
Which Event Happened First?
Deferred Choice on Blockchain Using
Oracles
Jan Ladleif * and Mathias Weske

Business Process Technology, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

First come, first served: Critical choices between alternative actions are often made based
on events external to an organization, and reacting promptly to their occurrence can be a
major advantage over the competition. In Business Process Management (BPM), such
deferred choices can be expressed in processmodels, and they are an important aspect of
process engines. Blockchain-based process execution approaches are no exception to
this, but are severely limited by the inherent properties of the platform: The isolated
environment prevents direct access to external entities and data, and the non-continual
runtime based entirely on atomic transactions impedes the monitoring and detection of
events. In this paper we provide an in-depth examination of the semantics of deferred
choice, and transfer them to environments such as the blockchain. We introduce and
compare several oracle architectures able to satisfy certain requirements, and show that
they can be implemented using state-of-the-art blockchain technology.

Keywords: business processes, business process management, deferred choice, workflow patterns, blockchain,
smart contracts, oracles, formal semantics

1 INTRODUCTION

A service failing due to a low-level systemmalfunction, an order from a customer being received, or a
stock finally reaching the strike price—events are pervasive on every layer of abstraction in Business
Process Management (BPM) (Weske, 2019), and reacting to them promptly significantly impacts the
performance of an organization. An important pattern in this context is deferred choice, which
describes situations in which an exclusive branching decision in a process instance depends on which
one of a set of events occurs first (Russell et al., 2006). Deferred choice resembles a race between
events, and only one can win.

Consider, for instance, a business process describing the purchase and usage of a train ticket,
shown in Figure 1 as a Business Process Model and Notation (BPMN) collaboration diagram. The
customer books a ticket, optionally using their subscription-based discount card, and takes the train
as expressed by the message event et triggered by the Railway Infrastructure Manager (RIM). There
are several alternative paths after the event-based gateway g—the canonical representation of
deferred choice in BPMN (OMG, 2013). The customer may cancel their ticket (ec), severe
weather may prohibit the train’s departure (ew), or the customer’s discount card may expire
(ed). In all cases, the ticket is eventually voided.

It is the job of the process engine to be the judge of this race. To this end, a process engine
monitors event sources continuously using a wide range of techniques like querying and polling
public interfaces, repeatedly evaluating event conditions, or subscribing to news channels. Two
goals are paramount: To 1) correctly pick the winner of the deferred choice, avoiding the

Edited by:
Claudio Di Ciccio,

Sapienza University of Rome, Italy

Reviewed by:
Giovanni Meroni,

Politecnico di Milano, Italy
Remo Pareschi,

University of Molise, Italy

*Correspondence:
Jan Ladleif

jan.ladleif@hpi.de

Specialty section:
This article was submitted to

Smart Contracts,
a section of the journal
Frontiers in Blockchain

Received: 13 August 2021
Accepted: 05 October 2021
Published: 26 October 2021

Citation:
Ladleif J and Weske M (2021) Which

Event Happened First? Deferred
Choice on Blockchain Using Oracles.

Front. Blockchain 4:758169.
doi: 10.3389/fbloc.2021.758169

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581691

ORIGINAL RESEARCH
published: 26 October 2021

doi: 10.3389/fbloc.2021.758169

http://crossmark.crossref.org/dialog/?doi=10.3389/fbloc.2021.758169&domain=pdf&date_stamp=2021-10-26
https://www.frontiersin.org/articles/10.3389/fbloc.2021.758169/full
https://www.frontiersin.org/articles/10.3389/fbloc.2021.758169/full
https://www.frontiersin.org/articles/10.3389/fbloc.2021.758169/full
http://creativecommons.org/licenses/by/4.0/
mailto:jan.ladleif@hpi.de
https://doi.org/10.3389/fbloc.2021.758169
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles
https://www.frontiersin.org/journals/blockchain
https://www.frontiersin.org/journals/blockchain#editorial-board
https://doi.org/10.3389/fbloc.2021.758169

spurious execution of activities, and 2) to do so in a timely
manner, avoiding delays which have a negative impact on the
business.

Recent approaches at implementing core aspects of process
engines within smart contracts—programs whose code and
state is stored on blockchains and which are executed within
discrete transactions (Xu et al., 2017)—face severe issues trying
to achieve those goals, however. While the integrity and
immutability guarantees of blockchains may provide clear
benefits (Mendling et al., 2018), they cause a peculiar
execution environment: Smart contracts are neither
constantly running, instead laying dormant outside of
transactions (non-continuity property), nor can they
directly interact with external services for integrity reasons
(isolation property) (Xu et al., 2018).

The impact of these properties when trying to implement
deferred choice within smart contracts is considerable, as is
illustrated in Figure 2. Within a transaction tx the process
execution reaches the gateway g (see Figure 1) and the
deferred choice is started. Since no event can immediately be
detected, the transaction finishes. While the smart contract lies
dormant, the customer’s discount card expires, and the
meteorological service issues a severe weather warning. When
the customer decides to cancel the ticket by explicitly sending a
transaction tx′ the smart contract is woken up again, and is able to
detect all three events: The transaction tx′ itself leads to the
occurrence and detection of ec. The temporal event ed is detected
since the associated deadline has passed. Lastly, an
oracle—patterns used to somewhat circumvent the isolation
property of smart contracts (Xu et al., 2018)—can be
employed to acquire a snapshot of the current weather
warning level and detect ew.

The example reveals two major challenges: For one, it is not
clear which event occurred first and is the correct winner of the
race. State-of-the-art oracles only provide current data (Xu et al.,
2018), and the smart contract is not able to decide whether ew
occurred before ed or ec. Second, the deferred choice is not
resolved in a timely manner, since there could be an arbitrary
delay between tx and tx′. Thus, both central tasks of the process
engine concerning deferred choice are not fulfilled.

As a consequence, support for deferred choice patterns is
essentially absent in current blockchain-based process execution
approaches. In this paper, we thus consider one central research
question: How can a correct and timely execution of general

FIGURE 1 | Running example of a deferred choice scenario.

FIGURE 2 | Indeterminate behavior of a process smart contract due to
temporal gaps between transactions.

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581692

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

deferred choice patterns be achieved from within isolated and
non-continuous smart contracts? We particularly consider
practical deferred choice scenarios, in which a heterogenous
set of event types, both explicit and implicit, needs to be
accounted for. Any proposed solution will be judged using
three metrics:

• Correctness, i.e., whether the deferred choice semantics are
correctly transferred.

• Immediacy, i.e., whether there are delays in resolving the
deferred choice after an event has occurred.

• Cost, i.e., whether the approach can be implemented in a
feasible and economical fashion.

This paper is built on some of our previous work, in which we
have shown that there is minimal or non-existing support for
events depending on temporal constraints (Ladleif and Weske,
2020) or external data sources (Ladleif et al., 2020) in state-of-the-
art blockchain-based process engines. In particular, we adopt the
latter work’s idea of novel oracle patterns allowing access to
historical values of external data sources and those supporting
subscriptions to new data, which is underpinned by a novel
formal semantics of deferred choice. We refine these ideas by
providing concrete architectures and interface specifications in
this paper, and combine everything to provide support for
heterogenous deferred choice patterns. Ideally, our solution
can provide a blueprint for future developments in
blockchain-based process engines, enhancing their level of
support and acceptance.

The paper is structured as follows: We first introduce
preliminaries from the fields of BPM and blockchain
technology in Section 2, and give an overview of related work
in Section 3. We start our approach with the definition of a
formal execution semantics for deferred choice in both continual
and non-continual execution environments in Section 4. We
then propose generic oracle architectures to implement the
semantics in Section 5, and provide a concrete prototype in
Section 6which forms the basis of an evaluation in Section 7. We
discuss our results and conclude in Section 8.

2 PRELIMINARIES

In this section, preliminary knowledge about BPM and
blockchain technology will be introduced.

2.1 Business Process Management and
Events
Businesses are driven by recurring processes, in which activities
are performed to reach a certain business goal. BPM is concerned
with making these processes palpable and support them during
their entire lifecycle: from initial identification to structured
modeling and execution using a process engine and
subsequent optimization (Weske, 2019).

Events are an essential aspect of business processes and refer to
“points in time” (Weske, 2019, p. 85) at which something

happens, in contrast to activities with a particular duration.
Events can take many shapes. The de facto industry standard
for business process models, BPMN, for example, includes more
than 10 types of events (OMG, 2013). From error events, which
represent system errors interrupting the regular process
execution, to compensation events, which start attempts at
rolling back certain activities—there are many options to
represent critical business scenarios.

