational cost
of working with Script. To draw a complete picture, we start by
formally defining in Section 4.1 the evaluation and unlockability
problems for this language. Then in Section 4.2, we provide a
formal proof for the folklore result that evaluating a pair of
unlocking and locking scripts can be done in polynomial time for
the set of Script operators currently in use (Bitcoin Wiki, 2021).
We also highlight that the original implementation of Script
contained some operators that actually allowed for the
construction of programs that run in exponential time in the
length of the script, so the disabling of these is well justified.
Moreover, we show in Section 4.3 that the situation with the
unlockability problem is completely different, as this problem is
shown to be NP-hard. It is important to mention that this latter
result is proved by combining some of the simplest operators in
Script, and, in particular, without relaying on any of the
cryptographic operators in the language. Hence, this result is a
warning that the unlockability problem can become difficult even
if some simple operators are used.

4.1 The Evaluation and Unlockability
Problems
The evaluation problem for Script is defined as follows:

As explained in Section 2, the unlocking script u, and the
locking script l are executed separately in order to strengthen the
security of Script. That is, we first run the unlocking script with a
triple of empty stacks. Provided that this execution is successful, the
content of the main stack at the end of this execution, denoted by
φu
M, is transferred to the locking script, whose execution starts with

an empty alternate stack and an empty control stack. In fact, as per
the current specification (BitcoinWiki, 2021), and implementation
(Github, 2010) of Script, the alternate stack content is erased when
starting the execution of the locking script. Recall from Section 3
the fact that a successful execution also requires the script to start
and finish with an empty control stack, to validate that flow control
commands are properly nested and completed within both the
locking and the unlocking script. From now on, when the answer to
the previous question is positive, then we say that the pair of scripts
u and l executes successfully.

Moreover, the unlockability of Script problem is defined as
follows:

4.2 On the Complexity of the Evaluation
Problem
While the main objective of this paper is studying unlockability of
Script, we will start by proving the folklore result saying that any
script can be evaluated in polynomial time. We do this to show that
our formalization of Script conformswith the intuitive understanding
of the language. It is important to note that if we were to add some
simple operators to Script that may seem unassuming, this property
could cease to be true. In fact, previous versions of the language were
able to produce scripts that could not be evaluated in polynomial
time. To illustrate this notion we introduce the currently disabled
OP_MUL operator. Let φM � A0 · . . . · Ak,φA ∈ Zp and φI ∈ {1}p.
We define the semantics of OP_MUL as follows. If |φM|≥ 2, then

OP_MUL(φM,φA, φI) � (A0pA1 · A2 · . . . · Ak,φA,φI),
where p signifies the multiplication of integer numbers. Now we
can prove that using OP_MUL we can create scripts that can not
be evaluated in polynomial time. The following lemma gives an
insight as to how this is possible.

Lemma 4.1. There exists a script S � f0 · . . . · fn

∈ ({OP_PUSH2,OP_MUL,OP_DUP})p, such that

(fn◦ . . .◦f0)(ε, ε, ε) � (A, ε, ε)
and A≥ 22cn , for some c > 0.

Proof. For this, consider the script

S � OP_PUSH2 ·OP_DUP ·OP_MUL · OP_DUP ·OP_MUL

· . . . ·OP_DUP ·OP_MUL.

The main idea of the proof is that this script will end its
execution with 22

m
at the top of the main stack, where m is the

number of repetitions of the OP_DUP·OP_MUL sequence of
operators.

More formally, let m ∈ N be an arbitrary number and Sm �
OP_PUSH2·(OP_DUP·OP_MUL)m. Then:

Sm(ε, ε, ε) � (22m , ε, ε).
This can be easily shown by mathematical induction on m.
Base case. Consider S0 � OP_PUSH2. Then we trivially have

S0(ε, ε, ε) � (2, ε, ε) � (21, ε, ε) � (220 , ε, ε).
Inductive step. Suppose that for an arbitrary number i ∈ N, we

have that Si(ε, ε, ε) � (22i , ε, ε). Now, we can note that Si+1 �
Si·(OP_DUP·OP_MUL). Thus, we have that

Si+1(ε, ε, ε) � (OP_MUL◦OP_DUP)(Si(ε, ε, ε))
� (OP_MUL◦OP_DUP)(22i , ε, ε)
� (22ip22i , ε, ε)
� (22i+1 , ε, ε).