During the execution of a process, a process engine has to
detect events as they occur to correctly apply their effects in a
timely fashion. This is especially complex for events occurring
external to the process engine. Common examples are events
caused by explicit external actions, like receiving an order or
inquiries from customers within messages. External events can
also be caused more implicitly based on properties of the larger
execution environment of the process, such as detecting a
condition becoming satisfied, e.g., a stock reaching a specific
price (Russell et al., 2006). Timer events also fall into this category
and rely on the current time of the environment (Eder et al.,
1999), allowing absolute or relative temporal constraints to be
specified (Cheikhrouhou et al., 2015).

External events are the core building blocks of one of the
fundamental patterns in workflow modeling and BPM: deferred
choice (Russell et al., 2006). Deferred choice describes situations
in which the exclusive choice between alternative execution
branches of a process depends on the operating environment,
i.e., which of a set of external events is detected first. As these
events are caused by actions or circumstances outside the
influence of the process engine, the choice is deferred until the
first event is detected—essentially modeling a “race condition
where the first [e]vent that is triggered wins” (OMG, 2013,
p. 298).

In their seminal research on workflow patterns, Russell et al.
describe the semantics of deferred choice using colored Petri nets
(Russell et al., 2006). The “moment of choice”, that is waiting for
an event to occur, is modeled as a place, and each alternative path
as an outgoing transition. Thus, only one branch may be taken
per token. Most subsequent literature to this day adopts these
semantics: Dijkman et al. (2008), for instance, use the Petri net
abstraction for analysis and verification purposes. The BPMN
standard itself describes a similar token system, but each outgoing
branch initially receives a token and all but one are withdrawn
after the choice is made (OMG, 2013).

2.2 Blockchain and Business Process
Management
Advancing from its roots in cryptocurrencies (Nakamoto, 2008),
blockchain has since emerged as a dedicated software platform
which especially lends itself to business processes (Weber et al.,
2016).

2.2.1 Blockchain Technology
Blockchains are distributed ledgers which store and process data
and transactions. Smart contracts are programs whose code and
state is persisted as data on the blockchain, and which can be
called using transactions targeting their exposed functions (Xu

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581693

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

et al., 2017). The result of these transactions comes into effect
during mining, a process in which transactions are ordered,
executed, and bundled into a new block cryptographically
linked to its predecessor.

Smart contracts and interactions with them enjoy all the
benefits of blockchain technology: Their integrity can be easily
validated, the origin of transactions can not be repudiated, and
the smart contract state can not be forged (Xu et al., 2017). This
makes them a valuable system component in low trust but high
stakes scenarios involving several organizations, such as business
process collaborations.

As a consequence, however, smart contracts need to adhere to
several restrictions caused by the blockchain’s idiosyncratic
properties. For one, they operate in an isolated closed-world
environment for integrity and traceability reasons, meaning they
can not access any data or service outside the blockchain itself.
Secondly, smart contracts are inherently passive and are only
executed within discrete transactions during the mining process.
This lends them a kind of transaction-driven or non-continual
character, as they will always be “paused” between transactions
and can not implement ongoing behavior such as busy-waiting.

2.2.2 Oracles
In practice, oracles are used to somewhat escape the isolation of
blockchains and connect smart contracts to external entities (Xu
et al., 2018). They generally consist of two components: an off-
chain oracle provider, which is not subject to the blockchain’s
restrictions and can freely access data, services, and entities; and a
publicly known oracle smart contract, which serves as a link
between the consumers and the oracle provider. A recent survey
identified two major and one minor type of oracles in research
and practice (Al-Breiki et al., 2020):

The storage oracle (see Figure 3A) provides synchronous data
access by storing current data on the blockchain. On each data
update (1a) a transaction is sent (1b) to update a storage variable
(1c) in the oracle smart contract. Consumers can then query the
oracle smart contract (2a), which directly responds with the last
known data (2b).

The request/response oracle (see Figure 3B) provides
asynchronous access to external data, avoiding the use of on-

chain storage. Instead, the oracle provider keeps track of the
current data, for example by getting updates (1a) and storing
them locally (1b). Consumer smart contracts can call the oracle
smart contract (2a), which emits the query in an event using the
blockchain’s event layer (2b). The oracle provider picks up this
event (3a), and sends the data to the consumer smart contract in a
new transaction (3b).

Note that the event layer in this context refers to a capability of
Ethereum and related blockchains to store additional pieces of
data, so-called events, within blocks (Wood, 2014). Nodes
observing the blockchain can then quickly scan new blocks for
the information they are interested in. Thus, despite the name,
they are not equivalent to events as defined above in the context of
BPM. Rather, they can be thought of as additional output of
transactions.

Lastly, there are publish/subscribe oracles. The goal is to access
data “that is expected to change” (Al-Breiki et al., 2020), which is
achieved through on-chain or off-chain flags which are manually
polled. Note that while we use the same name for our own oracle
architecture introduced in previous work (Ladleif et al., 2020) and
properly specified in this paper (see Section 5), the patterns are
fundamentally different. Publish/subscribe oracles as per Al-
Breiki et al. are insufficient for implementing non-continual
semantics using the publish/subscribe strategy (see Definition
10), since the active notification of changes is a prerequisite—no
manual polling must be involved.

2.2.3 Blockchain-Based Process Engines
The potential synergy of blockchain technology and BPM was
acknowledged early on (Mendling et al., 2018), shortly after first
work was conducted to use smart contracts for secure and
traceable process execution (Weber et al., 2016). This has
spawned an impressive amount of research, especially
regarding collaborative processes which benefit considerably
from the blockchain’s security properties (Garcia-Garcia et al.,
2020).

In most approaches, one or more smart contracts keep track of
the state of a process instance. Actions within the process are
funneled through the smart contract using transactions, which
can directly advance the state of the process instance accordingly

FIGURE 3 | Architecture and behavior of the storage and request/response oracles.

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581694

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

or be rejected if they do not conform to the process specification.
In any case, the blockchain provides a tamper-proof audit log
(Weber et al., 2016). Such process smart contracts need to
implement the correct semantics of the original process model
specification. Whether this is achieved using code generation
(Weber et al., 2016; López-Pintado et al., 2019a; Ladleif et al.,
2019) or interpretation (López-Pintado et al., 2019b) is
secondary, as long as each source process concept is mapped
to an equivalent smart contract concept.

In practice, this mapping is a particular problem for external
events and the deferred choice pattern—which we will elaborate
on in the remainder of this paper.

3 RELATED WORK

In this paper, we consider the semantics of deferred choice in
formal terms, and propose concrete oracle architectures and
provide a blockchain-based implementation. Accordingly, we
refer to related work from these areas.

3.1 Deferred Choice Semantics
Part of our contribution in this paper is the specification of a
formal definition and semantics of deferred choice in processes,
taking into account the external execution environment and
various heterogenous event types (see Section 4). Existing
semantics specifications of deferred choice based on Petri
nets (Russell et al., 2006; Dijkman et al., 2008) mostly gloss
over the latter points, abstracting away from the mechanics of
detecting events. Other literature, often focused on
collaborations, exhibits similar limitations, and only consider
explicit message events and their detection (Kheldoun et al.,
2017; Corradini et al., 2018; Houhou et al., 2019). There is no
notion of transactions or external data sources, and no
discussion of the interplay with implicit—timer, conditional,
or otherwise—events.

Kossak et al. (2012) provide the most detailed discussion of the
semantics of deferred choice as modeled using event-based
gateways in BPMN. Their main focus, however, is on
instantiating event-based gateways and their inconsistencies,
which are a special flavor of deferred choice that is not
immediately applicable to this paper.

Overall, we find that existing literature on the semantics of
deferred choice is mostly focused on verification, and if external
events are considered at all this is mostly limited to messages. We
thus provide a novel perspective that is especially useful for non-
continual environments.

3.2 Deferred Choice on Blockchain
Numerous approaches at blockchain-based process execution
have emerged, ranging from limited prototypes to powerful
process engines with support for a wide range of business
process constructs (see Section 2.2). However, deferred choice
in its entirety is rarely among those supported constructs.

López-Pintado et al. (2019a) implement deferred choice only
for internal as well as message events mapped to transactions
in their Caterpillar engine. This circumvents the problem of

gaps in perception since no implicit external events ever occur
outside of transactions. Corradini et al. (2020) follow a
choreography-based approach and all events competing in a
deferred choice are directly mapped to transactions, which
leads to the choice being resolved by the ordering of the
transactions themselves. Adams et al. (2020), on the other
hand, propose the notion of a “blockchain-integrated Business
Process Management System (BPMS)” in which the
blockchain is only used for storing “key contractual terms”.
That is, the local BPMS of the participants are responsible for
executing workflow patterns including deferred choice,
although it is not clear how tamper-proof enforcement
using the smart contract can then be achieved.

Approaches like Lorikeet (Lu et al., 2021) and others (Weber
et al., 2016; García-Bañuelos et al., 2017; Madsen et al., 2018;
López-Pintado et al., 2019b; Klinger and Bodendorf, 2020;
Azzopardi et al., 2021) likewise suggest some support for
deferred choice for messages and internal events, but do not
discuss related issues in detail. This uncertainty is exacerbated by
the fact that prototypical implementations are rarely publicly
available.

Still, even though deferred choice does not seem to have been
a focus in any existing work, some do consider more types of
events. In our own work, we implement conditional events to
monitor local process data (Ladleif et al., 2019). Some
approaches support constructs which can be used to emulate
the behavior of external events, like service tasks in Caterpillar
(López-Pintado et al., 2019a) or on-chain asset registries in
Lorikeet (Lu et al., 2021). Weber et al. (2016) discuss connecting
to external services using a dedicated trigger component, which
could also assume the role of a request/response oracle.
Similarly, many approaches including all of the above allow
the inclusion of custom script annotations within their source
models, which could potentially be used to access oracles non-
natively and emulate resolution of deferred choice on a process
level. In this paper, though, we strive for a native support for
events.

Lastly, temporal constraints and timer events are largely
absent in blockchain-based process engines due to the
platform’s inherent difficulties in these regards (Ladleif
and Weske, 2020). They are sometimes mentioned (Weber
et al., 2016; Ladleif et al., 2019; Klinger and Bodendorf, 2020),
but never discussed in detail. Abid et al. (2020) provide a
notable exception and extend Caterpillar with several notions
of timer events, albeit not in a deferred choice setting. To this
end, they use the block timestamps found on Ethereum
blockchains to gauge the transaction timestamp, and
implement time checks directly in the contract logic. In
our prototype, we have used a similar approach and
connected it with the timed event detection of conditional
events (see Section 4).

In summary, deferred choice has not been the focus of any
approach at blockchain-based process execution yet. Thus, we
find that our work significantly extends on existing research in
numerous fields, and is the first to provide an end-to-end
vision of the usage of the deferred choice pattern on
blockchain.

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581695

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

4 DEFERRED CHOICE EXECUTION
SEMANTICS

To gauge the impact of non-continual execution platforms like
blockchains, we first introduce a formal semantics of deferred
choice from a continual perspective. It comprises of two layers as
suggested in literature (Russell et al., 2006): the operating
environment in which events explicitly occur or whose
properties make events implicitly occur, and the system
implementing the deferred choice pattern and detecting those
events. We then adapt the semantics to the notion of transactions
to illustrate the issues introduced by the isolation and non-
continuity properties of blockchain.

4.1 Operating Environment
A deferred choice represents a local decision based on external
factors outside the influence of the process engine (see Section
2.1), which are summarized as the environment:

Definition 1. (environment). The (operating) environment
encapsulates all actors, systems, and information external to
the process engine which are necessary to execute a deferred
choice. In particular, this includes a set D of external variables.

Clearly, the environment is tailored to an individual
application of the deferred choice pattern. For instance,
the environment of the deferred choice g in the train ticket
process (see Figure 1) comprises of two external actors: the
customer and the RIM. There also has to be an external
variable, say D � {dw}, holding the current weather warning
level, which would be stored within a database at the
meteorological service. Lastly, the current time is logically
part of the environment, and is used to keep track of the
discount card expiration.

To keep our definitions concise, we assume in the following
that we consider exactly one arbitrary but fixed deferred choice
and its associated environment. Likewise, all examples will refer
to the deferred choice g from our motivating example (see
Section 1).

While explicit events are usually actively triggered by external
actors, implicit events rely on certain environment properties at a
specific point in time. For example, conditional events are bound
to the values of an external variable, and timer events to the
current environment time, all subsumed in the environment state:

Definition 2. (environment state). Let D be the domain of all
possible values of external variables. Then an environment state
s � (t,]) is a tuple consisting of a physical timestamp t ∈ N and a
valuation function]: D→D assigning a value to each variable.
The set of all environment states is called ES.

We use the natural numbers N as timestamps, which is a
common abstraction found in information systems, and results
in a discrete and uniform time domain. Note that the
timestamp represents physical time rather than logical time,
i.e., it is tied to some agreed-upon physical notion of time.
Naturally, the state of the environment changes and evolves as
time passes:

Definition 3. (successors). Let s � (t,]), s′ � (t′,]′) ∈ ES be
environment states. Then s′ is a successor of s, or s→ s′, iff t′ � t + 1.

An example trace of such environment states is shown in the
upper part of Table 1, e.g., s1 � (t1,]1) with t1 � 73 and]1(dw) �
0. The timestamps grow by one in each successive state, and the
valuation function changes unpredictably.

4.2 Deferred Choice
The structure of a deferred choice is simple:

Definition 4. (deferred choice). A deferred choice is made
between a non-empty set E of external events.

These events can be both explicit and implicit. In the train ticket
example, for instance, the deferred choice g is given byE� {et, ew, ed, ec}.

It is helpful to think of a deferred choice as a “race” with a
single winner. Like for all races, there are two important
milestones: when it starts and when it ends. A deferred choice
starts or is activated when it is encountered during process
execution, e.g., gateway g is reached; and ends once a winning
event is detected, e.g., the expiration of the discount card ed. The
detection of events is contingent on the current environment state
as well as the one at activation:

Definition 5. (event detection). Given a deferred choice E,
det: E × ES × ES→ {true, false} is the Boolean detection
function with det(e, sa, s) � true, iff an event e can be detected
in environment state s assuming activation happened in sa.

In extension, Edet: ES × ES→ 2E with Edet(sa, s)d
{e ∈ E | det(e, sa, s)} is the set of all implicit events which can
be detected under these circumstances.

The concrete definition of det depends on the type of event.
Several examples can be seen in the middle part of Table 1. For
the implicit events, expressions over the environment states
can be given: det(ed, sa, s) �̂ t≥ 76 means that the discount
card expires at timestamp 76; and det(ew, sa, s) �̂](dw)≥ 2
means that the severe weather warning event ew is detected
as the corresponding external variable dw reaches the value 2.
Thus, both these events can be detected in s5 assuming
activation at s1: Edet(s1, s5) � {ed, ew}. Explicit events, on the
other hand, are based on concrete actions in the environment,
e.g., messages sent by external actors, and follow no discernible
pattern.

4.3 Continual Execution Semantics
In a race, a winner is determined immediately upon their
reaching of the goal. Achieving this behavior for deferred
choice (see Section 2.1) requires a continual observation of
the environment to detect events as soon as possible. To
express this formally, we propose a state transition system
based on the evolution of the deferred choice alongside the
environment state:

Definition 6. (deferred choice state). Given a deferred choice E, a
deferred choice state (sa, s, e) ∈ ES × ES × (E ∪ {nil}) is a tuple

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581696

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

with sa the environment state at activation, s the last observed
environment state, and e the winning event or nil, if no event has
won yet. The set of all such states is called CS.

The initial states of the transition system are determined by the
environment state when the deferred choice is activated and the
race starts:

Definition 7. (initial states). The set CS04CS of all initial states
of a deferred choice E is given by

CS0d (s, s, e) | s ∈ ES ∧{ e ∈ Edet(s, s) ∨
Edet(s, s) � ∅∧ e � nil)()}

Notably, an initial state might already be the end of
the race: If events can be detected immediately, one of
them must be chosen. There is no sense of priority; for
example (see Table 1), (s5, s5, ed) and (s5, s5, ew) are the
valid initial states when starting in s5, but (s1, s1, nil) is
the only one when starting in s1. The race ends when a
winner is found:

Definition 8. (final states). Fd{(sa, s, e) ∈ CS | e≠ nil} is the
set of all final deferred choice states, i.e., those in which an
event has won.

Using these notions, we can finally define the operational
semantics of deferred choice using an unlabeled terminal
transition system with initial states (Plotkin, 1981):

Definition 9. (continual transition system). Given a deferred
choice E, the transition system 〈CS,⇝, CS0,F〉 with a transition
relation ⇝4CS × CS such that

(sa, s, nil)⇝(sa, s′, e)
5 s→ s′ ∧ (i)

(e ∈ E 0 e ∈ Edet(sa, s′)) ∧ (ii)
(e � nil 0 Edet(sa, s′) � ∅) (iii)

describes its continual execution semantics.

The transition relation⇝ includes several constraints. For one,
(i) the two referenced environment states need to be direct
successors. There can be no gap in time between them,
expressing the continual nature of transitions. Further, (ii) if
an event wins, it must be among those detected in the new
environment state s′. Lastly, (iii) the winner may only remain
undecided if no event could have been detected.