From Lemma 4.1 we can conclude that it is possible to
construct a stack that has an element that is double
exponential in magnitude and therefore exponential in size

PROBLEM EVALUATION OF SCRIPT

INPUT A locking script l and an unlocking script u
QUESTION Are the following executions successful

(i) u(ε, ε, ε) � (φu
M ,φ

u
A , ε); and

(ii) l(φu
M , ε, ε)?
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compared to the amount of operators in the script that is being
executed5. Moreover, as each used operator is constant in
size, the size of the constructed element is also exponential in
the size of the script. This means that it is not possible to
write, save or use such an element in polynomial time
compared to the size of our script. Thus, such a script
could not be evaluated in polynomial time. A similar
result can be obtained for some other operators that were
supported in the original proposal of Script, such as for
instance OP_CAT. In light of this result, disabling some
operators seems well justified [see (Bitcoin Wiki, 2021) for
the full list of disabled operators].

Taking this result into consideration, it is important to prove
that with the current definition of Script, any script can be
evaluated in polynomial time. Letting Ptime be the class of
problems that can be solved in polynomial time, we have the
following:

Theorem 4.2. The problem Evaluation of Script is in Ptime.

Proof. The proof proceeds in four steps. First, we show that
Script operators, by themselves, do not introduce
transformations that produce drastic changes in the stack.
We then show that this remains true when analyzing
sequences of operators. This, in turn, allows us to show
that the execution time of a script over an empty stack is
actually in polynomial time, from which the proof of this
theorem readily follows.

We start by defining three auxiliary functions that will help us
establish some properties over the execution of operators:
function maxelem: Zp × Zp →N obtains the size of the biggest
element in a stack (independent of its sign), function
elemnr: Zp →N obtains the amount of elements in a stack,
and maxpush: Op →N provides the maximum element pushed
by a script, independent of its sign.

Let S � f0·. . .·fn ∈ Op, φM � A0 · . . . · Ak ∈ Zp and
φA � B0 · . . . · Bℓ ∈ Zp. We define the values of these functions
as follows;

maxelem(φM,φA) � max
A∈{A0 ,...,Ak} ∪ {B0 ,...,Bℓ}

|A|
elemnr(φ) � k + 1
maxpush(S) � max{|C|: OP_PUSHC ∈ {f0, . . . , fn}}

As the reader might have already noticed, empty stacks
provides for edge cases in which maxelem is not defined, and
likewise for maxpush, and so they must be accounted for
separately. To that extent, let S′ � g0·. . .·gm ∈ Op such that
{g0, . . . , gm} ∩ {OP_PUSHC | C ∈ Z} � ∅. Then we have that:

maxelem(ε, ε) � 0
maxpush(S′) � 0

As wementioned in our proof strategy, our first task is to show
that none of the operators in Script produces a stack that explodes
in size. In formal terms, this translates to restrictions for the
auxiliary functions introduced previously.

Lemma 4.3. Let f ∈O, φM ∈ Zp, φA ∈ Zp and φI ∈ {0,1}p such that
f(φM,φA,φI) � (φM′ ,φA′ ,φI′). Then we have that:

elemnr(φM′ )≤ elemnr(φM) + 3

Moreover, assume that
f ∉ {OP_DEPTH,OP_HASH160} ∪ {OP_PUSHC | C ∈ Z}.
Then we have

maxelem(φM′ ,φA′ )≤ 2 ·maxelem(φM,φA) + 1

Proof. For this proof one needs a one-by-one analysis showing
that each of the operators of Script satisfies these bounds. We give
a few examples of how this is proved for some particular
operators, the full details for the entire Script language are
provided as Supplemental Material.

We show how to prove the bound on elemnr using the
OP_3DUP operator. For an arbitrary pair of stacks φM � A0 ·
. . . · Ak ∈ Zp and φA ∈ Zp,φI ∈ {1}p, if these stacks fulfill the
conditions for the OP_3DUP operator, then we have that

OP_3DUP(φM,φA,φI) � (φM′ ,φA′ ,φI′ )
� (A0 · A1 · A2 · φM,φA,φI),

or, in other words, OP_3DUP pushes elements A0, A1 and A2

onto φM. This means that elemnr(φM
′) � elemnr(φM) + 3, which

was to be shown.
For the bound on the size maxelem of elements in the stack, we

use the OP_ADD operator to illustrate the proof. Again, for an
arbitrary pair of stacks
φM � A0 · . . . · Ak ∈ Zp,φA ∈ Zp,φI ∈ {1}p, if these stacks fulfill
the conditions for the OP_ADD operator, then we have that

OP_ADD(φM,φA,φI) � (φM′ ,φA′ ,φI′ )
� ((A0 + A1) · A2 · . . . · Ak,φA,φI).

It is clear that |A0|, . . ., |Ak| ≤ maxelem(φM), hence we have
that

|A0| + |A1| ≤ 2 ·maxelem(φM) ≤ 2 ·maxelem(φM) + 1.