The bottom part of Table 1 shows an example trace (a) of the
continual semantics, starting with the state (s1, s1, nil) ∈ CS0. The
state evolves alongside the environment, until ed is detected and
the transition system arrives in the final state (s1, s4, ed) ∈ F .

4.4 Non-Continual Execution Semantics
The continual execution semantics works under the assumption
that each environment state is observed: Deadlines being reached
or conditions becoming satisfied will immediately be registered,
and corresponding events be detected.

However, this is not the case in a non-continual
environment like the blockchain. Each change of the
deferred choice state, that is activating and transitioning to
new states with ⇝, needs to be contained within a blockchain
transaction. Time passes between transactions, in which the
smart contract storing the state lies dormant. This directly
leads to environment states being missed, violating rule (i) of
the continual transition relation ⇝.

Thus, ⇝ needs to be adapted. Rule (i) needs to be relaxed to
allow for gaps, and the other rules modified to cope with those
gaps. In a first step, we reconsider the event detection function
det. Instead of just checking whether an implicit event may be
detected in a single environment state, we extend it to return the
time at which an event was first detected—that is, when it crossed
the finish line in the race:

Definition 10. (timed event detection). Let u∈ N be a fixed and
sufficiently large timestamp arbitrarily far in the future that will
realistically never be reached in the environment.

Given a deferred choice E, the function detT: E × ES ×
ES→N determines for detT(e, sa, s) the earliest timestamp at

TABLE 1 | Operating environment, event detections and example deferred choice traces for the train ticket scenario.

Environment trace

Environment states si / → s1 → s2 → s3 → s4 → s5 → s6 → /

Timestamp ti / 73 74 75 76 77 78 /

Valuation]i(dw) / 0 1 1 1 2 2 /

Event detections

det(ed , s1 , si) �̂ 76≤ ti / true true true /

det(ew , s1 , si) �̂]i(dw)≥ 2 / true true /

det(ec , s1 , si) / true /

det(et , s1 , si) / /

Deferred choice traces

(a) Continual CS0 ∋ (s1, s1, nil) ⇝ (s1, s2, nil) ⇝ (s1, s3, nil) ⇝ (s1, s4, ed) ∈ F
(b) Non-continual, history CS0 ∋ (s1, s1, nil) ⇝

T
(s1, s6, ed) ∈ F

(c) Non-continual, pub/sub CS0 ∋ (s1, s1, nil) ⇝
T

(s1, s2, nil) ⇝
T

(s1, s5, ed) ∈ F

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581697

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

which e could have been detected starting from the environment
state sa up to s. If no such timestamp exists, u is returned as an
indicator that the event could not have been detected.

In extension, tT: ES × ES→N with tT(sa, s)d
min{detT(e, sa, s) | e ∈ E} is the earliest detection time of any
event, or u if none was detected at all.

For example, in the train ticket scenario (see Table 1), the
discount card first expired at timestamp 76, leading to, e.g.,
detT(ed, s1, s6) � 76. It is also the first event to occur, thus
tT(s1, s6) � 76 holds as well. Assuming that such a function
exists—which we will qualify in the next section—, we can devise
of a new transition system:

Definition 11. (non-continual transition system). Given a
deferred choice E, the transition system 〈CS,⇝T , CS0,F〉 with
a transition relation ⇝

T
4CS × CS such that

(sa, s, nil)⇝T (sa, s′, e)
5 t< t′ ∧ (i)

(e ∈ E 0 detT(e, sa, s′) � tT(sa, s′)≠u) (ii)
(e � nil 0 tT(sa, s′) � u) (iii)

describes its non-continual execution semantics.

The non-continual transition relation ⇝
T
only requires that s′

is after s and not a direct successor anymore in rule (i)—which
allows for the mentioned gaps. Rule (ii) expresses that if an event
is chosen as the winner, it must have been detected and no event
may have been detected earlier. Rule (iii) checks that the winner
remains undecided only if no event could have been detected
at all.

Speaking in terms of the race analogy, the non-continual
semantics basically corresponds to the referee determining the
time each participant has finished after the race, and retroactively
deciding on the winner. Table 1 shows example traces (b) and (c)
for this behavior. In trace (b), we directly transition from the
initial state (s1, s1, nil) to (s1, s6, ed), correctly identifying ed as the
winner. Trace (c) arrives at the same conclusion.

4.5 Timed Event Detection on Blockchain
While the non-continual transition relation ⇝

T
ostensibly solves

the issues of deferred choice on blockchain, it relies on a major
assumption: that a timed detection function detT exists. The
actual definition of such a function is needed for an
implementation, however, and may be non-obvious depending
on the type of event that is concerned. In the scope of this paper,
we consider three types of events:

4.5.1 Message Events
In blockchain-based process execution, message events usually
get translated to transactions as shown in Figure 2. The detection
of a message event is then equivalent to the corresponding
transaction being mined, which can easily be retrieved by the
smart contract. detT for message events thus comes down to
determining whether the current transaction directly corresponds
to a message.

4.5.2 Timer Events
Since the exact deadline for absolute and delay for relative
timers is known, it is easy to retroactively determine when
they should have been detected first. Given, for example, a
relative timer event e with a delay δ and a detection function
of the form det(e, sa, s) �̂ ta + δ ≤ t, we can directly
derive detT:

detT(e, sa, s) �̂ ta + δ if ta + δ ≤ t
u otherwise

{
If the delay has passed since activation, it has done so exactly

ta + δ. For absolute timer events, detT looks similar.

4.5.3 Conditional Events
The valuation function] may change arbitrarily between
environment states. There is no way to deduce the
intermediate values of external variables from the
environment states at activation and transitioning alone.
Thus, detT can not be specified for conditional events
without additional assumptions. We suggest two approaches
to this end:

The history approach assumes the intermediate environment
states sa � s1 → s2 → / → sn � s and thus all valuations of the
external variables are available. Using a simple search, one can
then find the earliest timestamp at which the continual detection
function det returned true:

detT(e, sa, s)�̂ u, if ei: det(e, sa, si)
min{ti | det(e, sa, si)}, otherwise{

The publish/subscribe approach moves responsibility
towards the environment: We consider a system in which
the deferred choice smart contract subscribes to an external
variable, and is notified of any changes with transactions. In
these transactions, the smart contract could be sure that they
have received a complete picture of all conditional event
occurrences up to that point, and detT(e, sa, si) would be
equal to det(e, sa, si) until an event detection.

A core difference between the approaches is how quickly
conditional events are detected after the occur. For the
history approach, this entirely depends on the timing of
transactions, as events can be detected retroactively. The
publish/subscribe approach, conversely, ensures a very
timely reaction to conditional events since we assume an
active notification. In contrast to the other event types,
though, both the approaches for conditional events
currently lack support in practice, which we will examine
in the next section.

5 EXTENDED ORACLE ARCHITECTURES

Oracles are needed to implement conditional events within smart
contracts, since they rely on the values of external variables. In
addition, these oracles must provide certain functionality to
support the non-continual semantics—that is, they must either
deliver historical data, or provide publish/subscribe services (see

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581698

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Section 4.5). However, existing oracle architectures like storage
and request/response are not capable of either.

In our previous work, we sketched purposeful extensions of
existing oracle architectures precisely targeting these capabilities
(Ladleif et al., 2020). In the following, we extend on the cursory
textual descriptions in our previous work by providing concrete
architecture and interface specifications tailored to the formal
semantics introduced in Section 4.

5.1 History Oracles
History oracles allow consumers to obtain not only the present
value of an external data variable, but also a history of past values.
This makes it possible to implement the history approach at
timed event detection explained in Section 4.5. We introduce two
variants of the history oracle:

5.1.1 Architecture
The synchronous on-chain history oracle (see Figure 4A) is a
direct extension of the existing storage oracle (see Figure 3A). The
oracle provider observes the external data variable, and on data
updates (1a) sends a transaction containing the new value to the
oracle smart contract (1b). Instead of overwriting the old value,
however, the new value is added to an on-chain database holding a
full history of the data (1c). A consumer can then query a slice of
this historical data (2a) and immediately receive result (2b).

The asynchronous off-chain history oracle (see Figure 4B)
likewise extends the existing request/response oracle (see
Figure 3B). Again, the oracle provider listens to updates of
the external variable (1a), but stores a full history of the
valuation off-chain (1b). A consumer smart contract may now
submit a query for a slice of the data to the oracle smart contract
(2a), which is emitted using the blockchain’s event layer (2b). On
receiving the query (3a), the oracle provider subsequently
provides the requested data in a new transaction (3b).

5.1.2 Interfaces
Table 2 shows the interfaces of all oracle architectures described
in this paper in terms of the formalization in Section 4. Regular
storage and request/response oracles, for instance, do not require
any input from the consumer smart contract, and return the
current value of the external variable from D they target.

Regular history oracles are supplied one parameter, a
timestamp from N at which to start the slice of historical
values. As an output, consumers will get a list of timestamped
data values. Specific points in time can then be found, for
example, using a simple binary search.

5.2 Publish-Subscribe Oracles
As the name suggests, publish/subscribe oracles employ the
well-known publish/subscribe software pattern, and let
consumers subscribe to a specific external variable to
actively notify them immediately of any changes. The
effect is that no historical data needs to be stored, which
corresponds to the publish/subscribe approach presented in
Section 4.5. However, the onus of providing those updates in
time is shifted to an off-chain component, in this case the
oracle provider.

5.2.1 Architecture
Figure 5 shows the architecture of the publish/subscribe
oracle. The off-chain oracle provider observes the external
data variable, and on updates (1a) stores the most recent
value locally (1b) and also provides it to all subscriber
smart contracts already registered (1c). To subscribe, a
consumer smart contract queries the oracle smart contract
(2a) which emits an appropriate event (2b). This event is
picked up by the oracle provider (3a), which adds the
consumer smart contract to the list of subscribers (3b) and
also provides the current value immediately to avoid any
gaps (3c).

FIGURE 4 | Architecture and behavior of the history oracles.

TABLE 2 | Interfaces of the oracles from the perspective of the consumer.

Variant Oracle pattern Interface domains

Parameters Result

Regular Storage, req/res none D

History N (N × D)*
Publish/subscribe none D

Conditional Storage, req/res EXPR {true, false}
History N × EXPR N

Publish/subscribe EXPR none

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 7581699

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

5.2.2 Interfaces
From an interface perspective, the regular publish/subscribe
oracle is equal to the traditional oracles (see Table 2). It does
not require additional input, and provides a singular value each
time an update occurs. Note that we do not consider
unsubscription in detail in the scope of this paper. However, it
could trivially be implemented by exposing an unsubscription
function, which leads to the consumer smart contract being
removed from the list of subscribers.

5.3 Conditional Oracle Variants
The oracle architectures above provide a strict separation of
responsibilities when it comes to evaluating conditional events:
the oracle provides the current value of the external variable, and
the process smart contract evaluates specific conditions based on
these values locally. This pattern is realistic in that it protects the
business knowledge of an organization—conditions themselves
may be confidential and stored in protected areas of the blockchain.

However, the cost of operating a system on a blockchain
platform heavily depends on both the amount of transactions
being performed as well as the size of their payload, owing to the
limited amount of storage space available (Wood, 2014). Thus, we
propose conditional oracles as a trade-off between confidentiality
and cost by externalizing the evaluation of the condition attached
to a conditional event to the oracle, either within its on-chain or
off-chain infrastructure. The goal is to cut down on the number of
necessary transactions and the amount of data being exchanged.

The conditional variants alter the interfaces of the oracles as
shown in the lower half of Table 2. As an additional input, an
expression from the domain EXPR of all possible expressions is
given. We do not specify the structure of those expressions in
detail, but require them to yield a Boolean result and only
reference external variables the specific oracle provides.

The output will then reflect the evaluation of the condition on
the basis of the values of the external variable. This is particularly
interesting for history oracles, which either return the earliest
timestamp within the bounds given by the start timestamp at
which the condition was fulfilled, or u to express the condition

never evaluated to true—essentially reproducing the detection
function given in Section 4.5. The conditional publish/subscribe
oracle, on the other hand, returns no specific value at all. Instead,
a transaction is sent as a signal as soon as the condition becomes
true. Overall, this reduces both the amount of transactions needed
as well as the payload size of the remaining transactions.

6 PROTOTYPICAL IMPLEMENTATION

To prove the feasibility of the non-continual semantics and
oracle architectures, we developed a novel prototypical
implementation. It enables deployment of individual
deferred choices containing message, timer, and conditional
events on the blockchain, outside the context of their process.
The source code with all necessary information to reproduce
our results is available online.1

6.1 System Design
The design of the prototype is narrowly aligned to that of the
various oracle architectures. There are three essential groups of
components: 1) the blockchain smart contracts, 2) the off-chain
oracle providers, and 3) an off-chain simulation framework.
Figure 6 shows the overall structure as an UML class diagram.
The non-standard contract and event stereotypes are used for
smart contract classes and event types, respectively.

The general design goal was to achieve a level playing field for
comparing the different semantics and oracles. That is, we
refrained from selective optimization of individual approaches.
At the same time, the system design is laid out to be as generic as
possible, for example streamlining the interfaces to a minimum as
explained later in this section.

A major theme of the prototype is a strict separation between
synchronous and asynchronous oracles, which results in the dual
class layout for the oracle providers, oracle smart contracts, and
deferred choices. For each concrete oracle architecture (see
Section 5), e.g., the synchronous on-chain history oracle, there
is a set of three corresponding concrete classes. All custom code
related to single or a group of oracle architectures can be moved
to these classes. In the following, we will walk through each part of
the prototype.

6.2 Blockchain Smart Contracts
We use Ethereum (Wood, 2014) as our target blockchain, since it
provides all features necessary and its development ecosystem is
well-maintained and accessible. The core process logic is
contained within smart contracts, which are implemented
using the associated Solidity programming language. For the
data domain D, we use uint256, which is the largest static and
atomic data type that Solidity allows for. Timestamps are also
stored using uint256, andu is set to the type’s largest value 2256 −
1 which is “sufficiently” (see Definition 10) far—several hundred
billion years—in the future.

FIGURE 5 | Architecture and behavior of the publish-subscribe oracle.

1https://github.com/bptlab/blockchain-deferred-choice

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816910

Ladleif and Weske Deferred Choice on Blockchain

https://github.com/bptlab/blockchain-deferred-choice
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

6.2.1 Oracles
The smart contract classes AsyncOracle and SyncOracle
contain the interfaces of the oracles (see Figure 7, Section
6.2.2). Parameters and query results are encoded in raw byte
arrays (bytes) via the same mechanism Ethereum uses to
encode transactions. This allows us to use common
interfaces for all oracles, from which data can be extracted
according to specific interfaces (see Table 2). Larger payloads
will incur a higher cost following the rules in the standard
(Wood, 2014).

For synchronous oracles, the current value or historical values
are stored on the blockchain and updated/appended via set.
Synchronous oracles may thus directly return a result upon
query being called. For asynchronous oracles, the off-chain
oracle provider stores data—no setter functions or on-chain
storage are needed. Instead, queries are emitted using a
custom Query event type containing all the required
information for the off-chain oracle provider. Consumers need
to extend an additional OracleConsumer contract to receive the
later callback transaction.

A primary concern for asynchronous oracles is achieving
correlation: A consumer needs to be able to link the
transaction providing the query result to the query itself. In
practice, there are various strategies. For example, Provable.2

returns a unique query ID, which is attached alongside the query
result for later matching. In our prototype, consumers choose an
ID themselves in the form of the corr value.

6.2.2 Deferred Choice
The contract class Choice and its children implement the state
and behavior of deferred choice. Calling activate via a transaction
initially activates the deferred choice (equivalent to picking a valid
initial state from CS0), and trigger is used to perform a step of the

transition relation ⇝
T
and potentially trigger an event and pick it

as the winner.
In this context, the non-determinism of the transition system

is an issue—if multiple events are detected at the same time, both
are valid winners and there is no sense of priority (see Section
4.3). Smart contracts are deterministic, though, and one event
needs to be chosen. To this end, we opted for a two-phase
strategy: Transactions may include a preferred event ei for
each action which is chosen above all others if it is a valid
winner. Otherwise, the first valid winner is chosen in the
order of the events’ internal indices.

Figure 7 shows a schematic overview of the actions performed
within all transactions depending on the oracle type. The
complexity of the asynchronous oracles becomes especially
apparent since the smart contract needs to keep track of all
oracle callbacks, and asynchronously continue the event detection
across transactions once the required external variable values are
all gathered.

6.3 Off-Chain Components
The off-chain components are implemented in JavaScript using
Node.js and the Ethereum connector library web3.js.

6.3.1 Oracle Providers
The oracle providers are responsible for bridging the gap between
the oracle smart contract and the external variable they observe.
They manage communication responsibilities, mainly updating

FIGURE 6 | Overall design of the prototype as a Unified Modeling Language (UML) class diagram.

2https://provable.xyz/

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816911

Ladleif and Weske Deferred Choice on Blockchain

https://provable.xyz/
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

the oracle smart contract and sending responses to consumer
requests depending on the oracle type. In the scope of this paper,
we do not further investigate the connection to the original source
of the variable. Existing approaches using RESTful APIs or
similar can be used in practice.