By combining both results we can conclude that

maxelem(φM
′)≤ 2 ·maxelem(φM) + 1,

which was to be shown. ■ □
Our next step is to use the bounds presented above to provide

upper bounds on the values of these functions over the execution
of complete scripts. These bounds must take into account the size
of the stacks, so we need to discuss how these are encoded. For our

5In reality, Script has constraints over the size that its elements can occupy. Thus, if
a number were to surpass this limit, an exception would be raised. However, we feel
that it is important to work with a generalization of the language that does not
constrain the size of the elements because the maximum size that is imposed is
much larger than what a user would normally interact with.
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complexity results, we assume that stacks are represented as
arrays of integer elements. Assuming that the elements in the
stacks are represented in binary notation, and that we use one
extra bit to represent the sign of each number, we define the size
‖φ‖ of a stack φ � A0 · . . . · Ak ∈ Zp as:

‖φ‖ � ∑k
i�0

log2(|Ai| + 1).

From this definition, we can derive the following bounds:

log2(maxelem(φ, ε) + 1) ≤ ‖φ‖ (3)

elemnr(φ) ≤ ‖φ‖ (4)

These bounds will help us in relating several results that make
use of the auxiliary functions with the size of the representation of
the stack. This is useful because we will be interested in
establishing a relationship between the runtime of executing a
script with an initial stack and the sizes of the inputs.

Let us now turn to (upper) bound the values of the auxiliary
functions. In particular, we need to prove that the different
elements of the stacks, during the execution of a script, are of
polynomial-size in the sizes of the script and the initial stack. This
idea is formalized in the following lemma; the proof is once again
by a direct examination of each operator.

Lemma 4.4. Let S � f0·. . .·fn ∈ Op and φM ∈ Zp. After any partial
execution (fi◦. . .◦f0)(φM, ε, ε), the following conditions hold.

1. The amount of elements that can appear in the main stack is
bounded by elemnr(φM) + 3(n + 1).

2. The biggest element that can appear in either stack is
bounded by

pmaxelem(2n, 2‖φM‖,maxpush(S)),
for some fixed polynomial pmaxelem.

3. The size of the representation of the main stack is bounded by

psize(n, ‖φM‖, log2(maxpush(S) + 1)),
for some fixed polynomial psize.

We finally have all the ingredients to provide the upper bound
on the execution time of script evaluation. For this result we
consider a naïve algorithm that receives as input a script S �
f0·. . .·fn ∈ Op and a stack φ ∈ Zp and executes each operator in
sequence over the stack. This is without loss of generality, as using
faster, more involved algorithms can only decrease the total
running time of the operations. In what follows we use T to
denote the execution time of said algorithm, having in mind that
the full execution involves working over a trio of stacks (the main
stack, the alt-stack and the auxiliary stack for the IF-ELSE control
flow). Therefore, we treat T as a function T: Op × Zp × Zp ×
{0, 1}p →N.

Lemma 4.5. Let S � f0·. . .·fn ∈ Op and φ ∈ Zp. Then we have that

T(S,φ, ε, ε)≤pT(n, ‖φ‖, log2(maxpush(S) + 1))
for some fixed polynomial pT (independent of S and φ).

The proof of this lemma is by induction, using Lemma 4.4 and
Lemma 4.3 for the inductive and base cases.

Having established that the execution time of the algorithm
that applies a script to an initial stack can be executed in
polynomial time, we can move on to prove that script
evaluation is in PTIME. As we have previously discussed, an
algorithm that performs script evaluation starts by executing an
unlocking script over a trio of empty stacks and then, if the final
control stack is empty, it executes a locking script over the
previous final main stack and two empty stacks. Thus, all we
need to do is to show that both of these operations take
polynomial time when executed sequentially. This is shown
in the following lemma. Note that we only have consider the
case in which the unlocking script that the algorithm receives
does not result in an error and that finishes with an empty
control stack; the remaining cases imply an early stop in the
algorithm so they are also captured by the bounds for a complete
execution.