6.3.2 Simulation Framework
To evaluate our proposals, we implemented a framework to
simulate oracles and deferred choices in a reproducible way.
For example, one such simulation may re-enact the scenario
used in our running example in Table 1. To this end, a set of
Simulator instances replay pre-defined lists of actions on their
targets, e.g., sending data updates to an oracle provider or
calling activation and trigger logic on a deferred choice
contract.

7 EVALUATION

We evaluated our approach using the prototype from the three
perspective mentioned at the beginning of this paper (see Section
1), namely correctness, cost, and immediacy. To this end, we
performed a number of simulations on a private Ethereum
network with a single node running an official implementation
of the Ethereum protocol (Go Ethereum, v1.9.21), using a virtual
machine with 12 GB of RAM and four CPUs. The detailed
specification and raw results of all simulations are available
online alongside the prototype.

7.1 Correctness
To verify the correctness of the non-continual semantics
implementation, we generated n random deferred choices,
each with k events e0, . . . , ek−1. An associated simulation

timeline was chosen specifically such that the events occur
sequentially in order; that is, a transaction is sent for explicit
events, a deadline is passed for timer events, or a condition on an
oracle becomes true for conditional events. As a result, event e0 is
always the unambiguous winner and must be chosen by a correct
approach.

To serve as a baseline, we implemented the regular storage and
request/response oracles and the continual semantics as well.
Each of the 10 oracle variants was then used to simulate n � 60
scenarios, half of which with k � 5 events and the other half with
k � 10 events. With a delay of 60 s between subsequent groups of
transactions, the experiment took around 4 days (99:22:10)
in total.

The share of simulations which yielded the correct winner e0 is
shown in Table 3 for each regular and conditional oracle variant.
The non-continual semantics approaches perform without fail,
giving evidence that they indeed describe the intended behavior
of deferred choice and that the implementation is accurate. As
expected, the continual semantics using the traditional oracles
encounter issues when certain event configurations resembling
the problematic example in Section 1 are generated—they only
pick the correct winner in around 35% of cases, i.e., those in
which the first event randomly turns out be explicit.

7.2 Cost
Cost is a major factor that influences the adoption of any
approach in practice. On Ethereum, cost is expressed using gas,
a stable measure that quantifies the computational complexity
and storage requirements of a transaction, and directly
translates to the cost in cryptocurrency. We compare the
gas cost of all approaches using a series of simulations.
Again, the traditional oracle patterns storage and request/
response are included for comparison.

7.2.1 Simulation Design
All simulation scenarios follow the same pattern, in which c
deferred choices consisting of exactly one conditional event each
access a single shared oracle. The oracle receives u data updates. A
trigger transaction is sent to each deferred choice at each fifth
update, of which only the last will lead to the conditional event’s
detection by design. This recreates a realistic timeline of events for
an oracle with multiple consumer contracts.

All simulations were executed sequentially for each oracle
variant and for all combinations of c ∈ {5, 10, 20} and u ∈ {1, 10,
20, 30}. Independent sets of transactions were spaced 40 s apart.
The experiment took a total time of 25:22:33 to finish.

TABLE 3 | Correctness of approaches in n � 60 random scenarios.

Semantics Oracle Correctness

Regular Conditional

Continual Storage 35% 35%
Req/res 35% 35%

Non-continual On-c. history 100% 100%
Off-c. history 100% 100%
Pub/sub 100% 100%

FIGURE 7 | Flowchart of the non-continual semantics implementation.

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816912

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

7.2.2 Deployment Cost
Initially, the smart contracts need to be created on the
blockchain, incurring a one-time deployment cost contingent
on the code size. Table 4 shows the average deployment costs we
have observed. For oracles, there are three significant outliers
owing to their more complex code: the regular on-chain history
oracle contains code to return the correct slice of historical data,
and the two synchronous conditional oracles contain code to
evaluate conditions. As expected, they are thus more expensive
to deploy.

For deferred choice, the differences are less pronounced. There
is a clear indication, though, that the externalization of evaluation
logic to the oracle for the conditional variants reduces the code
complexity of the choice itself, and that the more powerful
approaches like publish/subscribe and history oracles require
larger smart contracts.

7.2.3 Operating Cost
The operating cost was derived by dividing the total cost minus
deployment costs by the number of consumers c, arriving at an
average cost per consumer. The results were normalized globally
from the minimum (165,407 gas for the storage oracle with c �
20, u � 1) to the maximum (1,656,007 gas for the publish/
subscribe oracle with u � 30), producing the overview shown in
Figure 8.

Several observations are immediately apparent: All
synchronous oracles (Figures 8A–D) become relatively less
expensive the more consumers share the cost, as visible by the
decline along the y-axis. This is not the case for asynchronous
oracles (Figures 8E–J), as their cost linearly scales with the
number of consumers.

Naturally, the more updates there are, the more expensive the
approaches tend to get, albeit on different scales. This is especially
evident for the on-chain history (Figures 8C,D) and the regular
off-chain history (Figure 8G) oracles, which show an exponential
trajectory on the x-axis because of storage and payload cost
increases.

This is not the case for the other oracles, which experience
at most a linear growth alongside the number of updates.
Notably, while the regular publish/subscribe oracle is the most
expensive in our tests, it exhibits a very predictable and linear
growth of cost per update, which is not tied to storage or
payload requirements.

Interestingly, the conditional variants of the storage and
request/response oracles are almost exactly as expensive as

their regular counterparts. This is mainly due to Ethereum’s
padding of transaction parameters to words (256 bit), making
a Boolean value take up just as much space as an integer.
However, for history oracles the effect is very apparent, and for
publish/subscribe considerable: the conditional variants
outperform the regular variants by a steady margin the
larger the payloads get and the more transactions are to
be sent.

8 DISCUSSION AND CONCLUSION

In this paper, we have introduced several formal as well as
practical solutions in the form of novel oracle patterns to
support deferred choice within smart contracts on blockchain

FIGURE 8 | Normalized, relative operating cost of an oracle per
consumer with the given number of data updates u and consumers c.

TABLE 4 | Average smart contract deployment cost.

Oracle Avg. deployment cost (103 gas)

Oracles Deferred Choices

Regular Conditional Regular Conditional

Storage 408/+48% 1,431/+3% 1,406/+1%
Req/res 281/+2% 281/+2% 1,502/+8% 1,477/+7%
On-c. hist 467/+69% 552/+100% 1,520/+10%
Off-c. hist 281/+2% 281/+2% 1,592/+15% 1,448/+4%
Pub/sub 281/+2% 281/+2% 1,577/+14% 1,490/+7%

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816913

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

networks. In the following, we will compare these solutions,
discuss their shortcomings and limitations, and conclude with
a summary of our contributions.

8.1 Comparison and Assessment
In Section.1, our central research question gave rise to three
metrics suitable to judge our proposed solution: correctness, cost,
and immediacy. Table 5 shows an overview of how the oracle
patterns perform in these metrics.

The first metric, correctness, is readily achieved by all of our
proposed solutions by design as evidenced by the underlying
formal framework (see Section 4). The experimental
evaluation (see Section 7.1) supports this impression by
showing that our proposed solutions can effectively choose
the correct winner of a deferred choice despite the restrictions
posed by the transaction-driven blockchain environment. Supporting
deferred choice comes at a price, however, and the required novel
oracle architectures tend to be more expensive than existing
approaches with less functionality both during deployment and
runtime (see Section 7.2). More gravely, due to the platform’s
storage limitations, some approaches might not be feasible for all
data sources and scenarios depending on the number of data updates:
We have shown that on-chain history oracles might quickly become
infeasible when the exponential pricing of storage in Ethereum fully
comes into play. The regular off-chain history oracle similarly
experiences an exponential growth in cost due to the rising size of
transaction payloads. There are, of course, conceivable solutions to
this, e.g., only storing and submitting data for a certain amount of
time to keep demands on a constant level.

The other proposed solutions exhibit a linear rise in cost the
more data updates there are, albeit on different baselines. The
regular publish/subscribe oracle shows the highest cost overall,
while the conditional variant shows the lowest. The latter
conditional publish/subscribe oracle even has the potential for
a fixed cost if unsubscription mechanisms were to be
implemented. In conclusion, we believe that practical
implementations in usable blockchain-based process engines
will be necessary to really show the feasibility of supporting
deferred choice patterns in practice, for which we have laid
the groundwork. Lastly, the experimental evaluation is based
on procedurally generated scenarios with a known outcome.
Thus, the important aspect of immediacy—i.e., how quickly a
deferred choice is resolved after an event occurs—is not directly
covered by our experimental evaluation, since it is a direct result
of the scenarios’ structure. Still, it is evident that the publish/

subscribe approaches will achieve a high level of immediacy in
practice by design: Whenever the deferred choice state could
potentially evolve, a transaction is automatically sent within a
very short timespan. The other approaches, though, will always be
hindered by the need for a manually or periodically submitted
transaction to arrive and trigger the evaluation of the deferred
choice. This ultimately appears to be a fundamental restriction of
any solution to deferred choice within smart contracts or other
transaction-based environments.

8.2 Limitations and Future Work
The present work is subject to several limitations. Perhaps most
importantly, we did not take into account some concrete network
and protocol delays that are present in blockchains and Ethereum in
particular: There is no notion of forks, side chains, or confirmation
time. The semantics and implementation also do not consider the
possibility of blockchain exceptions, like running out of gas, which
may lead to the premature termination of transactions. As such, our
paper presents results obtained in an ideal environment. At the same
time, this point of view helps keeping our results generalizable for
other Ethereum-like blockchains in turn. We did not take into
account blockchains which are fundamentally different than
Ethereum, and the topic of deferred choice using such other
blockchain platforms surely deserves attention in the future.
Further, the prototype is not production-ready. Authentication
and security features were omitted completely, and several
optimizations like specialized interfaces for individual oracle
architectures or low-level optimizations using Solidity Assembly
were left out to not unfairly influence the direct comparison of
the oracles. We also do not support some deferred choice and oracle
configurations, e.g., multiple types of oracles being used in the same
deferred choice instance. These design decisions were necessary to
keep the development scopemanageable. Lastly, we focused on rather
direct and pragmatic solutions to the issue of deferred choice within
smart contracts. The proposals of course come with tradeoffs
regarding the fundamental properties of blockchain technology.
For instance, as mentioned in Section 5.3, the conditional oracle
variants externalize the evaluation of conditions attached to
conditional events to a third-party oracle provider. This may not
always be desirable or even possible in practice. At the same time,
moving such responsibility off-chain may also impact the
fundamental properties of blockchain technology itself: If the
oracle performs calculations, they can not immediately be
validated by the blockchain network. A study on the
consequences for auditing and non-repudiation would be

TABLE 5 | Relative comparison of the proposed oracle architectures.

Variant Oracle pattern Correctness Cost Immediacy

Regular On-chain history ✓ Exponential (storage) Arbitrary
Off-chain history ✓ Exponential (transaction) Arbitrary
Publish/subscribe ✓ Linear Immediate

Conditional On-chain history ✓ Exponential (storage) Arbitrary
Off-chain history ✓ Linear Arbitrary
Publish/subscribe ✓ Linear/fixed Immediate

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816914

Ladleif and Weske Deferred Choice on Blockchain

https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

necessary before releasing such solutions into production
environments.

8.3 Summary of Contributions
To conclude, providing full support for deferred choice patterns
within smart contracts on contemporary blockchain technology
is a complex issue—especially when considering heterogenous
scenarios with multiple involved event types and external data
sources. Guided by our initial research question (see Section 1),
we suggested a set of solutions which we formally described,
prototypically implemented, and experimentally evaluated. In
summary, our contributions are as follows:

• We provided a tailor-made formal semantics of deferred
choice with heterogenous event types in non-continual
environments, taking into account the role of the external
environment in event occurrences. The semantics offer a
formal footing which allows the reasoning about and
alignment of our implementation and evaluation.

• We introduced two approaches (history and publish/
subscribe) realizing this semantics within smart contracts
on blockchain networks, i.e., taking into account the
isolation and non-continuity restrictions of blockchains.
The approaches were formally introduced, and form the
basis for the introduction of concrete oracle architectures to
support them in practice.

• Lastly, we implemented all oracle architectures and variants
introduced in this paper using the Ethereum blockchain
(Wood, 2014). While the main purpose of the
implementation was to experimentally evaluate certain

properties of our solutions, it may also serve as a
blueprint for process engines in the future.

Overall, we hope our contributions serve to improve support
for deferred choice patterns within smart contracts on
blockchain, something largely absent in state-of-the-art
blockchain-based process execution approaches.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
bptlab/blockchain-deferred-choice.

AUTHOR CONTRIBUTIONS

All authors contributed to the conception and steering of the
topic. JL wrote the article, implemented the prototypical
implementation, and performed any associated experiments.
All authors contributed to article revision, read, and approved
the submitted version.

ACKNOWLEDGMENTS

A previous version of this article was published online as a
preprint (Ladleif and Weske, 2021).

REFERENCES

Abid, A., Cheikhrouhou, S., and Jmaiel, M. (2020). “Modelling and Executing
Time-Aware Processes in Trustless Blockchain Environment,” in Risks and
Security of Internet and Systems, CRiSIS 2019 of Lecture Notes in Computer
Science. Editors S. Kallel, F. Cuppens, N. Cuppens-Boulahia, and AHadj Kacem
(Cham: Springer), 12026, 325–341. doi:10.1007/978-3-030-41568-6_21

Adams, M., Suriadi, S., Kumar, A., and ter Hofstede, A. H. M. (2020). “Flexible
Integration of Blockchain with Business Process Automation: A Federated
Architecture,” in Advanced Information Systems Engineering of Lecture Notes in
Business Information Processing. Editors N. Herbaut and M. La Rosa (Cham:
Springer), 386, 1–13. doi:10.1007/978-3-030-58135-0_1

Al-Breiki, H., Rehman, M. H. U., Salah, K., and Svetinovic, D. (2020). Trustworthy
Blockchain Oracles: Review, Comparison, and Open Research Challenges. IEEE
Access 8, 85675–85685. doi:10.1109/ACCESS.2020.2992698

Azzopardi, S., Ellul, J., and Pace, G. (2021). “Runtime Monitoring Processes Across
Blockchains,” in 9th IPM International Conference on Fundamentals of
Software Engineering 2021 (FSEN 2021), Tehran, Iran, May 19-21, 2021.

Cheikhrouhou, S., Kallel, S., Guermouche, N., and Jmaiel, M. (2015). The Temporal
Perspective in Business Process Modeling: A Survey and Research Challenges.
Serv. Oriented Comput. Appl. 9, 75–85. doi:10.1007/s11761-014-0170-x

Corradini, F., Fornari, F., Polini, A., Re, B., and Tiezzi, F. (2018). A Formal
Approach toModeling and Verification of Business Process Collaborations. Sci.
Comput. Programming 166, 35–70. doi:10.1016/j.scico.2018.05.008

Corradini, F., Marcelletti, A., Morichetta, A., Polini, A., Re, B., and Tiezzi, F. (2020).
“Engineering Trustable Choreography/Based Systems Using Blockchain,” in
SAC ’20: Proceedings of the 35th Annual ACM Symposium on Applied
Computing, Brno, Czech Republic, March-April 30-3, 2020 (New York, NY,

USA: Association for Computing Machinery), 1470–1479. doi:10.1145/
3341105.3373988

Dijkman, R. M., Dumas, M., and Ouyang, C. (2008). Semantics and Analysis of
Business Process Models in Bpmn. Inf. Softw. Technol. 50, 1281–1294.
doi:10.1016/j.infsof.2008.02.006

Eder, J., Panagos, E., and Rabinovich, M. (1999). “Time Constraints in Workflow
Systems,” in Advanced Information Systems Engineering of Lecture Notes in
Computer Science. Editors M. Jarke and A. Oberweis (Berlin, Heidelberg:
Springer), 1626, 286–300. doi:10.1007/3-540-48738-7_22

García-Bañuelos, L., Ponomarev, A., Dumas, M., andWeber, I. (2017). “Optimized
Execution of Business Processes on Blockchain,” in Intl. Conference on
Business Process Management, Barcelona, Spain, September 10-15, 2017
(Springer), 130–146. doi:10.1007/978-3-319-65000-5_8

Garcia-Garcia, J. A., Sánchez-Gómez, N., Lizcano, D., Escalona, M. J., and
Wojdynski, T. (2020). Using Blockchain to Improve Collaborative Business
Process Management: Systematic Literature Review. IEEE Access 8,
142312–142336. doi:10.1109/access.2020.3013911

Houhou, S., Baarir, S., Poizat, P., and Quéinnec, P. (2019). “A First-Order Logic
Semantics for Communication-Parametric Bpmn Collaborations,” in Business
Process Management. Editors T. Hildebrandt, B. van Dongen, M. Röglinger, and
J. Mendling (Cham: Springer International Publishing), 52–68. doi:10.1007/
978-3-030-26619-6_6

Kheldoun, A., Barkaoui, K., and Ioualalen, M. (2017). Formal Verification of
Complex Business Processes Based on High-Level Petri Nets. Inf. Sci. 385-386,
39–54. doi:10.1016/j.ins.2016.12.044