Lemma 4.6. Let SL � f0·. . .·fn ∈ Op and SU � g0·. . .·gm ∈ Op, such
that

(gm◦ . . .◦g0)(ε, ε, ε) � (φM,φA, ε).
Then, there is a fixed polynomial pemp (independent of SL and

SU) such that:

T(SU, ε, ε, ε) + T(SL,φM, ε, ε)≤pemp(m, n, log2(maxpush(SU)
+ 1), log2(maxpush(SL) + 1))

Proof. Let SL � f0·. . .·fn ∈ Op and SU � g0·. . .·gm ∈ Op, such that

(gm◦ . . .◦g0)(ε, ε, ε) � (φM,φA, ε).
From Lemma 4.5 there is a fixed polynomial pT and the

following bound on T(SU, ε, ε, ε):
T(SU, ε, ε, ε) ≤pT(m, ‖ε‖, log2(maxpush(SU) + 1))

≤pU(m, log2(maxpush(SU) + 1)),
where pU is again a fixed polynomial. We can also bound T(SL,
φM, ε, ε) in the same way:

T(SL,φM, ε, ε)≤pT(n, ‖φM‖, log2(maxpush(SL) + 1)).
Moreover, from Lemma 4.4 we can also bound ‖φM‖:

‖φM‖≤psize(m, ‖ε‖, log2(maxpush(SU) + 1)).
By combining both of these bounds we can conclude that

T(SL,φM, ε, ε)≤pL(m, n, log2(maxpush(SU) + 1),
log2(maxpush(SL) + 1)),

for some polynomial pL. Furthermore, adding equations for both
executions over SL and SU, we obtain:
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T(SU, ε, ε, ε) + T(SL,φM, ε, ε)≤pU(m, log2(maxpush(SU) + 1))
+pL(m, n, log2(maxpush(SU) + 1), log2(maxpush(SL)
+ 1))≤pemp(m, n, log2(maxpush(SU) + 1), log2(maxpush(SL)
+ 1)),

where pemp is a fixed polynomial independent of SL and SU. ■ □
Note that we have not included the validity checks that need to

be performed between the executions of both scripts and also at the
end of the execution of the locking script to determine
whether the execution was successful. This is because these
checks can be performed in constant time and do not impact
the complexity analysis of the problem. This concludes the
proof of the Theorem.

4.3 Unlockability is Computationally
Infeasible
The evaluation of a pair of scripts can be done efficiently, but what
about checking whether a script is unlockable? Recall that the
Unlockability of Script problem receives a locking script l, and
consists of checking whether there exists any unlocking script u
such that l and u result in a positive answer when evaluated
together.

Unfortunately, the following result tells us that this problem
cannot be solved efficiently.

Theorem 4.7. The problem Unlockability of Script is NP-hard.

Proof. To prove the theorem, we provide a polynomial-time
reduction from 3SAT, which is a well-known NP-complete
problem. Let ψ � C0 ∧ C1 ∧. . .∧Cm be a formula in CNF,
where each clause Ci is the conjunction of three literals:

Ci � ui,0 ∨ ui,1∨ui,2,

that is, each ui,j is either a propositional variable x or the negation
of a propositional variable ¬x. Besides, assume that {x0, x1, . . ., xk}
is the set of variables occurring in ψ. Next, we show how to
construct in polynomial-time a script lψ that can be used to check
whether ψ is satisfiable.

By definition of the problem Unlockability of Script, the script lψ
has to be executed over themain stack resulting from the execution of
an unlocking script. Thus, lψ interprets such a stack as a truth
assignment for the formula ψ, and verifies whether such an
assignment satisfies this formula. In this way, an unlocking script
for lψ represents a truth assignment satisfyingψ, so thatψ is satisfiable
if and only if lψ is unlockable. More precisely, we define lψ as follows:

lψdllength · lbinary · lsat · lend
where each script llength, lbinary, lsat, lend are as defined below.

• The script llength checks whether the stack that it receives as
input contains k + 1 elements (which is the number of
variables occurring in ψ):

llengthdOP_DEPTH · OP_PUSHk+1 · OP_EQUALVERIFY

• The script lbinary verifies whether each one of the k + 1
elements of the stack is either 0 or 1. More precisely, we have
that:

lbinarydl0binary · l1binary · . . . · lkbinary,
where for every i ∈ {0, 1, . . ., k}:

libinary d OP_PUSHi · OP_PICK ·OP_IFDUP ·OP_IF · OP_PUSH1 ·OP_EQUALVERIFY·
OP_ENDIF.