Klinger, P., and Bodendorf, F. (2020). “Blockchain/Based Cross/Organizational
Execution Framework for Dynamic Integration of Process Collaborations,” in
15th International Conference on Wirtschaftsinformatik (WI), Potsdam,
Germany, March 8-11, 2020 893–908. doi:10.30844/wi_2020_i2-klinger

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816915

Ladleif and Weske Deferred Choice on Blockchain

https://github.com/bptlab/blockchain-deferred-choice
https://github.com/bptlab/blockchain-deferred-choice
https://doi.org/10.1007/978-3-030-41568-6_21
https://doi.org/10.1007/978-3-030-58135-0_1
https://doi.org/10.1109/ACCESS.2020.2992698
https://doi.org/10.1007/s11761-014-0170-x
https://doi.org/10.1016/j.scico.2018.05.008
https://doi.org/10.1145/3341105.3373988
https://doi.org/10.1145/3341105.3373988
https://doi.org/10.1016/j.infsof.2008.02.006
https://doi.org/10.1007/3-540-48738-7_22
https://doi.org/10.1007/978-3-319-65000-5_8
https://doi.org/10.1109/access.2020.3013911
https://doi.org/10.1007/978-3-030-26619-6_6
https://doi.org/10.1007/978-3-030-26619-6_6
https://doi.org/10.1016/j.ins.2016.12.044
https://doi.org/10.30844/wi_2020_i2-klinger
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

Kossak, F., Illibauer, C., and Geist, V. (2012). “Event-Based Gateways: Open
Questions and Inconsistencies,” in Business Process Model and Notation.
Editors J. Mendling and M. Weidlich (Berlin, Heidelberg: Springer Berlin
Heidelberg), 53–67. doi:10.1007/978-3-642-33155-8_5

Ladleif, J., Weber, I., and Weske, M. (2020). “External Data Monitoring Using
Oracles in Blockchain-Based Process Execution,” in Business Process
Management: Blockchain and Robotic Process Automation Forum, BPM
2020 of Lecture Notes in Business Information Processing. Editors
A. Asatiani, J M García, N Helander, and A Jiménez-Ramírez (Cham:
Springer), 393, 67–81. doi:10.1007/978-3-030-58779-6_5

Ladleif, J., and Weske, M. (2020). “Time in Blockchain-Based Process Execution,”
in 24th IEEE International Enterprise Distributed Object Computing
Conference, EDOC 2020, Eindhoven, The Netherlands, October 5-8, 2020
(IEEE), 217–226. doi:10.1109/EDOC49727.2020.00034

Ladleif, J.,Weske,M., andWeber, I. (2019). “Modeling and Enforcing Blockchain-Based
Choreographies,” in Business Process Management. BPM 2019 of Lecture Notes in
Computer Science. Editors T. Hildebrandt, B. van Dongen, M. Röglinger, and
J. Mendling (Cham: Springer), 11675, 69–85. doi:10.1007/978-3-030-26619-6_7

Ladleif, J., and Weske, M. (2021). Which Event Happened First? Deferred Choice
on Blockchain Using Oracles. CoRR abs/2104.10520

López-Pintado, O., Dumas,M., García-Bañuelos, L., andWeber, I. (2019a). “Interpreted
Execution of Business Process Models on Blockchain,” in 2019 IEEE 23rd
International Enterprise Distributed Object Computing Conference (EDOC),
Paris, France, October 28-31, 2019 206–215. doi:10.1109/EDOC.2019.00033

López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., and Ponomarev, A.
(2019b). Caterpillar: A Business Process Execution Engine on the Ethereum
Blockchain. Softw. Pract. Exper 49, 1162–1193. doi:10.1002/spe.2702

Lu,Q., Binh Tran, A.,Weber, I., et al. (2021). IntegratedModel-Driven Engineering of
Blockchain Applications for Business Processes and Asset Management. Softw.
Pract. Exper. 51, 1059–1079. doi:10.1002/spe.2931

Madsen, M. F., Gaub, M., Høgnason, T., Kirkbro, M. E., Slaats, T., and Debois, S.
(2018). “Collaboration Among Adversaries: Distributed Workflow Execution on a
Blockchain,” in Symposium on Foundations and Applications of Blockchain, Los
Angeles, California, USA, March 9, 2018.

Mendling, J., Weber, I., Aalst, W. V. D., Brocke, J. V., Cabanillas, C., Daniel, F., et al.
(2018). Blockchains for Business Process Management - Challenges and
Opportunities. ACM Trans. Manage. Inf. Syst. 9, 1–16. doi:10.1145/3183367

Nakamoto, S. (2008). Bitcoin: A Peer-To-Peer Electronic Cash System.
OMG (2013). Business Process Model and Notation (BPMN). Version 2.0.2. Object

Management Group (OMG).

Plotkin, G. D. (1981). A Structural Approach to Operational Semantics. Aarhus,
Denmark: Computer Science Department, Aarhus University Denmark.

Russell, N., Ter Hofstede, A. H., Van Der Aalst, W. M., and Mulyar, N. (2006).
Workflow Control-Flow Patterns: A Revised View. BPM Center Report BPM-
06-22, BPMcenter. org 06–22

Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., and Mendling, J.
(2016). “Untrusted Business Process Monitoring and Execution Using
Blockchain,” in Business Process Management (BPM) of Lecture Notes in
Computer Science. Editors M. L. Rosa, P. Loos, and O. Pastor (Cham:
Springer), 9850, 329–347. doi:10.1007/978-3-319-45348-4_19

Weske, M. (2019). Business Process Management. 3rd edn. Berlin, Heidelberg:
Springer. doi:10.1007/978-3-662-59432-2

Wood, G. (2014). Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Tech. rep. Ethereum Project Yellow Paper

Xu, X., Pautasso, C., Zhu, L., Lu, Q., andWeber, I. (2018). “A Pattern Collection for
Blockchain-Based Applications,” in 23rd European Conference on Pattern
Languages of Programs (EuroPLoP) (ACM), Irsee, Germany, July 4-8, 2018.
doi:10.1145/3282308.3282312

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., and
Rimba, P. (2017). “A Taxonomy of Blockchain-Based Systems for
Architecture Design,” in IEEE Intl. Conf. Software Architecture
(ICSA), Gothenburg, Sweden, April 3-7, 2017 243–252. doi:10.1109/
ICSA.2017.33

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ladleif andWeske. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Blockchain | www.frontiersin.org October 2021 | Volume 4 | Article 75816916

Ladleif and Weske Deferred Choice on Blockchain

https://doi.org/10.1007/978-3-642-33155-8_5
https://doi.org/10.1007/978-3-030-58779-6_5
https://doi.org/10.1109/EDOC49727.2020.00034
https://doi.org/10.1007/978-3-030-26619-6_7
https://doi.org/10.1109/EDOC.2019.00033
https://doi.org/10.1002/spe.2702
https://doi.org/10.1002/spe.2931
https://doi.org/10.1145/3183367
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-3-662-59432-2
https://doi.org/10.1145/3282308.3282312
https://doi.org/10.1109/ICSA.2017.33
https://doi.org/10.1109/ICSA.2017.33
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/blockchain
www.frontiersin.org
https://www.frontiersin.org/journals/blockchain#articles

	Which Event Happened First? Deferred Choice on Blockchain Using Oracles
	1 Introduction
	2 Preliminaries
	2.1 Business Process Management and Events
	2.2 Blockchain and Business Process Management
	2.2.1 Blockchain Technology
	2.2.2 Oracles
	2.2.3 Blockchain-Based Process Engines

	3 Related Work
	3.1 Deferred Choice Semantics
	3.2 Deferred Choice on Blockchain

	4 Deferred Choice Execution Semantics
	4.1 Operating Environment
	4.2 Deferred Choice
	4.3 Continual Execution Semantics
	4.4 Non-Continual Execution Semantics
	4.5 Timed Event Detection on Blockchain
	4.5.1 Message Events
	4.5.2 Timer Events
	4.5.3 Conditional Events

	5 Extended Oracle Architectures
	5.1 History Oracles
	5.1.1 Architecture
	5.1.2 Interfaces

	5.2 Publish-Subscribe Oracles
	5.2.1 Architecture
	5.2.2 Interfaces

	5.3 Conditional Oracle Variants

	6 Prototypical Implementation
	6.1 System Design
	6.2 Blockchain Smart Contracts
	6.2.1 Oracles
	6.2.2 Deferred Choice

	6.3 Off-Chain Components
	6.3.1 Oracle Providers
	6.3.2 Simulation Framework

	7 Evaluation
	7.1 Correctness
	7.2 Cost
	7.2.1 Simulation Design
	7.2.2 Deployment Cost
	7.2.3 Operating Cost

	8 Discussion and Conclusion
	8.1 Comparison and Assessment
	8.2 Limitations and Future Work
	8.3 Summary of Contributions

	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