• The script lsat checks whether the formula ψ is satisfied by
the truth assignment stored in the stack, that is, by the
sequence of k + 1 symbols 0 and 1 stored in the stack. More
precisely, we have that:

lsatdl0sat · l1sat · . . . · lmsat,
where each script lisat (0 ≤ i ≤ m) is defined as follows. Assuming
that Ci � ui,0 ∨ ui,1 ∨ ui,2, we have that:

lisatdli,0val · li,1val · li,2val · ladd,
where li,0val, l

i,1
val, l

i,2
val and ladd are defined as follows. If ui,0 � xr for

some r ∈ {0, . . ., k}, then

li,0valdOP_PUSHr · OP_PICK.
Thus, li,0val puts the value assigned to the propositional variable

xr in the top of the stack. On the other hand, if ui,0 � ¬xr for some r
∈ {0, . . ., k}, then

li,0valdOP_PUSH1 ·OP_PUSHr+1 ·OP_PICK · OP_SUB.
Hence, li,0val puts the value assigned to ¬xr in the top of the stack

(this value is obtained by subtracting the value assigned of xj from
1). Similarly, if ui,1 � xs for some s ∈ {0, . . ., k}, then

li,1valdOP_PUSHs+1 ·OP_PICK.
Thus, li,1val puts the value assigned to xs in the top of the stack.

Notice that the operator OP_PUSHs+1 has to be used as the stack
contains the extra value computed by the script li,0val. In the same
way, if ui,1 � ¬xs for some s ∈ {0, . . ., k}, then

li,1valdOP_PUSH1 ·OP_PUSHs+2 ·OP_PICK · OP_SUB,
so that the value assigned to ¬xs is put in the top of the stack by
li,1val. Moreover, li,2val is defined in the same way but considering that
the stack contains the extra values computed by the scripts li,0val and
li,1val. Finally,

ladddOP_ADD ·OP_ADD · OP_VERIFY,
which allows us to add the values for the three literals in the
clause. If at least one of them is positive, the result is greater than 0
and the execution of OP_VERIFY is successful. Otherwise, the
result is 0 and the execution of OP_VERIFY fails.

• Finally, we have that:

lenddOP_PUSH1,
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which ensures that if llength, lbinary and lsat are executed
successfully, then the top element in the main stack is 1.

From the definition of lψ, it is straightforward to prove that ψ is
satisfiable if and only if lψ is unlockable, and that lψ can be
constructed in polynomial time in the size of ψ. Hence, we have
provided a polynomial-time reduction form 3SAT to the problem
UNLOCKABILITY OF SCRIPT, thus showing that the latter is NP-hard.

5 DISCUSSION AND FUTURE WORK

In this work, we focused on Script, the scripting language of the
Bitcoin protocol, and contribute to its understanding in three
aspects:

• First, we provided a formal mathematical model for Script,
which we used to study its algorithmic properties and main
characteristics.

• Second, we (re)prove the folklore result stating that Script
can be evaluated in PTIME.

• And third, we showed that determining whether a script is
unlockable is NP-hard.

These three advancements allow us to better understand
Script, and provide some insight into the behavior of nodes on
the Bitcoin network. First, we observe that the vast amount of
scripts used in Bitcoin transactions only establish the most basic
unlocking conditions. Intuitively, one of the main reasons for this
is that the nodes in the network tend to favor standard locking
scripts, because they guarantee that their executions will be short
and efficient. Our formalization, together with the result on
efficiently evaluating Script, actually tell us that this might be
somewhat overly cautious, given that any Bitcoin script can be
run efficiently by a node. On the other hand, if we are preoccupied
with detecting unspendable outputs, for instance to remove them
from the unspent transaction output (UTXO) pool, then the NP-
hardness result tells us that sticking to standard scripts is indeed a
safe tactic, since no efficient algorithm exists for checking whether
an output is spendable (unless P� NP).

Looking ahead, we believe that further investigation into
unlockability is necessary. As mentioned previously,
unlockability is useful for two reasons: 1) a wallet creating
a transaction would definitely want to discard unspendable
outputs, or at least warn the user about them; and 2) network
nodes would want to remove unspendable outputs form their
UTXO pool. The NP-hardness result tells us that this, in
principle, will not be possible. However, if we were able to

also show that unlockability can be solved in NP, a SAT solver
might be used to check Script unlockability. At this point in
time, SAT solvers have advanced to the point that it is feasible
to determine whether a formula is satisfiable for reasonable
inputs, so that we might be able to use these techniques to
check structural consistency of a Script (provided that the
unlockability problem belongs to NP). Of course, here we
would need to assume, as in any Bitcoin transaction, that the
correct cryptographic data is provided by the recipient, thus
allowing us to verify whether the Script has any logical errors
using the SAT solver. Our conjecture at this point is that the
unlockability problem indeed belongs to NP.

Another direction worth pursuing would be to look for
tractable fragments of Script in terms of the unlockability
problem. Moreover, our formalization also allows to check
whether a specific property is expressible using Script, which
might be of interest when exploring smart contracts that could
potentially be supported. Overall, we hope to make this work
useful to the users wanting to specify non-trivial spending
conditions, ultimately making the usage of non-standard
scripts a more accepted practice.
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